refactor to remove all pylint errors

release/4.3a0
Varun Agrawal 2021-09-03 08:04:59 -04:00
parent e320bfa3b2
commit 67a26c1f93
1 changed files with 66 additions and 48 deletions

View File

@ -10,28 +10,30 @@ A script validating and demonstrating the ImuFactor inference.
Author: Frank Dellaert, Varun Agrawal
"""
# pylint: disable=no-name-in-module,unused-import,arguments-differ
from __future__ import print_function
import argparse
import math
import gtsam
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.symbol_shorthand import B, V, X
from gtsam.utils.plot import plot_pose3
from mpl_toolkits.mplot3d import Axes3D
from PreintegrationExample import POSES_FIG, PreintegrationExample
BIAS_KEY = B(0)
np.set_printoptions(precision=3, suppress=True)
class ImuFactorExample(PreintegrationExample):
"""Class to run example of the Imu Factor."""
def __init__(self, twist_scenario="sick_twist"):
self.velocity = np.array([2, 0, 0])
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
@ -42,9 +44,8 @@ class ImuFactorExample(PreintegrationExample):
zero_twist=(np.zeros(3), np.zeros(3)),
forward_twist=(np.zeros(3), self.velocity),
loop_twist=(np.array([0, -math.radians(30), 0]), self.velocity),
sick_twist=(np.array([math.radians(30), -math.radians(30), 0]),
self.velocity)
)
sick_twist=(np.array([math.radians(30), -math.radians(30),
0]), self.velocity))
accBias = np.array([-0.3, 0.1, 0.2])
gyroBias = np.array([0.1, 0.3, -0.1])
@ -55,19 +56,44 @@ class ImuFactorExample(PreintegrationExample):
bias, dt)
def addPrior(self, i, graph):
"""Add priors at time step `i`."""
state = self.scenario.navState(i)
graph.push_back(gtsam.PriorFactorPose3(
X(i), state.pose(), self.priorNoise))
graph.push_back(gtsam.PriorFactorVector(
V(i), state.velocity(), self.velNoise))
graph.push_back(
gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
graph.push_back(
gtsam.PriorFactorVector(V(i), state.velocity(), self.velNoise))
def optimize(self, graph, initial):
"""Optimize using Levenberg-Marquardt optimization."""
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
return result
def plot(self, result):
"""Plot resulting poses."""
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plot_pose3(POSES_FIG + 1, pose_i, 1)
i += 1
plt.title("Estimated Trajectory")
gtsam.utils.plot.set_axes_equal(POSES_FIG + 1)
print("Bias Values", result.atConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
def run(self, T=12, compute_covariances=False, verbose=True):
"""Main runner."""
graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
T = 12
num_poses = T # assumes 1 factor per second
initial = gtsam.Values()
initial.insert(BIAS_KEY, self.actualBias)
@ -91,14 +117,13 @@ class ImuFactorExample(PreintegrationExample):
if k % 10 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
if (k+1) % int(1 / self.dt) == 0:
if (k + 1) % int(1 / self.dt) == 0:
# Plot every second
self.plotGroundTruthPose(t, scale=1)
plt.title("Ground Truth Trajectory")
# create IMU factor every second
factor = gtsam.ImuFactor(X(i), V(i),
X(i + 1), V(i + 1),
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
BIAS_KEY, pim)
graph.push_back(factor)
@ -108,34 +133,34 @@ class ImuFactorExample(PreintegrationExample):
pim.resetIntegration()
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3)*0.1)
translationNoise = gtsam.Point3(*np.random.randn(3)*1)
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1)
translationNoise = gtsam.Point3(*np.random.randn(3) * 1)
poseNoise = gtsam.Pose3(rotationNoise, translationNoise)
actual_state_i = self.scenario.navState(t + self.dt)
print("Actual state at {0}:\n{1}".format(
t+self.dt, actual_state_i))
t + self.dt, actual_state_i))
noisy_state_i = gtsam.NavState(
actual_state_i.pose().compose(poseNoise),
actual_state_i.velocity() + np.random.randn(3)*0.1)
actual_state_i.velocity() + np.random.randn(3) * 0.1)
initial.insert(X(i+1), noisy_state_i.pose())
initial.insert(V(i+1), noisy_state_i.velocity())
initial.insert(X(i + 1), noisy_state_i.pose())
initial.insert(V(i + 1), noisy_state_i.velocity())
i += 1
# add priors on end
self.addPrior(num_poses - 1, graph)
initial.print_("Initial values:")
initial.print("Initial values:")
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
result = self.optimize(graph, initial)
result.print_("Optimized values:")
result.print("Optimized values:")
print("------------------")
print(graph.error(initial))
print(graph.error(result))
print("------------------")
if compute_covariances:
# Calculate and print marginal covariances
@ -148,33 +173,26 @@ class ImuFactorExample(PreintegrationExample):
print("Covariance on vel {}:\n{}\n".format(
i, marginals.marginalCovariance(V(i))))
# Plot resulting poses
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plot_pose3(POSES_FIG+1, pose_i, 1)
i += 1
plt.title("Estimated Trajectory")
gtsam.utils.plot.set_axes_equal(POSES_FIG+1)
print("Bias Values", result.atConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
self.plot(result)
if __name__ == '__main__':
parser = argparse.ArgumentParser("ImuFactorExample.py")
parser.add_argument("--twist_scenario",
default="sick_twist",
choices=("zero_twist", "forward_twist", "loop_twist", "sick_twist"))
parser.add_argument("--time", "-T", default=12,
type=int, help="Total time in seconds")
choices=("zero_twist", "forward_twist", "loop_twist",
"sick_twist"))
parser.add_argument("--time",
"-T",
default=12,
type=int,
help="Total time in seconds")
parser.add_argument("--compute_covariances",
default=False, action='store_true')
default=False,
action='store_true')
parser.add_argument("--verbose", default=False, action='store_true')
args = parser.parse_args()
ImuFactorExample(args.twist_scenario).run(
args.time, args.compute_covariances, args.verbose)
ImuFactorExample(args.twist_scenario).run(args.time,
args.compute_covariances,
args.verbose)