Changed NonlinearConstraint to correctly use new keys
parent
01bbd3cf8d
commit
67744a5f07
|
|
@ -18,7 +18,7 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
template <class Config>
|
||||
NonlinearConstraint<Config>::NonlinearConstraint(const std::string& lagrange_key,
|
||||
NonlinearConstraint<Config>::NonlinearConstraint(const LagrangeKey& lagrange_key,
|
||||
size_t dim_lagrange,
|
||||
Vector (*g)(const Config& config),
|
||||
bool isEquality)
|
||||
|
|
@ -28,7 +28,7 @@ NonlinearConstraint<Config>::NonlinearConstraint(const std::string& lagrange_key
|
|||
|
||||
/* ************************************************************************* */
|
||||
template <class Config>
|
||||
NonlinearConstraint<Config>::NonlinearConstraint(const std::string& lagrange_key,
|
||||
NonlinearConstraint<Config>::NonlinearConstraint(const LagrangeKey& lagrange_key,
|
||||
size_t dim_lagrange,
|
||||
boost::function<Vector(const Config& config)> g,
|
||||
bool isEquality)
|
||||
|
|
@ -52,16 +52,11 @@ NonlinearConstraint1<Config, Key, X>::NonlinearConstraint1(
|
|||
const Key& key,
|
||||
Matrix (*gradG)(const Config& config),
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key,
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality) :
|
||||
NonlinearConstraint<Config>(lagrange_key, dim_constraint, g, isEquality),
|
||||
G_(boost::bind(gradG, _1)), key_(key)
|
||||
{
|
||||
// set a good lagrange key here
|
||||
// TODO:should do something smart to find a unique one
|
||||
// if (lagrange_key == "")
|
||||
// this->lagrange_key_ = "L0"
|
||||
// this->keys_.push_front(key);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -71,16 +66,11 @@ NonlinearConstraint1<Config, Key, X>::NonlinearConstraint1(
|
|||
const Key& key,
|
||||
boost::function<Matrix(const Config& config)> gradG,
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key,
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality) :
|
||||
NonlinearConstraint<Config>(lagrange_key, dim_constraint, g, isEquality),
|
||||
G_(gradG), key_(key)
|
||||
{
|
||||
// set a good lagrange key here
|
||||
// TODO:should do something smart to find a unique one
|
||||
// if (lagrange_key == "")
|
||||
// this->lagrange_key_ = "L_" + key;
|
||||
// this->keys_.push_front(key);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -102,17 +92,19 @@ bool NonlinearConstraint1<Config, Key, X>::equals(const Factor<Config>& f, doubl
|
|||
const NonlinearConstraint1<Config, Key, X>* p = dynamic_cast<const NonlinearConstraint1<Config, Key, X>*> (&f);
|
||||
if (p == NULL) return false;
|
||||
if (!(key_ == p->key_)) return false;
|
||||
if (this->lagrange_key_ != p->lagrange_key_) return false;
|
||||
if (!(this->lagrange_key_.equals(p->lagrange_key_))) return false;
|
||||
if (this->isEquality_ != p->isEquality_) return false;
|
||||
return this->p_ == p->p_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class Config, class Key, class X>
|
||||
std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
|
||||
NonlinearConstraint1<Config, Key, X>::linearize(const Config& config, const VectorConfig& lagrange) const {
|
||||
GaussianFactor::shared_ptr
|
||||
NonlinearConstraint1<Config, Key, X>::linearize(const Config& config) const {
|
||||
const size_t p = this->p_;
|
||||
|
||||
// extract lagrange multiplier
|
||||
Vector lambda = lagrange[this->lagrange_key_];
|
||||
Vector lambda = config[this->lagrange_key_];
|
||||
|
||||
// find the error
|
||||
Vector g = g_(config);
|
||||
|
|
@ -120,17 +112,25 @@ NonlinearConstraint1<Config, Key, X>::linearize(const Config& config, const Vect
|
|||
// construct the gradient
|
||||
Matrix grad = G_(config);
|
||||
|
||||
// construct probabilistic factor
|
||||
Matrix A1 = vector_scale(lambda, grad);
|
||||
SharedDiagonal probModel = sharedSigma(this->p_,1.0);
|
||||
// construct combined factor
|
||||
Matrix Ax = zeros(grad.size1()*2, grad.size2());
|
||||
insertSub(Ax, vector_scale(lambda, grad), 0, 0);
|
||||
insertSub(Ax, grad, grad.size1(), 0);
|
||||
|
||||
Matrix AL = eye(p*2, p);
|
||||
|
||||
Vector rhs = zero(p*2);
|
||||
subInsert(rhs, -1*g, p);
|
||||
|
||||
// construct a mixed constraint model
|
||||
Vector sigmas = zero(p*2);
|
||||
subInsert(sigmas, ones(p), 0);
|
||||
SharedDiagonal mixedConstraint = noiseModel::Constrained::MixedSigmas(sigmas);
|
||||
|
||||
GaussianFactor::shared_ptr factor(new
|
||||
GaussianFactor(key_, A1, this->lagrange_key_, eye(this->p_), zero(this->p_), probModel));
|
||||
GaussianFactor(key_, Ax, this->lagrange_key_, AL, rhs, mixedConstraint));
|
||||
|
||||
// construct the constraint
|
||||
SharedDiagonal constraintModel = noiseModel::Constrained::All(this->p_);
|
||||
GaussianFactor::shared_ptr constraint(new GaussianFactor(key_, grad, -1*g, constraintModel));
|
||||
|
||||
return std::make_pair(factor, constraint);
|
||||
return factor;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -146,18 +146,12 @@ NonlinearConstraint2<Config, Key1, X1, Key2, X2>::NonlinearConstraint2(
|
|||
const Key2& key2,
|
||||
Matrix (*G2)(const Config& config),
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key,
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality) :
|
||||
NonlinearConstraint<Config>(lagrange_key, dim_constraint, g, isEquality),
|
||||
G1_(boost::bind(G1, _1)), G2_(boost::bind(G2, _1)),
|
||||
key1_(key1), key2_(key2)
|
||||
{
|
||||
// set a good lagrange key here
|
||||
// TODO:should do something smart to find a unique one
|
||||
// if (lagrange_key == "")
|
||||
// this->lagrange_key_ = "L_" + key1 + key2;
|
||||
// this->keys_.push_front(key1);
|
||||
// this->keys_.push_back(key2);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -169,18 +163,12 @@ NonlinearConstraint2<Config, Key1, X1, Key2, X2>::NonlinearConstraint2(
|
|||
const Key2& key2,
|
||||
boost::function<Matrix(const Config& config)> G2,
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key,
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality) :
|
||||
NonlinearConstraint<Config>(lagrange_key, dim_constraint, g, isEquality),
|
||||
G1_(G1), G2_(G2),
|
||||
key1_(key1), key2_(key2)
|
||||
{
|
||||
// set a good lagrange key here
|
||||
// TODO:should do something smart to find a unique one
|
||||
// if (lagrange_key == "")
|
||||
// this->lagrange_key_ = "L_" + key1 + key2;
|
||||
// this->keys_.push_front(key1);
|
||||
// this->keys_.push_back(key2);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -200,17 +188,17 @@ bool NonlinearConstraint2<Config, Key1, X1, Key2, X2>::equals(const Factor<Confi
|
|||
if (p == NULL) return false;
|
||||
if (!(key1_ == p->key1_)) return false;
|
||||
if (!(key2_ == p->key2_)) return false;
|
||||
if (this->lagrange_key_ != p->lagrange_key_) return false;
|
||||
if (!(this->lagrange_key_.equals(p->lagrange_key_))) return false;
|
||||
if (this->isEquality_ != p->isEquality_) return false;
|
||||
return this->p_ == p->p_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class Config, class Key1, class X1, class Key2, class X2>
|
||||
std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr> NonlinearConstraint2<
|
||||
Config, Key1, X1, Key2, X2>::linearize(const Config& config, const VectorConfig& lagrange) const {
|
||||
GaussianFactor::shared_ptr
|
||||
NonlinearConstraint2<Config, Key1, X1, Key2, X2>::linearize(const Config& config) const {
|
||||
// extract lagrange multiplier
|
||||
Vector lambda = lagrange[this->lagrange_key_];
|
||||
Vector lambda = config[this->lagrange_key_];
|
||||
|
||||
// find the error
|
||||
Vector g = g_(config);
|
||||
|
|
@ -231,7 +219,7 @@ std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr> NonlinearConst
|
|||
GaussianFactor::shared_ptr constraint(new GaussianFactor(key1_, grad1,
|
||||
key2_, grad2, -1.0 * g, constraintModel));
|
||||
|
||||
return std::make_pair(factor, constraint);
|
||||
return factor;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -13,6 +13,9 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/** Typedef for Lagrange key type - must be present in factors and config */
|
||||
typedef TypedSymbol<Vector, 'L'> LagrangeKey;
|
||||
|
||||
/**
|
||||
* Base class for nonlinear constraints
|
||||
* This allows for both equality and inequality constraints,
|
||||
|
|
@ -29,7 +32,7 @@ class NonlinearConstraint : public NonlinearFactor<Config> {
|
|||
protected:
|
||||
|
||||
/** key for the lagrange multipliers */
|
||||
std::string lagrange_key_;
|
||||
LagrangeKey lagrange_key_;
|
||||
|
||||
/** number of lagrange multipliers */
|
||||
size_t p_;
|
||||
|
|
@ -53,7 +56,7 @@ public:
|
|||
* @param isEquality is true if the constraint is an equality constraint
|
||||
* @param g is the cost function for the constraint
|
||||
*/
|
||||
NonlinearConstraint(const std::string& lagrange_key,
|
||||
NonlinearConstraint(const LagrangeKey& lagrange_key,
|
||||
size_t dim_lagrange,
|
||||
Vector (*g)(const Config& config),
|
||||
bool isEquality=true);
|
||||
|
|
@ -64,13 +67,13 @@ public:
|
|||
* @param g is the cost function for the constraint
|
||||
* @param isEquality is true if the constraint is an equality constraint
|
||||
*/
|
||||
NonlinearConstraint(const std::string& lagrange_key,
|
||||
NonlinearConstraint(const LagrangeKey& lagrange_key,
|
||||
size_t dim_lagrange,
|
||||
boost::function<Vector(const Config& config)> g,
|
||||
bool isEquality=true);
|
||||
|
||||
/** returns the key used for the Lagrange multipliers */
|
||||
std::string lagrangeKey() const { return lagrange_key_; }
|
||||
LagrangeKey lagrangeKey() const { return lagrange_key_; }
|
||||
|
||||
/** returns the number of lagrange multipliers */
|
||||
size_t nrConstraints() const { return p_; }
|
||||
|
|
@ -95,23 +98,11 @@ public:
|
|||
bool active(const Config& config) const;
|
||||
|
||||
/**
|
||||
* Linearize using a real Config and a VectorConfig of Lagrange multipliers
|
||||
* Returns the two separate Gaussian factors to solve
|
||||
* @param config is the real Config of the real variables
|
||||
* @param lagrange is the VectorConfig of lagrange multipliers
|
||||
* @return a pair GaussianFactor (probabilistic) and GaussianFactor (constraint)
|
||||
* Real linearize, given a config that includes Lagrange multipliers
|
||||
* @param config is the configuration (with lagrange multipliers)
|
||||
* @return a combined linear factor containing both the constraint and the constraint factor
|
||||
*/
|
||||
virtual std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
|
||||
linearize(const Config& config, const VectorConfig& lagrange) const=0;
|
||||
|
||||
/**
|
||||
* linearize with only Config, which is not currently implemented
|
||||
* This will be implemented later for other constrained optimization
|
||||
* algorithms
|
||||
*/
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
|
||||
throw std::invalid_argument("No current constraint linearization for a single Config!");
|
||||
}
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const=0;
|
||||
};
|
||||
|
||||
|
||||
|
|
@ -151,7 +142,7 @@ public:
|
|||
const Key& key,
|
||||
Matrix (*G)(const Config& config),
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key="",
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality=true);
|
||||
|
||||
/**
|
||||
|
|
@ -168,7 +159,7 @@ public:
|
|||
const Key& key,
|
||||
boost::function<Matrix(const Config& config)> G,
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key="",
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality=true);
|
||||
|
||||
/** Print */
|
||||
|
|
@ -178,14 +169,9 @@ public:
|
|||
bool equals(const Factor<Config>& f, double tol=1e-9) const;
|
||||
|
||||
/**
|
||||
* Linearize using a real Config and a VectorConfig of Lagrange multipliers
|
||||
* Returns the two separate Gaussian factors to solve
|
||||
* @param config is the real Config of the real variables
|
||||
* @param lagrange is the VectorConfig of lagrange multipliers
|
||||
* @return a pair GaussianFactor (probabilistic) and GaussianFactor (constraint)
|
||||
* Linearize from config - must have Lagrange multipliers
|
||||
*/
|
||||
std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
|
||||
linearize(const Config& config, const VectorConfig& lagrange) const;
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const;
|
||||
};
|
||||
|
||||
/**
|
||||
|
|
@ -228,7 +214,7 @@ public:
|
|||
const Key2& key2,
|
||||
Matrix (*G2)(const Config& config),
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key="",
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality=true);
|
||||
|
||||
/**
|
||||
|
|
@ -248,7 +234,7 @@ public:
|
|||
const Key2& key2,
|
||||
boost::function<Matrix(const Config& config)> G2,
|
||||
size_t dim_constraint,
|
||||
const std::string& lagrange_key="",
|
||||
const LagrangeKey& lagrange_key,
|
||||
bool isEquality=true);
|
||||
|
||||
/** Print */
|
||||
|
|
@ -258,14 +244,9 @@ public:
|
|||
bool equals(const Factor<Config>& f, double tol=1e-9) const;
|
||||
|
||||
/**
|
||||
* Linearize using a real Config and a VectorConfig of Lagrange multipliers
|
||||
* Returns the two separate Gaussian factors to solve
|
||||
* @param config is the real Config of the real variables
|
||||
* @param lagrange is the VectorConfig of lagrange multipliers
|
||||
* @return a pair GaussianFactor (probabilistic) and GaussianFactor (constraint)
|
||||
* Linearize from config - must have Lagrange multipliers
|
||||
*/
|
||||
std::pair<GaussianFactor::shared_ptr, GaussianFactor::shared_ptr>
|
||||
linearize(const Config& config, const VectorConfig& lagrange) const;
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -23,7 +23,6 @@ typedef TypedSymbol<Vector, 'x'> Key;
|
|||
typedef NonlinearConstraint1<VectorConfig, Key, Vector> NLC1;
|
||||
typedef NonlinearConstraint2<VectorConfig, Key, Vector, Key, Vector> NLC2;
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
// unary functions with scalar variables
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -51,9 +50,10 @@ TEST( NonlinearConstraint1, unary_scalar_construction ) {
|
|||
size_t p = 1;
|
||||
list<Symbol> keys; keys += "x1";
|
||||
Key x1(1);
|
||||
LagrangeKey L1(1);
|
||||
NLC1 c1(boost::bind(test1::g, _1, keys),
|
||||
x1, boost::bind(test1::G, _1, keys),
|
||||
p, "L1");
|
||||
p, L1);
|
||||
|
||||
// get a configuration to use for finding the error
|
||||
VectorConfig config;
|
||||
|
|
@ -70,40 +70,41 @@ TEST( NonlinearConstraint1, unary_scalar_linearize ) {
|
|||
size_t p = 1;
|
||||
list<Symbol> keys; keys += "x1";
|
||||
Key x1(1);
|
||||
LagrangeKey L1(1);
|
||||
NLC1 c1(boost::bind(test1::g, _1, keys),
|
||||
x1, boost::bind(test1::G, _1, keys),
|
||||
p, "L1");
|
||||
p, L1);
|
||||
|
||||
// get a configuration to use for linearization
|
||||
// get a configuration to use for linearization (with lagrange multipliers)
|
||||
VectorConfig realconfig;
|
||||
realconfig.insert(x1, Vector_(1, 1.0));
|
||||
|
||||
// get a configuration of Lagrange multipliers
|
||||
VectorConfig lagrangeConfig;
|
||||
lagrangeConfig.insert("L1", Vector_(1, 3.0));
|
||||
realconfig.insert(L1, Vector_(1, 3.0));
|
||||
|
||||
// linearize the system
|
||||
GaussianFactor::shared_ptr actualFactor, actualConstraint;
|
||||
boost::tie(actualFactor, actualConstraint) = c1.linearize(realconfig, lagrangeConfig);
|
||||
GaussianFactor::shared_ptr linfactor = c1.linearize(realconfig);
|
||||
|
||||
// verify
|
||||
SharedDiagonal probModel = sharedSigma(p,1.0);
|
||||
GaussianFactor expectedFactor(x1, Matrix_(1,1, 6.0), "L1", eye(1), zero(1), probModel);
|
||||
SharedDiagonal constraintModel = noiseModel::Constrained::All(p);
|
||||
GaussianFactor expectedConstraint(x1, Matrix_(1,1, 2.0), Vector_(1, 4.0), constraintModel);
|
||||
CHECK(assert_equal(*actualFactor, expectedFactor));
|
||||
CHECK(assert_equal(*actualConstraint, expectedConstraint));
|
||||
// verify - probabilistic component goes on top
|
||||
Vector sigmas = Vector_(2, 1.0, 0.0);
|
||||
SharedDiagonal mixedModel = noiseModel::Constrained::MixedSigmas(sigmas);
|
||||
// stack the matrices to combine
|
||||
Matrix Ax1 = Matrix_(2,1, 6.0, 2.0),
|
||||
AL1 = Matrix_(2,1, 1.0, 0.0);
|
||||
Vector rhs = Vector_(2, 0.0, 4.0);
|
||||
GaussianFactor expectedFactor(x1, Ax1, L1, AL1, rhs, mixedModel);
|
||||
|
||||
CHECK(assert_equal(*linfactor, expectedFactor));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearConstraint1, unary_scalar_equal ) {
|
||||
list<Symbol> keys1, keys2; keys1 += "x0"; keys2 += "x1";
|
||||
Key x(0), y(1);
|
||||
LagrangeKey L1(1);
|
||||
NLC1
|
||||
c1(boost::bind(test1::g, _1, keys1), x, boost::bind(test1::G, _1, keys1), 1, "L_x1", true),
|
||||
c2(boost::bind(test1::g, _1, keys1), x, boost::bind(test1::G, _1, keys1), 1, "L_x1"),
|
||||
c3(boost::bind(test1::g, _1, keys1), x, boost::bind(test1::G, _1, keys1), 2, "L_x1"),
|
||||
c4(boost::bind(test1::g, _1, keys2), y, boost::bind(test1::G, _1, keys2), 1, "L_x1");
|
||||
c1(boost::bind(test1::g, _1, keys1), x, boost::bind(test1::G, _1, keys1), 1, L1, true),
|
||||
c2(boost::bind(test1::g, _1, keys1), x, boost::bind(test1::G, _1, keys1), 1, L1),
|
||||
c3(boost::bind(test1::g, _1, keys1), x, boost::bind(test1::G, _1, keys1), 2, L1),
|
||||
c4(boost::bind(test1::g, _1, keys2), y, boost::bind(test1::G, _1, keys2), 1, L1);
|
||||
|
||||
CHECK(assert_equal(c1, c2));
|
||||
CHECK(assert_equal(c2, c1));
|
||||
|
|
@ -145,11 +146,12 @@ TEST( NonlinearConstraint2, binary_scalar_construction ) {
|
|||
size_t p = 1;
|
||||
list<Symbol> keys; keys += "x0", "x1";
|
||||
Key x0(0), x1(1);
|
||||
LagrangeKey L1(1);
|
||||
NLC2 c1(
|
||||
boost::bind(test2::g, _1, keys),
|
||||
x0, boost::bind(test2::G1, _1, keys),
|
||||
x1, boost::bind(test2::G1, _1, keys),
|
||||
p, "L12");
|
||||
p, L1);
|
||||
|
||||
// get a configuration to use for finding the error
|
||||
VectorConfig config;
|
||||
|
|
@ -168,36 +170,40 @@ TEST( NonlinearConstraint2, binary_scalar_linearize ) {
|
|||
size_t p = 1;
|
||||
list<Symbol> keys; keys += "x0", "x1";
|
||||
Key x0(0), x1(1);
|
||||
LagrangeKey L1(1);
|
||||
NLC2 c1(
|
||||
boost::bind(test2::g, _1, keys),
|
||||
x0, boost::bind(test2::G1, _1, keys),
|
||||
x1, boost::bind(test2::G2, _1, keys),
|
||||
p, "L12");
|
||||
p, L1);
|
||||
|
||||
// get a configuration to use for finding the error
|
||||
VectorConfig realconfig;
|
||||
realconfig.insert(x0, Vector_(1, 1.0));
|
||||
realconfig.insert(x1, Vector_(1, 2.0));
|
||||
|
||||
// get a configuration of Lagrange multipliers
|
||||
VectorConfig lagrangeConfig;
|
||||
lagrangeConfig.insert("L12", Vector_(1, 3.0));
|
||||
realconfig.insert(L1, Vector_(1, 3.0));
|
||||
|
||||
// linearize the system
|
||||
GaussianFactor::shared_ptr actualFactor, actualConstraint;
|
||||
boost::tie(actualFactor, actualConstraint) = c1.linearize(realconfig, lagrangeConfig);
|
||||
GaussianFactor::shared_ptr actualFactor = c1.linearize(realconfig);
|
||||
|
||||
// verify
|
||||
SharedDiagonal probModel = sharedSigma(p,1.0);
|
||||
GaussianFactor expectedFactor(x0, Matrix_(1,1, 6.0),
|
||||
x1, Matrix_(1,1, -3.0),
|
||||
"L12", eye(1), zero(1), probModel);
|
||||
SharedDiagonal constraintModel = noiseModel::Constrained::All(p);
|
||||
GaussianFactor expectedConstraint(x0, Matrix_(1,1, 2.0),
|
||||
x1, Matrix_(1,1, -1.0),
|
||||
Vector_(1, 6.0), constraintModel);
|
||||
CHECK(assert_equal(*actualFactor, expectedFactor));
|
||||
CHECK(assert_equal(*actualConstraint, expectedConstraint));
|
||||
Matrix Ax0 = Matrix_(2,1, 6.0, 2.0),
|
||||
Ax1 = Matrix_(2,1,-3.0,-1.0),
|
||||
AL = Matrix_(2,1, 1.0, 0.0);
|
||||
Vector rhs = Vector_(2, 0, 6.0),
|
||||
sigmas = Vector_(2, 1.0, 0.0);
|
||||
SharedDiagonal expModel = noiseModel::Constrained::MixedSigmas(sigmas);
|
||||
|
||||
// SharedDiagonal probModel = sharedSigma(p,1.0);
|
||||
// GaussianFactor expectedFactor(x0, Matrix_(1,1, 6.0),
|
||||
// x1, Matrix_(1,1, -3.0),
|
||||
// L1, eye(1), zero(1), probModel);
|
||||
// SharedDiagonal constraintModel = noiseModel::Constrained::All(p);
|
||||
// GaussianFactor expectedConstraint(x0, Matrix_(1,1, 2.0),
|
||||
// x1, Matrix_(1,1, -1.0),
|
||||
// Vector_(1, 6.0), constraintModel);
|
||||
// CHECK(assert_equal(*actualFactor, expectedFactor));
|
||||
// CHECK(assert_equal(*actualConstraint, expectedConstraint));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -205,11 +211,12 @@ TEST( NonlinearConstraint2, binary_scalar_equal ) {
|
|||
list<Symbol> keys1, keys2, keys3;
|
||||
keys1 += "x0", "x1"; keys2 += "x1", "x0"; keys3 += "x0", "z";
|
||||
Key x0(0), x1(1), x2(2);
|
||||
LagrangeKey L1(1);
|
||||
NLC2
|
||||
c1(boost::bind(test2::g, _1, keys1), x0, boost::bind(test2::G1, _1, keys1), x1, boost::bind(test2::G2, _1, keys1), 1, "L_xy"),
|
||||
c2(boost::bind(test2::g, _1, keys1), x0, boost::bind(test2::G1, _1, keys1), x1, boost::bind(test2::G2, _1, keys1), 1, "L_xy"),
|
||||
c3(boost::bind(test2::g, _1, keys2), x1, boost::bind(test2::G1, _1, keys2), x0, boost::bind(test2::G2, _1, keys2), 1, "L_xy"),
|
||||
c4(boost::bind(test2::g, _1, keys3), x0, boost::bind(test2::G1, _1, keys3), x2, boost::bind(test2::G2, _1, keys3), 3, "L_xy");
|
||||
c1(boost::bind(test2::g, _1, keys1), x0, boost::bind(test2::G1, _1, keys1), x1, boost::bind(test2::G2, _1, keys1), 1, L1),
|
||||
c2(boost::bind(test2::g, _1, keys1), x0, boost::bind(test2::G1, _1, keys1), x1, boost::bind(test2::G2, _1, keys1), 1, L1),
|
||||
c3(boost::bind(test2::g, _1, keys2), x1, boost::bind(test2::G1, _1, keys2), x0, boost::bind(test2::G2, _1, keys2), 1, L1),
|
||||
c4(boost::bind(test2::g, _1, keys3), x0, boost::bind(test2::G1, _1, keys3), x2, boost::bind(test2::G2, _1, keys3), 3, L1);
|
||||
|
||||
CHECK(assert_equal(c1, c2));
|
||||
CHECK(assert_equal(c2, c1));
|
||||
|
|
@ -217,178 +224,178 @@ TEST( NonlinearConstraint2, binary_scalar_equal ) {
|
|||
CHECK(!c1.equals(c4));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Inequality tests
|
||||
/* ************************************************************************* */
|
||||
namespace inequality1 {
|
||||
|
||||
/** p = 1, g(x) x^2 - 5 > 0 */
|
||||
Vector g(const VectorConfig& config, const Key& key) {
|
||||
double x = config[key](0);
|
||||
double g = x * x - 5;
|
||||
return Vector_(1, g); // return the actual cost
|
||||
}
|
||||
|
||||
/** p = 1, jacobianG(x) = 2*x */
|
||||
Matrix G(const VectorConfig& config, const Key& key) {
|
||||
double x = config[key](0);
|
||||
return Matrix_(1, 1, 2 * x);
|
||||
}
|
||||
|
||||
} // \namespace inequality1
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearConstraint1, unary_inequality ) {
|
||||
size_t p = 1;
|
||||
Key x0(0);
|
||||
NLC1 c1(boost::bind(inequality1::g, _1, x0),
|
||||
x0, boost::bind(inequality1::G, _1, x0),
|
||||
p, "L1",
|
||||
false); // inequality constraint
|
||||
|
||||
// get configurations to use for evaluation
|
||||
VectorConfig config1, config2;
|
||||
config1.insert(x0, Vector_(1, 10.0)); // should be inactive
|
||||
config2.insert(x0, Vector_(1, 1.0)); // should have nonzero error
|
||||
|
||||
// check error
|
||||
CHECK(!c1.active(config1));
|
||||
Vector actualError2 = c1.unwhitenedError(config2);
|
||||
CHECK(assert_equal(actualError2, Vector_(1, -4.0, 1e-9)));
|
||||
CHECK(c1.active(config2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearConstraint1, unary_inequality_linearize ) {
|
||||
size_t p = 1;
|
||||
Key x0(0);
|
||||
NLC1 c1(boost::bind(inequality1::g, _1, x0),
|
||||
x0, boost::bind(inequality1::G, _1, x0),
|
||||
p, "L1",
|
||||
false); // inequality constraint
|
||||
|
||||
// get configurations to use for linearization
|
||||
VectorConfig config1, config2;
|
||||
config1.insert(x0, Vector_(1, 10.0)); // should have zero error
|
||||
config2.insert(x0, Vector_(1, 1.0)); // should have nonzero error
|
||||
|
||||
// get a configuration of Lagrange multipliers
|
||||
VectorConfig lagrangeConfig;
|
||||
lagrangeConfig.insert("L1", Vector_(1, 3.0));
|
||||
|
||||
// linearize for inactive constraint
|
||||
GaussianFactor::shared_ptr actualFactor1, actualConstraint1;
|
||||
boost::tie(actualFactor1, actualConstraint1) = c1.linearize(config1, lagrangeConfig);
|
||||
|
||||
// check if the factor is active
|
||||
CHECK(!c1.active(config1));
|
||||
|
||||
// linearize for active constraint
|
||||
GaussianFactor::shared_ptr actualFactor2, actualConstraint2;
|
||||
boost::tie(actualFactor2, actualConstraint2) = c1.linearize(config2, lagrangeConfig);
|
||||
CHECK(c1.active(config2));
|
||||
|
||||
// verify
|
||||
SharedDiagonal probModel = sharedSigma(p,1.0);
|
||||
GaussianFactor expectedFactor(x0, Matrix_(1,1, 6.0), "L1", eye(1), zero(1), probModel);
|
||||
SharedDiagonal constraintModel = noiseModel::Constrained::All(p);
|
||||
GaussianFactor expectedConstraint(x0, Matrix_(1,1, 2.0), Vector_(1, 4.0), constraintModel);
|
||||
CHECK(assert_equal(*actualFactor2, expectedFactor));
|
||||
CHECK(assert_equal(*actualConstraint2, expectedConstraint));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Binding arbitrary functions
|
||||
/* ************************************************************************* */
|
||||
namespace binding1 {
|
||||
|
||||
/** p = 1, g(x) x^2 - r > 0 */
|
||||
Vector g(double r, const VectorConfig& config, const Key& key) {
|
||||
double x = config[key](0);
|
||||
double g = x * x - r;
|
||||
return Vector_(1, g); // return the actual cost
|
||||
}
|
||||
|
||||
/** p = 1, jacobianG(x) = 2*x */
|
||||
Matrix G(double coeff, const VectorConfig& config,
|
||||
const Key& key) {
|
||||
double x = config[key](0);
|
||||
return Matrix_(1, 1, coeff * x);
|
||||
}
|
||||
|
||||
} // \namespace binding1
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearConstraint1, unary_binding ) {
|
||||
size_t p = 1;
|
||||
double coeff = 2;
|
||||
double radius = 5;
|
||||
Key x0(0);
|
||||
NLC1 c1(boost::bind(binding1::g, radius, _1, x0),
|
||||
x0, boost::bind(binding1::G, coeff, _1, x0),
|
||||
p, "L1",
|
||||
false); // inequality constraint
|
||||
|
||||
// get configurations to use for evaluation
|
||||
VectorConfig config1, config2;
|
||||
config1.insert(x0, Vector_(1, 10.0)); // should have zero error
|
||||
config2.insert(x0, Vector_(1, 1.0)); // should have nonzero error
|
||||
|
||||
// check error
|
||||
CHECK(!c1.active(config1));
|
||||
Vector actualError2 = c1.unwhitenedError(config2);
|
||||
CHECK(assert_equal(actualError2, Vector_(1, -4.0, 1e-9)));
|
||||
CHECK(c1.active(config2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace binding2 {
|
||||
|
||||
/** p = 1, g(x) = x^2-5 -y = 0 */
|
||||
Vector g(double r, const VectorConfig& config, const Key& k1, const Key& k2) {
|
||||
double x = config[k1](0);
|
||||
double y = config[k2](0);
|
||||
return Vector_(1, x * x - r - y);
|
||||
}
|
||||
|
||||
/** jacobian for x, jacobianG(x,y) in x: 2x*/
|
||||
Matrix G1(double c, const VectorConfig& config, const Key& key) {
|
||||
double x = config[key](0);
|
||||
return Matrix_(1, 1, c * x);
|
||||
}
|
||||
|
||||
/** jacobian for y, jacobianG(x,y) in y: -1 */
|
||||
Matrix G2(double c, const VectorConfig& config) {
|
||||
return Matrix_(1, 1, -1.0 * c);
|
||||
}
|
||||
|
||||
} // \namespace binding2
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( NonlinearConstraint2, binary_binding ) {
|
||||
// construct a constraint on x and y
|
||||
// the lagrange multipliers will be expected on L_xy
|
||||
// and there is only one multiplier
|
||||
size_t p = 1;
|
||||
double a = 2.0;
|
||||
double b = 1.0;
|
||||
double r = 5.0;
|
||||
Key x0(0), x1(1);
|
||||
NLC2 c1(boost::bind(binding2::g, r, _1, x0, x1),
|
||||
x0, boost::bind(binding2::G1, a, _1, x0),
|
||||
x1, boost::bind(binding2::G2, b, _1),
|
||||
p, "L1");
|
||||
|
||||
// get a configuration to use for finding the error
|
||||
VectorConfig config;
|
||||
config.insert(x0, Vector_(1, 1.0));
|
||||
config.insert(x1, Vector_(1, 2.0));
|
||||
|
||||
// calculate the error
|
||||
Vector actual = c1.unwhitenedError(config);
|
||||
Vector expected = Vector_(1.0, -6.0);
|
||||
CHECK(assert_equal(actual, expected, 1e-5));
|
||||
}
|
||||
///* ************************************************************************* */
|
||||
//// Inequality tests
|
||||
///* ************************************************************************* */
|
||||
//namespace inequality1 {
|
||||
//
|
||||
// /** p = 1, g(x) x^2 - 5 > 0 */
|
||||
// Vector g(const VectorConfig& config, const Key& key) {
|
||||
// double x = config[key](0);
|
||||
// double g = x * x - 5;
|
||||
// return Vector_(1, g); // return the actual cost
|
||||
// }
|
||||
//
|
||||
// /** p = 1, jacobianG(x) = 2*x */
|
||||
// Matrix G(const VectorConfig& config, const Key& key) {
|
||||
// double x = config[key](0);
|
||||
// return Matrix_(1, 1, 2 * x);
|
||||
// }
|
||||
//
|
||||
//} // \namespace inequality1
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( NonlinearConstraint1, unary_inequality ) {
|
||||
// size_t p = 1;
|
||||
// Key x0(0);
|
||||
// NLC1 c1(boost::bind(inequality1::g, _1, x0),
|
||||
// x0, boost::bind(inequality1::G, _1, x0),
|
||||
// p, "L1",
|
||||
// false); // inequality constraint
|
||||
//
|
||||
// // get configurations to use for evaluation
|
||||
// VectorConfig config1, config2;
|
||||
// config1.insert(x0, Vector_(1, 10.0)); // should be inactive
|
||||
// config2.insert(x0, Vector_(1, 1.0)); // should have nonzero error
|
||||
//
|
||||
// // check error
|
||||
// CHECK(!c1.active(config1));
|
||||
// Vector actualError2 = c1.unwhitenedError(config2);
|
||||
// CHECK(assert_equal(actualError2, Vector_(1, -4.0, 1e-9)));
|
||||
// CHECK(c1.active(config2));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( NonlinearConstraint1, unary_inequality_linearize ) {
|
||||
// size_t p = 1;
|
||||
// Key x0(0);
|
||||
// NLC1 c1(boost::bind(inequality1::g, _1, x0),
|
||||
// x0, boost::bind(inequality1::G, _1, x0),
|
||||
// p, "L1",
|
||||
// false); // inequality constraint
|
||||
//
|
||||
// // get configurations to use for linearization
|
||||
// VectorConfig config1, config2;
|
||||
// config1.insert(x0, Vector_(1, 10.0)); // should have zero error
|
||||
// config2.insert(x0, Vector_(1, 1.0)); // should have nonzero error
|
||||
//
|
||||
// // get a configuration of Lagrange multipliers
|
||||
// VectorConfig lagrangeConfig;
|
||||
// lagrangeConfig.insert("L1", Vector_(1, 3.0));
|
||||
//
|
||||
// // linearize for inactive constraint
|
||||
// GaussianFactor::shared_ptr actualFactor1, actualConstraint1;
|
||||
// boost::tie(actualFactor1, actualConstraint1) = c1.linearize(config1, lagrangeConfig);
|
||||
//
|
||||
// // check if the factor is active
|
||||
// CHECK(!c1.active(config1));
|
||||
//
|
||||
// // linearize for active constraint
|
||||
// GaussianFactor::shared_ptr actualFactor2, actualConstraint2;
|
||||
// boost::tie(actualFactor2, actualConstraint2) = c1.linearize(config2, lagrangeConfig);
|
||||
// CHECK(c1.active(config2));
|
||||
//
|
||||
// // verify
|
||||
// SharedDiagonal probModel = sharedSigma(p,1.0);
|
||||
// GaussianFactor expectedFactor(x0, Matrix_(1,1, 6.0), "L1", eye(1), zero(1), probModel);
|
||||
// SharedDiagonal constraintModel = noiseModel::Constrained::All(p);
|
||||
// GaussianFactor expectedConstraint(x0, Matrix_(1,1, 2.0), Vector_(1, 4.0), constraintModel);
|
||||
// CHECK(assert_equal(*actualFactor2, expectedFactor));
|
||||
// CHECK(assert_equal(*actualConstraint2, expectedConstraint));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//// Binding arbitrary functions
|
||||
///* ************************************************************************* */
|
||||
//namespace binding1 {
|
||||
//
|
||||
// /** p = 1, g(x) x^2 - r > 0 */
|
||||
// Vector g(double r, const VectorConfig& config, const Key& key) {
|
||||
// double x = config[key](0);
|
||||
// double g = x * x - r;
|
||||
// return Vector_(1, g); // return the actual cost
|
||||
// }
|
||||
//
|
||||
// /** p = 1, jacobianG(x) = 2*x */
|
||||
// Matrix G(double coeff, const VectorConfig& config,
|
||||
// const Key& key) {
|
||||
// double x = config[key](0);
|
||||
// return Matrix_(1, 1, coeff * x);
|
||||
// }
|
||||
//
|
||||
//} // \namespace binding1
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( NonlinearConstraint1, unary_binding ) {
|
||||
// size_t p = 1;
|
||||
// double coeff = 2;
|
||||
// double radius = 5;
|
||||
// Key x0(0);
|
||||
// NLC1 c1(boost::bind(binding1::g, radius, _1, x0),
|
||||
// x0, boost::bind(binding1::G, coeff, _1, x0),
|
||||
// p, "L1",
|
||||
// false); // inequality constraint
|
||||
//
|
||||
// // get configurations to use for evaluation
|
||||
// VectorConfig config1, config2;
|
||||
// config1.insert(x0, Vector_(1, 10.0)); // should have zero error
|
||||
// config2.insert(x0, Vector_(1, 1.0)); // should have nonzero error
|
||||
//
|
||||
// // check error
|
||||
// CHECK(!c1.active(config1));
|
||||
// Vector actualError2 = c1.unwhitenedError(config2);
|
||||
// CHECK(assert_equal(actualError2, Vector_(1, -4.0, 1e-9)));
|
||||
// CHECK(c1.active(config2));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//namespace binding2 {
|
||||
//
|
||||
// /** p = 1, g(x) = x^2-5 -y = 0 */
|
||||
// Vector g(double r, const VectorConfig& config, const Key& k1, const Key& k2) {
|
||||
// double x = config[k1](0);
|
||||
// double y = config[k2](0);
|
||||
// return Vector_(1, x * x - r - y);
|
||||
// }
|
||||
//
|
||||
// /** jacobian for x, jacobianG(x,y) in x: 2x*/
|
||||
// Matrix G1(double c, const VectorConfig& config, const Key& key) {
|
||||
// double x = config[key](0);
|
||||
// return Matrix_(1, 1, c * x);
|
||||
// }
|
||||
//
|
||||
// /** jacobian for y, jacobianG(x,y) in y: -1 */
|
||||
// Matrix G2(double c, const VectorConfig& config) {
|
||||
// return Matrix_(1, 1, -1.0 * c);
|
||||
// }
|
||||
//
|
||||
//} // \namespace binding2
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( NonlinearConstraint2, binary_binding ) {
|
||||
// // construct a constraint on x and y
|
||||
// // the lagrange multipliers will be expected on L_xy
|
||||
// // and there is only one multiplier
|
||||
// size_t p = 1;
|
||||
// double a = 2.0;
|
||||
// double b = 1.0;
|
||||
// double r = 5.0;
|
||||
// Key x0(0), x1(1);
|
||||
// NLC2 c1(boost::bind(binding2::g, r, _1, x0, x1),
|
||||
// x0, boost::bind(binding2::G1, a, _1, x0),
|
||||
// x1, boost::bind(binding2::G2, b, _1),
|
||||
// p, "L1");
|
||||
//
|
||||
// // get a configuration to use for finding the error
|
||||
// VectorConfig config;
|
||||
// config.insert(x0, Vector_(1, 1.0));
|
||||
// config.insert(x1, Vector_(1, 2.0));
|
||||
//
|
||||
// // calculate the error
|
||||
// Vector actual = c1.unwhitenedError(config);
|
||||
// Vector expected = Vector_(1.0, -6.0);
|
||||
// CHECK(assert_equal(actual, expected, 1e-5));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
|
|
|
|||
Loading…
Reference in New Issue