salvaged old test
parent
47279b56e0
commit
6727ae9ae5
|
@ -15,29 +15,42 @@
|
|||
* @author nikai
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#if 0
|
||||
|
||||
#include <tests/smallExample.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/BearingRangeFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianEliminationTree.h>
|
||||
#include <gtsam/linear/GaussianJunctionTree.h>
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/symbolic/SymbolicEliminationTree.h>
|
||||
#include <gtsam/inference/BayesTree.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/cholesky.h>
|
||||
#include <gtsam/inference/ClusterTree.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/list.hpp> // for operator +=
|
||||
#include <boost/assign/std/set.hpp> // for operator +=
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
|
||||
#include <cmath>
|
||||
#include <list>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
using namespace boost::assign;
|
||||
|
||||
#include <iostream>
|
||||
|
@ -59,180 +72,188 @@ using symbol_shorthand::L;
|
|||
TEST( GaussianJunctionTreeB, constructor2 )
|
||||
{
|
||||
// create a graph
|
||||
NonlinearFactorGraph nlfg;
|
||||
Values values;
|
||||
boost::tie(nlfg,values) = createNonlinearSmoother(7);
|
||||
SymbolicFactorGraph::shared_ptr symbolic = nlfg.symbolic();
|
||||
|
||||
// linearize
|
||||
GaussianFactorGraph::shared_ptr fg = nlfg.linearize(values);
|
||||
|
||||
Ordering ordering; ordering += X(1),X(3),X(5),X(7),X(2),X(6),X(4);
|
||||
GaussianFactorGraph fg = createSmoother(7, ordering).first;
|
||||
|
||||
// create an ordering
|
||||
GaussianJunctionTree actual(fg);
|
||||
GaussianEliminationTree etree(*fg, ordering);
|
||||
SymbolicEliminationTree stree(*symbolic,ordering);
|
||||
GaussianJunctionTree actual(etree);
|
||||
|
||||
vector<Index> frontal1; frontal1 += ordering[X(5)], ordering[X(6)], ordering[X(4)];
|
||||
vector<Index> frontal2; frontal2 += ordering[X(3)], ordering[X(2)];
|
||||
vector<Index> frontal3; frontal3 += ordering[X(1)];
|
||||
vector<Index> frontal4; frontal4 += ordering[X(7)];
|
||||
vector<Index> sep1;
|
||||
vector<Index> sep2; sep2 += ordering[X(4)];
|
||||
vector<Index> sep3; sep3 += ordering[X(2)];
|
||||
vector<Index> sep4; sep4 += ordering[X(6)];
|
||||
EXPECT(assert_equal(frontal1, actual.root()->frontal));
|
||||
EXPECT(assert_equal(sep1, actual.root()->separator));
|
||||
LONGS_EQUAL(5, actual.root()->size());
|
||||
list<GaussianJunctionTree::sharedClique>::const_iterator child0it = actual.root()->children().begin();
|
||||
list<GaussianJunctionTree::sharedClique>::const_iterator child1it = child0it; ++child1it;
|
||||
GaussianJunctionTree::sharedClique child0 = *child0it;
|
||||
GaussianJunctionTree::sharedClique child1 = *child1it;
|
||||
EXPECT(assert_equal(frontal2, child0->frontal));
|
||||
EXPECT(assert_equal(sep2, child0->separator));
|
||||
LONGS_EQUAL(4, child0->size());
|
||||
EXPECT(assert_equal(frontal3, child0->children().front()->frontal));
|
||||
EXPECT(assert_equal(sep3, child0->children().front()->separator));
|
||||
LONGS_EQUAL(2, child0->children().front()->size());
|
||||
EXPECT(assert_equal(frontal4, child1->frontal));
|
||||
EXPECT(assert_equal(sep4, child1->separator));
|
||||
LONGS_EQUAL(2, child1->size());
|
||||
Ordering frontal1; frontal1 += X(3), X(2), X(4);
|
||||
Ordering frontal2; frontal2 += X(5), X(6);
|
||||
Ordering frontal3; frontal3 += X(7);
|
||||
Ordering frontal4; frontal4 += X(1);
|
||||
|
||||
// Can no longer test these:
|
||||
// Ordering sep1;
|
||||
// Ordering sep2; sep2 += X(4);
|
||||
// Ordering sep3; sep3 += X(6);
|
||||
// Ordering sep4; sep4 += X(2);
|
||||
|
||||
GaussianJunctionTree::sharedNode root = actual.roots().front();
|
||||
FastVector<GaussianJunctionTree::sharedNode>::const_iterator child0it = root->children.begin();
|
||||
FastVector<GaussianJunctionTree::sharedNode>::const_iterator child1it = child0it; ++child1it;
|
||||
GaussianJunctionTree::sharedNode child0 = *child0it;
|
||||
GaussianJunctionTree::sharedNode child1 = *child1it;
|
||||
|
||||
EXPECT(assert_equal(frontal1, root->orderedFrontalKeys));
|
||||
LONGS_EQUAL(5, root->factors.size());
|
||||
EXPECT(assert_equal(frontal2, child0->orderedFrontalKeys));
|
||||
LONGS_EQUAL(4, child0->factors.size());
|
||||
EXPECT(assert_equal(frontal3, child0->children.front()->orderedFrontalKeys));
|
||||
LONGS_EQUAL(2, child0->children.front()->factors.size());
|
||||
EXPECT(assert_equal(frontal4, child1->orderedFrontalKeys));
|
||||
LONGS_EQUAL(2, child1->factors.size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianJunctionTreeB, optimizeMultiFrontal )
|
||||
{
|
||||
// create a graph
|
||||
GaussianFactorGraph fg;
|
||||
Ordering ordering;
|
||||
boost::tie(fg,ordering) = createSmoother(7);
|
||||
|
||||
// optimize the graph
|
||||
GaussianJunctionTree tree(fg);
|
||||
VectorValues actual = tree.optimize(&EliminateQR);
|
||||
|
||||
// verify
|
||||
VectorValues expected(vector<size_t>(7,2)); // expected solution
|
||||
Vector v = Vector2(0., 0.);
|
||||
for (int i=1; i<=7; i++)
|
||||
expected[ordering[X(i)]] = v;
|
||||
EXPECT(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussianJunctionTreeB, optimizeMultiFrontal2)
|
||||
{
|
||||
// create a graph
|
||||
example::Graph nlfg = createNonlinearFactorGraph();
|
||||
Values noisy = createNoisyValues();
|
||||
Ordering ordering; ordering += X(1),X(2),L(1);
|
||||
GaussianFactorGraph fg = *nlfg.linearize(noisy, ordering);
|
||||
|
||||
// optimize the graph
|
||||
GaussianJunctionTree tree(fg);
|
||||
VectorValues actual = tree.optimize(&EliminateQR);
|
||||
|
||||
// verify
|
||||
VectorValues expected = createCorrectDelta(ordering); // expected solution
|
||||
EXPECT(assert_equal(expected,actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianJunctionTreeB, slamlike) {
|
||||
Values init;
|
||||
NonlinearFactorGraph newfactors;
|
||||
NonlinearFactorGraph fullgraph;
|
||||
SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, M_PI/100.0));
|
||||
SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0, 0.1));
|
||||
|
||||
size_t i = 0;
|
||||
|
||||
newfactors = NonlinearFactorGraph();
|
||||
newfactors.add(PriorFactor<Pose2>(X(0), Pose2(0.0, 0.0, 0.0), odoNoise));
|
||||
init.insert(X(0), Pose2(0.01, 0.01, 0.01));
|
||||
fullgraph.push_back(newfactors);
|
||||
|
||||
for( ; i<5; ++i) {
|
||||
newfactors = NonlinearFactorGraph();
|
||||
newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
||||
fullgraph.push_back(newfactors);
|
||||
}
|
||||
|
||||
newfactors = NonlinearFactorGraph();
|
||||
newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
|
||||
newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
|
||||
init.insert(X(i+1), Pose2(1.01, 0.01, 0.01));
|
||||
init.insert(L(0), Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
||||
init.insert(L(1), Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
||||
fullgraph.push_back(newfactors);
|
||||
++ i;
|
||||
|
||||
for( ; i<5; ++i) {
|
||||
newfactors = NonlinearFactorGraph();
|
||||
newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
||||
fullgraph.push_back(newfactors);
|
||||
}
|
||||
|
||||
newfactors = NonlinearFactorGraph();
|
||||
newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
|
||||
newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
|
||||
init.insert(X(i+1), Pose2(6.9, 0.1, 0.01));
|
||||
fullgraph.push_back(newfactors);
|
||||
++ i;
|
||||
|
||||
// Compare solutions
|
||||
Ordering ordering = *fullgraph.orderingCOLAMD(init);
|
||||
GaussianFactorGraph linearized = *fullgraph.linearize(init, ordering);
|
||||
|
||||
GaussianJunctionTree gjt(linearized);
|
||||
VectorValues deltaactual = gjt.optimize(&EliminateQR);
|
||||
Values actual = init.retract(deltaactual, ordering);
|
||||
|
||||
GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
|
||||
VectorValues delta = optimize(gbn);
|
||||
Values expected = init.retract(delta, ordering);
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GaussianJunctionTreeB, simpleMarginal) {
|
||||
|
||||
typedef BayesTree<GaussianConditional> GaussianBayesTree;
|
||||
|
||||
// Create a simple graph
|
||||
NonlinearFactorGraph fg;
|
||||
fg.add(PriorFactor<Pose2>(X(0), Pose2(), noiseModel::Isotropic::Sigma(3, 10.0)));
|
||||
fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas(Vector3(10.0, 1.0, 1.0))));
|
||||
|
||||
Values init;
|
||||
init.insert(X(0), Pose2());
|
||||
init.insert(X(1), Pose2(1.0, 0.0, 0.0));
|
||||
|
||||
Ordering ordering;
|
||||
ordering += X(1), X(0);
|
||||
|
||||
GaussianFactorGraph gfg = *fg.linearize(init, ordering);
|
||||
|
||||
// Compute marginals with both sequential and multifrontal
|
||||
Matrix expected = GaussianSequentialSolver(gfg).marginalCovariance(1);
|
||||
|
||||
Matrix actual1 = GaussianMultifrontalSolver(gfg).marginalCovariance(1);
|
||||
|
||||
// Compute marginal directly from marginal factor
|
||||
GaussianFactor::shared_ptr marginalFactor = GaussianMultifrontalSolver(gfg).marginalFactor(1);
|
||||
JacobianFactor::shared_ptr marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
|
||||
Matrix actual2 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
|
||||
|
||||
// Compute marginal directly from BayesTree
|
||||
GaussianBayesTree gbt;
|
||||
gbt.insert(GaussianJunctionTree(gfg).eliminate(EliminateCholesky));
|
||||
marginalFactor = gbt.marginalFactor(1, EliminateCholesky);
|
||||
marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
|
||||
Matrix actual3 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
|
||||
|
||||
EXPECT(assert_equal(expected, actual1));
|
||||
EXPECT(assert_equal(expected, actual2));
|
||||
EXPECT(assert_equal(expected, actual3));
|
||||
}
|
||||
|
||||
#endif
|
||||
///* ************************************************************************* */
|
||||
//TEST( GaussianJunctionTreeB, optimizeMultiFrontal )
|
||||
//{
|
||||
// // create a graph
|
||||
// GaussianFactorGraph fg;
|
||||
// Ordering ordering;
|
||||
// boost::tie(fg,ordering) = createSmoother(7);
|
||||
//
|
||||
// // optimize the graph
|
||||
// GaussianJunctionTree tree(fg);
|
||||
// VectorValues actual = tree.optimize(&EliminateQR);
|
||||
//
|
||||
// // verify
|
||||
// VectorValues expected(vector<size_t>(7,2)); // expected solution
|
||||
// Vector v = Vector2(0., 0.);
|
||||
// for (int i=1; i<=7; i++)
|
||||
// expected[ordering[X(i)]] = v;
|
||||
// EXPECT(assert_equal(expected,actual));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( GaussianJunctionTreeB, optimizeMultiFrontal2)
|
||||
//{
|
||||
// // create a graph
|
||||
// example::Graph nlfg = createNonlinearFactorGraph();
|
||||
// Values noisy = createNoisyValues();
|
||||
// Ordering ordering; ordering += X(1),X(2),L(1);
|
||||
// GaussianFactorGraph fg = *nlfg.linearize(noisy, ordering);
|
||||
//
|
||||
// // optimize the graph
|
||||
// GaussianJunctionTree tree(fg);
|
||||
// VectorValues actual = tree.optimize(&EliminateQR);
|
||||
//
|
||||
// // verify
|
||||
// VectorValues expected = createCorrectDelta(ordering); // expected solution
|
||||
// EXPECT(assert_equal(expected,actual));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST(GaussianJunctionTreeB, slamlike) {
|
||||
// Values init;
|
||||
// NonlinearFactorGraph newfactors;
|
||||
// NonlinearFactorGraph fullgraph;
|
||||
// SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, M_PI/100.0));
|
||||
// SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0, 0.1));
|
||||
//
|
||||
// size_t i = 0;
|
||||
//
|
||||
// newfactors = NonlinearFactorGraph();
|
||||
// newfactors.add(PriorFactor<Pose2>(X(0), Pose2(0.0, 0.0, 0.0), odoNoise));
|
||||
// init.insert(X(0), Pose2(0.01, 0.01, 0.01));
|
||||
// fullgraph.push_back(newfactors);
|
||||
//
|
||||
// for( ; i<5; ++i) {
|
||||
// newfactors = NonlinearFactorGraph();
|
||||
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
// init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
||||
// fullgraph.push_back(newfactors);
|
||||
// }
|
||||
//
|
||||
// newfactors = NonlinearFactorGraph();
|
||||
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0), 5.0, brNoise));
|
||||
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise));
|
||||
// init.insert(X(i+1), Pose2(1.01, 0.01, 0.01));
|
||||
// init.insert(L(0), Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
||||
// init.insert(L(1), Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
||||
// fullgraph.push_back(newfactors);
|
||||
// ++ i;
|
||||
//
|
||||
// for( ; i<5; ++i) {
|
||||
// newfactors = NonlinearFactorGraph();
|
||||
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
// init.insert(X(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
||||
// fullgraph.push_back(newfactors);
|
||||
// }
|
||||
//
|
||||
// newfactors = NonlinearFactorGraph();
|
||||
// newfactors.add(BetweenFactor<Pose2>(X(i), X(i+1), Pose2(1.0, 0.0, 0.0), odoNoise));
|
||||
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(0), Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
|
||||
// newfactors.add(BearingRangeFactor<Pose2,Point2>(X(i), L(1), Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise));
|
||||
// init.insert(X(i+1), Pose2(6.9, 0.1, 0.01));
|
||||
// fullgraph.push_back(newfactors);
|
||||
// ++ i;
|
||||
//
|
||||
// // Compare solutions
|
||||
// Ordering ordering = *fullgraph.orderingCOLAMD(init);
|
||||
// GaussianFactorGraph linearized = *fullgraph.linearize(init, ordering);
|
||||
//
|
||||
// GaussianJunctionTree gjt(linearized);
|
||||
// VectorValues deltaactual = gjt.optimize(&EliminateQR);
|
||||
// Values actual = init.retract(deltaactual, ordering);
|
||||
//
|
||||
// GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
|
||||
// VectorValues delta = optimize(gbn);
|
||||
// Values expected = init.retract(delta, ordering);
|
||||
//
|
||||
// EXPECT(assert_equal(expected, actual));
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST(GaussianJunctionTreeB, simpleMarginal) {
|
||||
//
|
||||
// typedef BayesTree<GaussianConditional> GaussianBayesTree;
|
||||
//
|
||||
// // Create a simple graph
|
||||
// NonlinearFactorGraph fg;
|
||||
// fg.add(PriorFactor<Pose2>(X(0), Pose2(), noiseModel::Isotropic::Sigma(3, 10.0)));
|
||||
// fg.add(BetweenFactor<Pose2>(X(0), X(1), Pose2(1.0, 0.0, 0.0), noiseModel::Diagonal::Sigmas(Vector3(10.0, 1.0, 1.0))));
|
||||
//
|
||||
// Values init;
|
||||
// init.insert(X(0), Pose2());
|
||||
// init.insert(X(1), Pose2(1.0, 0.0, 0.0));
|
||||
//
|
||||
// Ordering ordering;
|
||||
// ordering += X(1), X(0);
|
||||
//
|
||||
// GaussianFactorGraph gfg = *fg.linearize(init, ordering);
|
||||
//
|
||||
// // Compute marginals with both sequential and multifrontal
|
||||
// Matrix expected = GaussianSequentialSolver(gfg).marginalCovariance(1);
|
||||
//
|
||||
// Matrix actual1 = GaussianMultifrontalSolver(gfg).marginalCovariance(1);
|
||||
//
|
||||
// // Compute marginal directly from marginal factor
|
||||
// GaussianFactor::shared_ptr marginalFactor = GaussianMultifrontalSolver(gfg).marginalFactor(1);
|
||||
// JacobianFactor::shared_ptr marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
|
||||
// Matrix actual2 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
|
||||
//
|
||||
// // Compute marginal directly from BayesTree
|
||||
// GaussianBayesTree gbt;
|
||||
// gbt.insert(GaussianJunctionTree(gfg).eliminate(EliminateCholesky));
|
||||
// marginalFactor = gbt.marginalFactor(1, EliminateCholesky);
|
||||
// marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
|
||||
// Matrix actual3 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
|
||||
//
|
||||
// EXPECT(assert_equal(expected, actual1));
|
||||
// EXPECT(assert_equal(expected, actual2));
|
||||
// EXPECT(assert_equal(expected, actual3));
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
||||
|
|
Loading…
Reference in New Issue