Generalized constraint handling to create a LinearConstraint which implements linear equality constraints that can be eliminated as a part of a ConstrainedLinearFactorGraph. DeltaFunction has been changed to be a ConstrainedConditionalGaussian, which has a more robust solve() function. The new tests no longer use the "constrained" example from smallExample, so those functions have been commented.

''Limitations: ''
 * Any given node can only have one constraint on it, but constraints can be of arbitrary size
 * Constraints can only be specified as a blockwise system, where each block must be square and invertible to support arbitrary elimination orderings.  
  * ConstrainedNonlinearFactorGraph is disabled until a better solution for handling constraints in the nonlinear case is determined.
release/4.3a0
Alex Cunningham 2009-10-08 13:57:22 +00:00
parent 3efe95abee
commit 66dac8a52f
23 changed files with 1501 additions and 969 deletions

View File

@ -300,6 +300,7 @@
<buildTargets>
<target name="check" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>check</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -307,7 +308,6 @@
</target>
<target name="testSimpleCamera.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimpleCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -323,6 +323,7 @@
</target>
<target name="testVSLAMFactor.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testVSLAMFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -330,7 +331,6 @@
</target>
<target name="testCalibratedCamera.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testCalibratedCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -338,6 +338,7 @@
</target>
<target name="testConditionalGaussian.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConditionalGaussian.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -345,7 +346,6 @@
</target>
<target name="testPose2.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testPose2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -361,7 +361,6 @@
</target>
<target name="testRot3.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testRot3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -369,6 +368,7 @@
</target>
<target name="testNonlinearOptimizer.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testNonlinearOptimizer.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -376,7 +376,6 @@
</target>
<target name="testLinearFactor.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testLinearFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -384,7 +383,6 @@
</target>
<target name="testConstrainedNonlinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConstrainedNonlinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -392,14 +390,22 @@
</target>
<target name="testLinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testLinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testLinearConstraint.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testLinearConstraint.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testNonlinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testNonlinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -407,12 +413,27 @@
</target>
<target name="testPose3.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testPose3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testConstrainedConditionalGaussian.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConstrainedConditionalGaussian.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testConstrainedLinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConstrainedLinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="install" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildTarget>install</buildTarget>
@ -429,6 +450,7 @@
</target>
<target name="check" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>check</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>

View File

@ -81,6 +81,9 @@ public:
/** check equality */
bool equals(const ChordalBayesNet& cbn) const;
/** size is the number of nodes */
size_t size() const {return nodes.size();}
/**
* Return (dense) upper-triangular matrix representation
*/

View File

@ -40,6 +40,14 @@ ConditionalGaussian::ConditionalGaussian(Vector d,
parents_.insert(make_pair(name2, T));
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(const Vector& d,
const Matrix& R,
const map<std::string, Matrix>& parents)
: R_(R), d_(d), parents_(parents)
{
}
/* ************************************************************************* */
void ConditionalGaussian::print(const string &s) const
{

View File

@ -77,6 +77,14 @@ namespace gtsam {
Matrix T
);
/**
* constructor with number of arbitrary parents
* |Rx+sum(Ai*xi)-d|
*/
ConditionalGaussian(const Vector& d,
const Matrix& R,
const std::map<std::string, Matrix>& parents);
/** deconstructor */
virtual ~ConditionalGaussian() {};

View File

@ -0,0 +1,80 @@
/**
* @file ConstrainedConditionalGaussian.cpp
* @brief Implements the constrained version of the conditional gaussian class,
* primarily handling the possible solutions
* @author Alex Cunningham
*/
#include <boost/numeric/ublas/lu.hpp>
#include "ConstrainedConditionalGaussian.h"
#include "Matrix.h"
using namespace gtsam;
using namespace std;
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian() {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& v) :
ConditionalGaussian(v, eye(v.size())) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& b,
const Matrix& A) :
ConditionalGaussian(b, A) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& b,
const Matrix& A1, const std::string& parent, const Matrix& A2) :
ConditionalGaussian(b, A1, parent, A2) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& b,
const Matrix& A1, const std::string& parentY, const Matrix& A2,
const std::string& parentZ, const Matrix& A3)
: ConditionalGaussian(b, A1, parentY, A2, parentZ, A3)
{
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Matrix& A1,
const std::map<std::string, Matrix>& parents, const Vector& b)
: ConditionalGaussian(b, A1, parents)
{
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const ConstrainedConditionalGaussian& df) {
}
Vector ConstrainedConditionalGaussian::solve(const FGConfig& x) const {
// sum the RHS
Vector rhs = d_;
for (map<string, Matrix>::const_iterator it = parents_.begin(); it
!= parents_.end(); it++) {
const string& j = it->first;
const Matrix& Aj = it->second;
rhs -= Aj * x[j];
}
// verify invertibility of A matrix
Matrix A = R_;
Matrix b = Matrix_(rhs.size(), 1, rhs);
if (A.size1() != A.size2())
throw invalid_argument("Matrix A is not invertible - non-square matrix");
using namespace boost::numeric::ublas;
if (lu_factorize(A))
throw invalid_argument("Matrix A is singular");
// get the actual solution
//FIXME: This is just the Matrix::solve() function, but due to name conflicts
// the compiler won't find the real version in Matrix.h
lu_substitute<const Matrix, Matrix> (A, b);
return Vector_(b);
//TODO: Handle overdetermined case
//TODO: Handle underdetermined case
}

View File

@ -0,0 +1,107 @@
/**
* @file ConstrainedConditionalGaussian.h
* @brief Class which implements a conditional gaussian that handles situations
* that occur when linear constraints appear in the system. A constrained
* conditional gaussian is the result of eliminating a linear equality
* constraint.
*
* @author Alex Cunningham
*/
#pragma once
#include "ConditionalGaussian.h"
namespace gtsam {
/**
* Implements a more generalized conditional gaussian to represent
* the result of eliminating an equality constraint. All of the
* forms of an equality constraint will be of the form
* A1x = b - sum(Aixi from i=2 to i=N)
* If A1 is triangular, then it can be solved using backsubstitution
* If A1 is invertible, then it can be solved with the Matrix::solve() command
* If A1 overconstrains the system, then ???
* If A1 underconstraints the system, then ???
*/
class ConstrainedConditionalGaussian: public ConditionalGaussian {
public:
typedef boost::shared_ptr<ConstrainedConditionalGaussian> shared_ptr;
/**
* Default Constructor
* Don't use this
*/
ConstrainedConditionalGaussian();
/**
* Used for unary factors that simply associate a name with a particular value
* Can use backsubstitution to solve trivially
* @param value is a fixed value for x in the form x = value
*/
ConstrainedConditionalGaussian(const Vector& value);
/**
* Used for unary factors of the form Ax=b
* Invertability of A is significant
* @param b is the RHS of the equation
* @param A is the A matrix
*/
ConstrainedConditionalGaussian(const Vector& value, const Matrix& A);
/**
* Binary constructor of the form A1*x = b - A2*y
* for node with one parent
* @param b is the RHS of the equation
* @param A1 is the A1 matrix
* @param parent is the string identifier for the parent node
* @param A2 is the A2 matrix
*/
ConstrainedConditionalGaussian(const Vector& b, const Matrix& A1,
const std::string& parent, const Matrix& A2);
/**
* Ternary constructor of the form A1*x = b - A2*y - A3*z
* @param b is the RHS of the equation
* @param A1 is the A1 matrix
* @param parentY string id for y
* @param A2 is the A2 matrix
* @param parentZ string id for z
* @param A3 is the A3 matrix
*/
ConstrainedConditionalGaussian(const Vector& b, const Matrix& A1,
const std::string& parentY, const Matrix& A2,
const std::string& parentZ, const Matrix& A3);
/**
* Construct with arbitrary number of parents of form
* A1*x = b - sum(Ai*xi)
* @param A1 is the matrix associated with the variable that was eliminated
* @param parents is the map of parents (Ai and xi from above)
* @param b is the rhs vector
*/
ConstrainedConditionalGaussian(const Matrix& A1,
const std::map<std::string, Matrix>& parents, const Vector& b);
/**
* Copy constructor
*/
ConstrainedConditionalGaussian(const ConstrainedConditionalGaussian& df);
virtual ~ConstrainedConditionalGaussian() {
}
/**
* Solve for the value of the node given the parents
* If A1 (R from the conditional gaussian) is triangular, then backsubstitution
* If A1 invertible, Matrix::solve()
* If A1 under/over constrains the system, TODO
* @param config contains the values for all of the parents
* @return the value for this node
*/
Vector solve(const FGConfig& x) const;
};
}

View File

@ -1,14 +1,11 @@
/*
* ConstrainedLinearFactorGraph.cpp
*
* Created on: Aug 10, 2009
* Author: alexgc
/**
* @file ConstrainedLinearFactorGraph.cpp
* @author Alex Cunningham
*/
#include <iostream>
#include "ConstrainedLinearFactorGraph.h"
#include "FactorGraph-inl.h" // for getOrdering
using namespace std;
// trick from some reading group
@ -20,27 +17,26 @@ ConstrainedLinearFactorGraph::ConstrainedLinearFactorGraph() {
}
ConstrainedLinearFactorGraph::ConstrainedLinearFactorGraph(const LinearFactorGraph& lfg)
{
ConstrainedLinearFactorGraph::ConstrainedLinearFactorGraph(
const LinearFactorGraph& lfg) {
BOOST_FOREACH(LinearFactor::shared_ptr s, lfg)
{
push_back(s);
{ push_back(s);
}
}
ConstrainedLinearFactorGraph::~ConstrainedLinearFactorGraph() {
}
void ConstrainedLinearFactorGraph::push_back_eq(EqualityFactor::shared_ptr factor)
void ConstrainedLinearFactorGraph::push_back_constraint(LinearConstraint::shared_ptr factor)
{
eq_factors.push_back(factor);
constraints_.push_back(factor);
}
bool ConstrainedLinearFactorGraph::involves_equality(const std::string& key) const
bool ConstrainedLinearFactorGraph::is_constrained(const std::string& key) const
{
BOOST_FOREACH(EqualityFactor::shared_ptr e, eq_factors)
BOOST_FOREACH(LinearConstraint::shared_ptr e, constraints_)
{
if (e->get_key() == key) return true;
if (e->involves(key)) return true;
}
return false;
}
@ -51,11 +47,11 @@ bool ConstrainedLinearFactorGraph::equals(const LinearFactorGraph& fg, double to
if (p == NULL) return false;
/** check equality factors */
if (eq_factors.size() != p->eq_factors.size()) return false;
BOOST_FOREACH(EqualityFactor::shared_ptr ef1, eq_factors)
if (constraints_.size() != p->constraints_.size()) return false;
BOOST_FOREACH(LinearConstraint::shared_ptr ef1, constraints_)
{
bool contains = false;
BOOST_FOREACH(EqualityFactor::shared_ptr ef2, p->eq_factors)
BOOST_FOREACH(LinearConstraint::shared_ptr ef2, p->constraints_)
if (ef1->equals(*ef2))
contains = true;
if (!contains) return false;
@ -65,15 +61,16 @@ bool ConstrainedLinearFactorGraph::equals(const LinearFactorGraph& fg, double to
return LinearFactorGraph::equals(fg, tol);
}
ConstrainedChordalBayesNet::shared_ptr ConstrainedLinearFactorGraph::eliminate(const Ordering& ordering){
ConstrainedChordalBayesNet::shared_ptr cbn (new ConstrainedChordalBayesNet());
ChordalBayesNet::shared_ptr ConstrainedLinearFactorGraph::eliminate(const Ordering& ordering) {
ChordalBayesNet::shared_ptr cbn (new ChordalBayesNet());
BOOST_FOREACH(string key, ordering) {
if (involves_equality(key)) // check whether this is an existing equality factor
// constraints take higher priority in elimination, so check if
// there are constraints first
if (is_constrained(key))
{
// check if eliminating an equality factor
DeltaFunction::shared_ptr d = eliminate_one_eq(key);
cbn->insert_df(key,d);
ConditionalGaussian::shared_ptr ccg = eliminate_constraint(key);
cbn->insert(key,ccg);
}
else
{
@ -85,61 +82,71 @@ ConstrainedChordalBayesNet::shared_ptr ConstrainedLinearFactorGraph::eliminate(c
return cbn;
}
DeltaFunction::shared_ptr ConstrainedLinearFactorGraph::eliminate_one_eq(const string& key)
ConstrainedConditionalGaussian::shared_ptr ConstrainedLinearFactorGraph::eliminate_constraint(const string& key)
{
// extract the equality factor - also removes from graph
EqualityFactor::shared_ptr eqf = extract_eq(key);
// extract the constraint - in-place remove from graph
LinearConstraint::shared_ptr constraint = extract_constraint(key);
// remove all unary linear factors on this node
vector<LinearFactor::shared_ptr> newfactors;
BOOST_FOREACH(LinearFactor::shared_ptr f, factors_)
{
if (f->size() != 1 || !f->involves(key))
{
newfactors.push_back(f);
// perform elimination on the constraint itself to get the constrained conditional gaussian
ConstrainedConditionalGaussian::shared_ptr ccg = constraint->eliminate(key);
// perform a change of variables on the linear factors in the separator
LinearFactorSet separator = find_factors_and_remove(key);
BOOST_FOREACH(LinearFactor::shared_ptr factor, separator) {
// reconstruct with a mutable factor
boost::shared_ptr<MutableLinearFactor> new_factor(new MutableLinearFactor);
// get T = A1*inv(C1) term
Matrix A1 = factor->get_A(key);
Matrix invC1 = inverse(constraint->get_A(key));
Matrix T = A1*invC1;
// loop over all nodes in separator of constraint
list<string> constraint_keys = constraint->keys(key);
BOOST_FOREACH(string cur_key, constraint_keys) {
Matrix Ci = constraint->get_A(cur_key);
if (cur_key != key && !factor->involves(cur_key)) {
Matrix Ai = T*Ci;
new_factor->insert(cur_key, -1 *Ai);
} else if (cur_key != key) {
Matrix Ai = factor->get_A(cur_key) - T*Ci;
new_factor->insert(cur_key, Ai);
}
}
// update RHS of updated factor
Vector new_b = factor->get_b() - T*constraint->get_b();
new_factor->set_b(new_b);
// insert the new factor into the graph
push_back(new_factor);
}
factors_ = newfactors;
// combine the linear factors connected to equality node
boost::shared_ptr<MutableLinearFactor> joint_factor = combine_factors(key);
// combine the joint factor with the equality factor and add factors to graph
if (joint_factor->size() > 0)
eq_combine_and_eliminate(*eqf, *joint_factor);
// create the delta function - all delta function information contained in the equality factor
DeltaFunction::shared_ptr d = eqf->getDeltaFunction();
return d;
return ccg;
}
EqualityFactor::shared_ptr ConstrainedLinearFactorGraph::extract_eq(const string& key)
LinearConstraint::shared_ptr ConstrainedLinearFactorGraph::extract_constraint(const string& key)
{
EqualityFactor::shared_ptr ret;
vector<EqualityFactor::shared_ptr> new_vec;
BOOST_FOREACH(EqualityFactor::shared_ptr eq, eq_factors)
LinearConstraint::shared_ptr ret;
bool found_key = false;
vector<LinearConstraint::shared_ptr> new_vec;
BOOST_FOREACH(LinearConstraint::shared_ptr constraint, constraints_)
{
if (eq->get_key() == key)
ret = eq;
if (constraint->involves(key)) {
ret = constraint;
found_key = true;
}
else
new_vec.push_back(eq);
new_vec.push_back(constraint);
}
eq_factors = new_vec;
constraints_ = new_vec;
if (!found_key)
throw invalid_argument("No constraint connected to node: " + key);
return ret;
}
FGConfig ConstrainedLinearFactorGraph::optimize(const Ordering& ordering){
if (eq_factors.size() == 0)
{
// use default optimization
return LinearFactorGraph::optimize(ordering);
}
// eliminate all nodes in the given ordering -> chordal Bayes net
ConstrainedChordalBayesNet::shared_ptr cbn = eliminate(ordering);
// calculate new configuration (using backsubstitution)
FGConfig ConstrainedLinearFactorGraph::optimize(const Ordering& ordering) {
ChordalBayesNet::shared_ptr cbn = eliminate(ordering);
boost::shared_ptr<FGConfig> newConfig = cbn->optimize();
return *newConfig;
}
@ -151,63 +158,18 @@ void ConstrainedLinearFactorGraph::print(const std::string& s) const
{
f->print();
}
BOOST_FOREACH(EqualityFactor::shared_ptr f, eq_factors)
BOOST_FOREACH(LinearConstraint::shared_ptr f, constraints_)
{
f->print();
}
}
void ConstrainedLinearFactorGraph::eq_combine_and_eliminate(
const EqualityFactor& eqf, const MutableLinearFactor& joint_factor)
{
// start empty remaining factor to be returned
boost::shared_ptr<MutableLinearFactor> lf(new MutableLinearFactor);
// get the value of the target variable (x)
Vector x = eqf.get_value();
// get the RHS vector
Vector b = joint_factor.get_b();
// get key
string key = eqf.get_key();
// get the Ax matrix
Matrix Ax = joint_factor.get_A(key);
// calculate new b
b -= Ax * x;
// reassemble new factor
lf->set_b(b);
string j; Matrix A;
LinearFactor::const_iterator it = joint_factor.begin();
for (; it != joint_factor.end(); it++) {
j = it->first;
A = it->second;
if (j != key) lf->insert(j, A);
}
// insert factor
push_back(lf);
}
Ordering ConstrainedLinearFactorGraph::getOrdering() const
{
Ordering ord = LinearFactorGraph::getOrdering();
BOOST_FOREACH(EqualityFactor::shared_ptr e, eq_factors)
ord.push_back(e->get_key());
// BOOST_FOREACH(LinearConstraint::shared_ptr e, constraints_)
// ord.push_back(e->get_key());
return ord;
}
LinearFactorGraph ConstrainedLinearFactorGraph::convert() const
{
LinearFactorGraph ret;
BOOST_FOREACH(LinearFactor::shared_ptr f, factors_)
ret.push_back(f);
return ret;
}
}

View File

@ -1,31 +1,28 @@
/*
* ConstrainedLinearFactorGraph.h
*
* Created on: Aug 10, 2009
* Author: alexgc
/**
* @file ConstrainedLinearFactorGraph.h
* @brief A modified version of LinearFactorGraph that can handle
* linear constraints.
* @author Alex Cunningham
*/
#ifndef CONSTRAINEDLINEARFACTORGRAPH_H_
#define CONSTRAINEDLINEARFACTORGRAPH_H_
#include <boost/shared_ptr.hpp>
#include <boost/foreach.hpp>
#include "LinearFactorGraph.h"
#include "EqualityFactor.h"
#include "ConstrainedChordalBayesNet.h"
#include "ChordalBayesNet.h"
#include "LinearConstraint.h"
namespace gtsam {
class ConstrainedLinearFactorGraph: public LinearFactorGraph {
protected:
std::vector<EqualityFactor::shared_ptr> eq_factors; /// collection of equality factors
std::vector<LinearConstraint::shared_ptr> constraints_; /// collection of equality factors
public:
// iterators for equality constraints - same interface as linear factors
typedef std::vector<EqualityFactor::shared_ptr>::const_iterator eq_const_iterator;
typedef std::vector<EqualityFactor::shared_ptr>::iterator eq_iterator;
typedef std::vector<LinearConstraint::shared_ptr>::const_iterator constraint_const_iterator;
typedef std::vector<LinearConstraint::shared_ptr>::iterator constraint_iterator;
public:
/**
@ -40,39 +37,54 @@ public:
virtual ~ConstrainedLinearFactorGraph();
void push_back_eq(EqualityFactor::shared_ptr factor);
/**
* Add a constraint to the graph
* @param constraint is a shared pointer to a linear constraint between nodes in the graph
*/
void push_back_constraint(LinearConstraint::shared_ptr constraint);
// Additional STL-like functions for Equality Factors
EqualityFactor::shared_ptr eq_at(const size_t i) const {return eq_factors.at(i);}
LinearConstraint::shared_ptr constraint_at(const size_t i) const {return constraints_.at(i);}
/** return the iterator pointing to the first equality factor */
eq_const_iterator eq_begin() const {
return eq_factors.begin();
constraint_const_iterator constraint_begin() const {
return constraints_.begin();
}
/** return the iterator pointing to the last factor */
eq_const_iterator eq_end() const {
return eq_factors.end();
constraint_const_iterator constraint_end() const {
return constraints_.end();
}
/** clear the factor graph - re-implemented to include equality factors */
void clear(){
factors_.clear();
eq_factors.clear();
constraints_.clear();
}
/** size - reimplemented to include the equality factors_ */
inline size_t size() const { return factors_.size() + eq_factors.size(); }
inline size_t size() const { return factors_.size() + constraints_.size(); }
/** Check equality - checks equality constraints as well*/
bool equals(const LinearFactorGraph& fg, double tol=1e-9) const;
/**
* eliminate factor graph in place(!) in the given order, yielding
* a chordal Bayes net
* a chordal Bayes net. Note that even with constraints,
* a constrained factor graph can produce a CBN, because
* constrained conditional gaussian is a subclass of conditional
* gaussian, with a different solving procedure.
* @param ordering is the order to eliminate the variables
*/
ConstrainedChordalBayesNet::shared_ptr eliminate(const Ordering& ordering);
ChordalBayesNet::shared_ptr eliminate(const Ordering& ordering);
/**
* Eliminates a node with a constraint on it
* Other factors have a change of variables performed via Schur complement to remove the
* eliminated node.
* FIXME: currently will not handle multiple constraints on the same node
*/
ConstrainedConditionalGaussian::shared_ptr eliminate_constraint(const std::string& key);
/**
* optimize a linear factor graph
@ -81,18 +93,9 @@ public:
FGConfig optimize(const Ordering& ordering);
/**
* eliminate one node yielding a DeltaFunction
* Eliminates the factors from the factor graph through find_factors_and_remove
* and adds a new factor to the factor graph
*
* Only eliminates nodes *with* equality factors
* Determines if a node has any constraints attached to it
*/
DeltaFunction::shared_ptr eliminate_one_eq(const std::string& key);
/**
* Determines if a node has any equality factors connected to it
*/
bool involves_equality(const std::string& key) const;
bool is_constrained(const std::string& key) const;
/**
* Prints the contents of the factor graph with optional name string
@ -101,15 +104,9 @@ public:
/**
* Finds a matching equality constraint by key - assumed present
* Performs in-place removal of the equality constraint
* Performs in-place removal of the constraint
*/
EqualityFactor::shared_ptr extract_eq(const std::string& key);
/**
* Combines an equality factor with a joined linear factor
* Executes in place, and will add new factors back to the graph
*/
void eq_combine_and_eliminate(const EqualityFactor& eqf, const MutableLinearFactor& joint_factor);
LinearConstraint::shared_ptr extract_constraint(const std::string& key);
/**
* This function returns the best ordering for this linear factor
@ -117,13 +114,6 @@ public:
* of the equality factors eliminated first
*/
Ordering getOrdering() const;
/**
* Converts the graph into a linear factor graph
* Removes all equality constraints
*/
LinearFactorGraph convert() const;
};
}

View File

@ -10,7 +10,7 @@
#include <boost/shared_ptr.hpp>
#include "NonlinearFactorGraph.h"
#include "EqualityFactor.h"
#include "LinearConstraint.h"
#include "ConstrainedLinearFactorGraph.h"
namespace gtsam {
@ -20,19 +20,19 @@ namespace gtsam {
*
* Templated on factor and configuration type.
* TODO FD: this is totally wrong: it can only work if Config==FGConfig
* as EqualityFactor is only defined for FGConfig
* as LinearConstraint is only defined for FGConfig
* To fix it, we need to think more deeply about this.
*/
template<class Factor, class Config>
class ConstrainedNonlinearFactorGraph: public FactorGraph<Factor, Config> {
protected:
/** collection of equality factors */
std::vector<EqualityFactor::shared_ptr> eq_factors;
std::vector<LinearConstraint::shared_ptr> eq_factors;
public:
// iterators over equality factors
typedef std::vector<EqualityFactor::shared_ptr>::const_iterator eq_const_iterator;
typedef std::vector<EqualityFactor::shared_ptr>::iterator eq_iterator;
typedef std::vector<LinearConstraint::shared_ptr>::const_iterator eq_const_iterator;
typedef std::vector<LinearConstraint::shared_ptr>::iterator eq_iterator;
/**
* Default constructor
@ -67,8 +67,8 @@ public:
// linearize the equality factors (set to zero because they are now in delta space)
for (eq_const_iterator e_factor = eq_factors.begin(); e_factor
< eq_factors.end(); e_factor++) {
EqualityFactor::shared_ptr eq = (*e_factor)->linearize();
ret.push_back_eq(eq);
// LinearConstraint::shared_ptr eq = (*e_factor)->linearize();
// ret.push_back_eq(eq);
}
return ret;
@ -84,7 +84,7 @@ public:
/**
* Insert a equality factor into the graph
*/
void push_back_eq(const EqualityFactor::shared_ptr& eq) {
void push_back_eq(const LinearConstraint::shared_ptr& eq) {
eq_factors.push_back(eq);
}

View File

@ -1,60 +0,0 @@
/*
* DeltaFunction.cpp
*
* Created on: Aug 11, 2009
* Author: alexgc
*/
#include <iostream>
#include "DeltaFunction.h"
namespace gtsam {
using namespace std;
DeltaFunction::DeltaFunction() {
// TODO Auto-generated constructor stub
}
DeltaFunction::DeltaFunction(const Vector& v, const std::string& id)
: value_(v), key_(id)
{
}
DeltaFunction::DeltaFunction(const DeltaFunction& df)
: boost::noncopyable(), value_(df.value_), key_(df.key_)
{
}
DeltaFunction::~DeltaFunction() {
// TODO Auto-generated destructor stub
}
bool DeltaFunction::equals(const DeltaFunction &df) const
{
return equal_with_abs_tol(value_, df.value_) && key_ == df.key_;
}
void DeltaFunction::print() const
{
cout << "DeltaFunction: [" << key_ << "]";
gtsam::print(value_);
cout << endl;
}
bool assert_equal(const DeltaFunction& actual, const DeltaFunction& expected, double tol)
{
bool ret = actual.equals(expected);
if (!ret)
{
cout << "Not Equal!" << endl;
cout << " Actual:" << endl;
actual.print();
cout << " Expected:" << endl;
expected.print();
}
return ret;
}
}

View File

@ -1,63 +0,0 @@
/*
* DeltaFunction.h
*
* Created on: Aug 11, 2009
* Author: alexgc
*/
#ifndef DELTAFUNCTION_H_
#define DELTAFUNCTION_H_
#include <string>
#include <boost/utility.hpp>
#include <boost/shared_ptr.hpp>
#include "Vector.h"
namespace gtsam {
class DeltaFunction : boost::noncopyable {
protected:
Vector value_; /// location of the delta function
std::string key_; /// id of node with delta function
public:
typedef boost::shared_ptr<DeltaFunction> shared_ptr;
/**
* Default Constructor
*/
DeltaFunction();
/**
* Constructor with initialization
*/
DeltaFunction(const Vector& value, const std::string& key);
/**
* Copy constructor
*/
DeltaFunction(const DeltaFunction& df);
virtual ~DeltaFunction();
/**
* basic get functions
*/
Vector get_value() const {return value_;}
std::string get_key() const {return key_;}
/** equals function */
bool equals(const DeltaFunction &cg) const;
/** basic print */
void print() const;
};
/** equals function for testing - prints if not equal */
bool assert_equal(const DeltaFunction& actual, const DeltaFunction& expected, double tol=1e-9);
}
#endif /* DELTAFUNCTION_H_ */

View File

@ -1,75 +0,0 @@
/*
* EqualityFactor.cpp
*
* Created on: Aug 10, 2009
* Author: alexgc
*/
#include "EqualityFactor.h"
#include <iostream>
namespace gtsam {
using namespace std;
EqualityFactor::EqualityFactor()
: key_(""), value_(Vector(0))
{
}
EqualityFactor::EqualityFactor(const Vector& constraint, const std::string& id)
: key_(id), value_(constraint)
{
}
list<string> EqualityFactor::keys() const {
list<string> keys;
keys.push_back(key_);
return keys;
}
double EqualityFactor::error(const FGConfig& c) const
{
return 0.0;
}
void EqualityFactor::print(const string& s) const
{
cout << s << ": " << dump() << endl;
}
bool EqualityFactor::equals(const EqualityFactor& f, double tol) const
{
return equal_with_abs_tol(value_, f.get_value(), tol) && key_ == f.get_key();
}
string EqualityFactor::dump() const
{
string ret = "[" + key_ + "] " + gtsam::dump(value_);
return ret;
}
DeltaFunction::shared_ptr EqualityFactor::getDeltaFunction() const
{
DeltaFunction::shared_ptr ret(new DeltaFunction(value_, key_));
return ret;
}
EqualityFactor::shared_ptr EqualityFactor::linearize() const
{
EqualityFactor::shared_ptr ret(new EqualityFactor(zero(value_.size()), key_));
return ret;
}
bool assert_equal(const EqualityFactor& actual, const EqualityFactor& expected, double tol)
{
bool ret = actual.equals(expected, tol);
if (!ret)
{
cout << "Not Equal:" << endl;
actual.print("Actual");
expected.print("Expected");
}
return ret;
}
}

View File

@ -1,95 +0,0 @@
/*
* EqualityFactor.h
*
* Created on: Aug 10, 2009
* Author: alexgc
*/
#ifndef EQUALITYFACTOR_H_
#define EQUALITYFACTOR_H_
#include "Factor.h"
#include "FGConfig.h"
#include "DeltaFunction.h"
namespace gtsam {
class EqualityFactor: public Factor<FGConfig> {
public:
typedef boost::shared_ptr<EqualityFactor> shared_ptr;
protected:
Vector value_; /// forces a variable be equal to this value
std::string key_; /// name of variable factor is attached to
public:
/**
* Default constructor
*/
EqualityFactor();
/**
* Constructor with initializiation
* @param constraint the value that the variable node is defined as equal to
* @param key identifier for the variable node
*/
EqualityFactor(const Vector& constraint, const std::string& key);
/**
* Default Destructor
*/
~EqualityFactor() {}
/**
* negative log probability
*/
double error(const FGConfig& c) const;
/**
* print
* @param s optional string naming the factor
*/
void print(const std::string& s="") const;
/**
* equality up to tolerance
*/
bool equals(const EqualityFactor& f, double tol=1e-9) const;
/**
* linearize
*/
EqualityFactor::shared_ptr linearize() const;
/**
* returns a version of the factor as a string
*/
std::string dump() const;
// get functions
std::string get_key() const {return key_;}
Vector get_value() const {return value_;}
/**
* return keys in preferred order
*/
std::list<std::string> keys() const;
/**
* @return the number of nodes the factor connects
*/
std::size_t size() const {return 1;}
/**
* Returns the corresponding delta function for elimination
*/
DeltaFunction::shared_ptr getDeltaFunction() const;
};
/** assert equals for testing - prints when not equal */
bool assert_equal(const EqualityFactor& actual, const EqualityFactor& expected, double tol=1e-9);
}
#endif /* EQUALITYFACTOR_H_ */

111
cpp/LinearConstraint.cpp Normal file
View File

@ -0,0 +1,111 @@
/*
* LinearConstraint.cpp
*
* Created on: Aug 10, 2009
* Author: alexgc
*/
#include <iostream>
#include <boost/foreach.hpp>
#include "LinearConstraint.h"
#include "Matrix.h"
namespace gtsam {
using namespace std;
LinearConstraint::LinearConstraint() {
}
LinearConstraint::LinearConstraint(const Vector& constraint,
const std::string& id) :
b(constraint) {
int size = constraint.size();
Matrix A = eye(size);
As.insert(make_pair(id, A));
}
LinearConstraint::LinearConstraint(const std::string& node1, const Matrix& A1,
const std::string& node2, const Matrix& A2, const Vector& rhs)
: b(rhs) {
As.insert(make_pair(node1, A1));
As.insert(make_pair(node2, A2));
}
LinearConstraint::LinearConstraint(const std::map<std::string, Matrix>& matrices, const Vector& rhs)
: As(matrices), b(rhs)
{
}
ConstrainedConditionalGaussian::shared_ptr LinearConstraint::eliminate(const std::string& key) {
// check to ensure key is one of constraint nodes
const_iterator it = As.find(key);
if (it == As.end())
throw invalid_argument("Node " + key + " is not in LinearConstraint");
// extract the leading matrix
Matrix A1 = it->second;
// assemble parents
map<string, Matrix> parents = As;
parents.erase(key);
// construct resulting CCG with parts
ConstrainedConditionalGaussian::shared_ptr ccg(new ConstrainedConditionalGaussian(A1, parents, b));
return ccg;
}
void LinearConstraint::print(const string& s) const {
cout << s << ": " << dump() << endl;
}
bool LinearConstraint::equals(const LinearConstraint& f, double tol) const {
// check sizes
if (size() != f.size()) return false;
// check rhs
if (!equal_with_abs_tol(b, f.b, tol)) return false;
// check all matrices
pair<string, Matrix> p;
BOOST_FOREACH(p, As) {
// check for key existence
const_iterator it = f.As.find(p.first);
if (it == f.As.end()) return false;
Matrix f_mat = it->second;
// check matrix
if (!(f_mat == p.second)) return false;
}
return true;
}
bool LinearConstraint::involves(const std::string& key) const {
return As.find(key) != As.end();
}
list<string> LinearConstraint::keys(const std::string& key) const {
list<string> ret;
pair<string, Matrix> p;
BOOST_FOREACH(p, As) {
if (p.first != key)
ret.push_back(p.first);
}
return ret;
}
string LinearConstraint::dump() const {
string ret;
return ret;
}
bool assert_equal(const LinearConstraint& actual,
const LinearConstraint& expected, double tol) {
bool ret = actual.equals(expected, tol);
if (!ret) {
cout << "Not Equal:" << endl;
actual.print("Actual");
expected.print("Expected");
}
return ret;
}
}

131
cpp/LinearConstraint.h Normal file
View File

@ -0,0 +1,131 @@
/*
* LinearConstraint.h
*
* Created on: Aug 10, 2009
* Author: alexgc
*/
#ifndef EQUALITYFACTOR_H_
#define EQUALITYFACTOR_H_
#include <list>
#include "Matrix.h"
#include "ConstrainedConditionalGaussian.h"
namespace gtsam {
/**
* Linear constraints are similar to factors in structure, but represent
* a different problem
*/
class LinearConstraint {
public:
typedef boost::shared_ptr<LinearConstraint> shared_ptr;
typedef std::map<std::string, Matrix>::iterator iterator;
typedef std::map<std::string, Matrix>::const_iterator const_iterator;
protected:
std::map<std::string, Matrix> As; // linear matrices
Vector b; // right-hand-side
public:
/**
* Default constructor
*/
LinearConstraint();
/**
* Constructor with initialization of a unary equality factor
* Creates an identity matrix for the underlying implementation and the constraint
* value becomes the RHS value - use for setting a variable to a fixed value
* @param constraint the value that the variable node is defined as equal to
* @param key identifier for the variable node
*/
LinearConstraint(const Vector& constraint, const std::string& key);
/**
* Constructor for binary constraint
* @param key for first node
* @param A Matrix for first node
* @param key for second node
* @param A Matrix for second node
* @param RHS b vector
*/
LinearConstraint(const std::string& node1, const Matrix& A1,
const std::string& node2, const Matrix& A2, const Vector& b);
/**
* Constructor for arbitrary numbers of nodes
* @param matrices is the full map of A matrices
* @param b is the RHS vector
*/
LinearConstraint(const std::map<std::string, Matrix>& matrices, const Vector& b);
/**
* Default Destructor
*/
~LinearConstraint() {}
/**
* Eliminates the constraint
* Note: Assumes that the constraint will be completely eliminated
* and that the matrix associated with the key is invertible
* @param key is the variable to eliminate
* @return a constrained conditional gaussian for the variable that is a
* function of its parents
*/
ConstrainedConditionalGaussian::shared_ptr eliminate(const std::string& key);
/**
* print
* @param s optional string naming the factor
*/
void print(const std::string& s="") const;
/**
* equality up to tolerance
*/
bool equals(const LinearConstraint& f, double tol=1e-9) const;
/**
* returns a version of the factor as a string
*/
std::string dump() const;
/** get a copy of b */
const Vector& get_b() const { return b; }
/** check if the constraint is connected to a particular node */
bool involves(const std::string& key) const;
/**
* get a copy of the A matrix from a specific node
* O(log n)
*/
const Matrix& get_A(const std::string& key) const {
const_iterator it = As.find(key);
if (it == As.end())
throw(std::invalid_argument("LinearFactor::[] invalid key: " + key));
return it->second;
}
/**
* Gets all of the keys connected in a constraint
* @param key is a key to leave out of the final set
* @return a list of the keys for nodes connected to the constraint
*/
std::list<std::string> keys(const std::string& key="") const;
/**
* @return the number of nodes the constraint connects
*/
std::size_t size() const {return As.size();}
};
/** assert equals for testing - prints when not equal */
bool assert_equal(const LinearConstraint& actual, const LinearConstraint& expected, double tol=1e-9);
}
#endif /* EQUALITYFACTOR_H_ */

View File

@ -17,8 +17,8 @@ using namespace std;
#include "Ordering.h"
#include "Matrix.h"
#include "NonlinearFactor.h"
#include "EqualityFactor.h"
#include "DeltaFunction.h"
#include "LinearConstraint.h"
#include "ConstrainedConditionalGaussian.h"
#include "smallExample.h"
#include "Point2Prior.h"
#include "Simulated2DOdometry.h"
@ -66,47 +66,44 @@ ExampleNonlinearFactorGraph createNonlinearFactorGraph() {
}
/* ************************************************************************* */
ConstrainedLinearFactorGraph createConstrainedLinearFactorGraph()
{
ConstrainedLinearFactorGraph graph;
// add an equality factor
Vector v1(2); v1(0)=1.;v1(1)=2.;
EqualityFactor::shared_ptr f1(new EqualityFactor(v1, "x0"));
graph.push_back_eq(f1);
// add a normal linear factor
Matrix A21 = -1 * eye(2);
Matrix A22 = eye(2);
Vector b(2);
b(0) = 2 ; b(1) = 3;
double sigma = 0.1;
LinearFactor::shared_ptr f2(new LinearFactor("x0", A21/sigma, "x1", A22/sigma, b/sigma));
graph.push_back(f2);
return graph;
}
//ConstrainedLinearFactorGraph createConstrainedLinearFactorGraph()
//{
// ConstrainedLinearFactorGraph graph;
//
// // add an equality factor
// Vector v1(2); v1(0)=1.;v1(1)=2.;
// LinearConstraint::shared_ptr f1(new LinearConstraint(v1, "x0"));
// graph.push_back_eq(f1);
//
// // add a normal linear factor
// Matrix A21 = -1 * eye(2);
//
// Matrix A22 = eye(2);
//
// Vector b(2);
// b(0) = 2 ; b(1) = 3;
//
// double sigma = 0.1;
// LinearFactor::shared_ptr f2(new LinearFactor("x0", A21/sigma, "x1", A22/sigma, b/sigma));
// graph.push_back(f2);
// return graph;
//}
/* ************************************************************************* */
ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig> , FGConfig> createConstrainedNonlinearFactorGraph() {
ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig> , FGConfig> graph;
FGConfig c = createConstrainedConfig();
// equality constraint for initial pose
EqualityFactor::shared_ptr f1(new EqualityFactor(c["x0"], "x0"));
graph.push_back_eq(f1);
// odometry between x0 and x1
double sigma = 0.1;
shared f2(new Simulated2DOdometry(c["x1"] - c["x0"], sigma, "x0", "x1"));
graph.push_back(f2); // TODO
return graph;
}
// ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig> , FGConfig> createConstrainedNonlinearFactorGraph() {
// ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig> , FGConfig> graph;
// FGConfig c = createConstrainedConfig();
//
// // equality constraint for initial pose
// LinearConstraint::shared_ptr f1(new LinearConstraint(c["x0"], "x0"));
// graph.push_back_eq(f1);
//
// // odometry between x0 and x1
// double sigma = 0.1;
// shared f2(new Simulated2DOdometry(c["x1"] - c["x0"], sigma, "x0", "x1"));
// graph.push_back(f2); // TODO
// return graph;
// }
/* ************************************************************************* */
FGConfig createConfig()
@ -139,46 +136,46 @@ FGConfig createNoisyConfig() {
}
/* ************************************************************************* */
FGConfig createConstrainedConfig()
{
FGConfig config;
Vector x0(2); x0(0)=1.0; x0(1)=2.0;
config.insert("x0", x0);
Vector x1(2); x1(0)=3.0; x1(1)=5.0;
config.insert("x1", x1);
return config;
}
//FGConfig createConstrainedConfig()
//{
// FGConfig config;
//
// Vector x0(2); x0(0)=1.0; x0(1)=2.0;
// config.insert("x0", x0);
//
// Vector x1(2); x1(0)=3.0; x1(1)=5.0;
// config.insert("x1", x1);
//
// return config;
//}
/* ************************************************************************* */
FGConfig createConstrainedLinConfig()
{
FGConfig config;
Vector x0(2); x0(0)=1.0; x0(1)=2.0; // value doesn't actually matter
config.insert("x0", x0);
Vector x1(2); x1(0)=2.3; x1(1)=5.3;
config.insert("x1", x1);
return config;
}
//FGConfig createConstrainedLinConfig()
//{
// FGConfig config;
//
// Vector x0(2); x0(0)=1.0; x0(1)=2.0; // value doesn't actually matter
// config.insert("x0", x0);
//
// Vector x1(2); x1(0)=2.3; x1(1)=5.3;
// config.insert("x1", x1);
//
// return config;
//}
/* ************************************************************************* */
FGConfig createConstrainedCorrectDelta()
{
FGConfig config;
Vector x0(2); x0(0)=0.; x0(1)=0.;
config.insert("x0", x0);
Vector x1(2); x1(0)= 0.7; x1(1)= -0.3;
config.insert("x1", x1);
return config;
}
//FGConfig createConstrainedCorrectDelta()
//{
// FGConfig config;
//
// Vector x0(2); x0(0)=0.; x0(1)=0.;
// config.insert("x0", x0);
//
// Vector x1(2); x1(0)= 0.7; x1(1)= -0.3;
// config.insert("x1", x1);
//
// return config;
//}
/* ************************************************************************* */
FGConfig createCorrectDelta() {
@ -293,24 +290,24 @@ ChordalBayesNet createSmallChordalBayesNet()
}
/* ************************************************************************* */
ConstrainedChordalBayesNet createConstrainedChordalBayesNet()
{
ConstrainedChordalBayesNet cbn;
FGConfig c = createConstrainedConfig();
// add regular conditional gaussian - no parent
Matrix R = eye(2);
Vector d = c["x1"];
double sigma = 0.1;
ConditionalGaussian::shared_ptr f1(new ConditionalGaussian(d/sigma, R/sigma));
cbn.insert("x1", f1);
// add a delta function to the cbn
DeltaFunction::shared_ptr f2(new DeltaFunction(c["x0"], "x0"));
cbn.insert_df("x0", f2);
return cbn;
}
//ConstrainedChordalBayesNet createConstrainedChordalBayesNet()
//{
// ConstrainedChordalBayesNet cbn;
// FGConfig c = createConstrainedConfig();
//
// // add regular conditional gaussian - no parent
// Matrix R = eye(2);
// Vector d = c["x1"];
// double sigma = 0.1;
// ConditionalGaussian::shared_ptr f1(new ConditionalGaussian(d/sigma, R/sigma));
// cbn.insert("x1", f1);
//
// // add a delta function to the cbn
// ConstrainedConditionalGaussian::shared_ptr f2(new ConstrainedConditionalGaussian); //(c["x0"], "x0"));
// cbn.insert_df("x0", f2);
//
// return cbn;
//}
/* ************************************************************************* */
// Some nonlinear functions to optimize

View File

@ -11,10 +11,11 @@
#pragma once
#include <boost/shared_ptr.hpp>
#include "ConstrainedNonlinearFactorGraph.h"
#include "ConstrainedChordalBayesNet.h"
#include "ConstrainedLinearFactorGraph.h"
//#include "ConstrainedNonlinearFactorGraph.h" // will be added back once design is solidified
//#include "ConstrainedLinearFactorGraph.h"
#include "NonlinearFactorGraph.h"
#include "ChordalBayesNet.h"
#include "LinearFactorGraph.h"
#include "FGConfig.h"
// \namespace
@ -32,13 +33,13 @@ namespace gtsam {
/**
* Create small example constrained factor graph
*/
ConstrainedLinearFactorGraph createConstrainedLinearFactorGraph();
//ConstrainedLinearFactorGraph createConstrainedLinearFactorGraph();
/**
* Create small example constrained nonlinear factor graph
*/
ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig>,FGConfig>
createConstrainedNonlinearFactorGraph();
// ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig>,FGConfig>
// createConstrainedNonlinearFactorGraph();
/**
* Create configuration to go with it
@ -50,7 +51,7 @@ namespace gtsam {
* Create configuration for constrained example
* This is the ground truth version
*/
FGConfig createConstrainedConfig();
//FGConfig createConstrainedConfig();
/**
* create a noisy configuration for a nonlinear factor graph
@ -79,11 +80,6 @@ namespace gtsam {
*/
ChordalBayesNet createSmallChordalBayesNet();
/**
* create small Constrained Chordal Bayes Net (from other constrained example)
*/
ConstrainedChordalBayesNet createConstrainedChordalBayesNet();
/**
* Create really non-linear factor graph (cos/sin)
*/
@ -93,10 +89,10 @@ namespace gtsam {
/**
* Create a noisy configuration for linearization
*/
FGConfig createConstrainedLinConfig();
//FGConfig createConstrainedLinConfig();
/**
* Create the correct delta configuration
*/
FGConfig createConstrainedCorrectDelta();
//FGConfig createConstrainedCorrectDelta();
}

View File

@ -0,0 +1,130 @@
/**
* @file testConstrainedConditionalGaussian.cpp
* @brief tests for constrained conditional gaussians
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include "ConstrainedConditionalGaussian.h"
using namespace gtsam;
/* ************************************************************************* */
TEST (ConstrainedConditionalGaussian, basic_unary1 )
{
Vector v(2); v(0)=1.0; v(1)=2.0;
// check unary constructor that doesn't require an R matrix
// assumed identity matrix
ConstrainedConditionalGaussian unary(v);
FGConfig fg;
fg.insert("x1", v);
CHECK(assert_equal(v, unary.solve(fg)));
}
/* ************************************************************************* */
TEST (ConstrainedConditionalGaussian, basic_unary2 )
{
Vector v(2); v(0)=1.0; v(1)=2.0;
// check unary constructor that makes use of a A matrix
Matrix A = eye(2) * 10;
ConstrainedConditionalGaussian unary(10*v, A);
FGConfig fg;
fg.insert("x1", v);
CHECK(assert_equal(v, unary.solve(fg)));
}
/* ************************************************************************* */
TEST (ConstrainedConditionalGaussian, basic_unary3 )
{
Vector v(2); v(0)=1.0; v(1)=2.0;
// check unary constructor that makes use of a A matrix
// where A^(-1) exists, but A is not triangular
Matrix A(2,2);
A(0,0) = 1.0 ; A(0,1) = 2.0;
A(1,0) = 2.0 ; A(1,1) = 1.0;
Vector rhs = A*v;
ConstrainedConditionalGaussian unary(rhs, A);
FGConfig fg;
fg.insert("x1", v);
CHECK(assert_equal(v, unary.solve(fg)));
}
/* ************************************************************************* */
TEST (ConstrainedConditionalGaussian, basic_binary1 )
{
// tests x = (A1^(-1))*(b - A2y) case, where A1 is invertible
// A1 is not already triangular, however
// RHS
Vector b(2); b(0)=3.0; b(1)=4.0;
// A1 - invertible
Matrix A1(2,2);
A1(0,0) = 1.0 ; A1(0,1) = 2.0;
A1(1,0) = 2.0 ; A1(1,1) = 1.0;
// A2 - not invertible - should still work
Matrix A2(2,2);
A2(0,0) = 1.0 ; A2(0,1) = 2.0;
A2(1,0) = 2.0 ; A2(1,1) = 4.0;
Vector y = Vector_(2, 1.0, 2.0);
FGConfig fg;
fg.insert("x1", y);
Vector expected = Vector_(2, -3.3333, 0.6667);
ConstrainedConditionalGaussian binary(b, A1, "x1", A2);
CHECK(assert_equal(expected, binary.solve(fg), 1e-4));
}
/* ************************************************************************* */
TEST (ConstrainedConditionalGaussian, basic_ternary1 )
{
// tests x = (A1^(-1))*(b - A2*y - A3*z) case, where A1 is invertible
// A1 is not already triangular, however
// RHS
Vector b(2); b(0)=3.0; b(1)=4.0;
// A1 - invertible
Matrix A1(2,2);
A1(0,0) = 1.0 ; A1(0,1) = 2.0;
A1(1,0) = 2.0 ; A1(1,1) = 1.0;
// A2 - not invertible - should still work
Matrix A2(2,2);
A2(0,0) = 1.0 ; A2(0,1) = 2.0;
A2(1,0) = 2.0 ; A2(1,1) = 4.0;
Matrix A3 = eye(2)*10;
Vector y = Vector_(2, 1.0, 2.0);
Vector z = Vector_(2, 1.0, -1.0);
FGConfig fg;
fg.insert("x1", y);
fg.insert("x2", z);
Vector expected = Vector_(2, 6.6667, -9.3333);
ConstrainedConditionalGaussian ternary(b, A1, "x1", A2, "x2", A3);
CHECK(assert_equal(expected, ternary.solve(fg), 1e-4));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */

View File

@ -1,11 +1,9 @@
/*
* testConstrainedLinearFactorGraph.cpp
*
* Created on: Aug 10, 2009
* Author: Alex Cunningham
/**
* @file testConstrainedLinearFactorGraph.cpp
* @author Alex Cunningham
*/
#include <iostream>
#include <CppUnitLite/TestHarness.h>
#include "ConstrainedLinearFactorGraph.h"
#include "LinearFactorGraph.h"
@ -14,259 +12,384 @@
using namespace gtsam;
using namespace std;
TEST( ConstrainedLinearFactorGraph, basic )
/* ************************************************************************* */
TEST( ConstrainedLinearFactorGraph, elimination1 )
{
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
// create unary factor
double sigma = 0.1;
Matrix Ax = eye(2) / sigma;
Vector b1(2);
b1(0) = 1.0;
b1(1) = -1.0;
LinearFactor::shared_ptr f1(new LinearFactor("x", Ax, b1 / sigma));
// expected equality factor
Vector v1(2); v1(0)=1.;v1(1)=2.;
EqualityFactor::shared_ptr f1(new EqualityFactor(v1, "x0"));
// create binary constraint factor
Matrix Ax1(2, 2);
Ax1(0, 0) = 1.0; Ax1(0, 1) = 2.0;
Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0;
Matrix Ay1 = eye(2) * 10;
Vector b2 = Vector_(2, 1.0, 2.0);
LinearConstraint::shared_ptr f2(
new LinearConstraint("x", Ax1, "y", Ay1, b2));
// expected normal linear factor
Matrix A21(2,2);
A21(0,0) = -10 ; A21(0,1) = 0;
A21(1,0) = 0 ; A21(1,1) = -10;
// construct the graph
ConstrainedLinearFactorGraph fg;
fg.push_back(f1);
fg.push_back_constraint(f2);
Matrix A22(2,2);
A22(0,0) = 10 ; A22(0,1) = 0;
A22(1,0) = 0 ; A22(1,1) = 10;
// verify construction of the graph
CHECK(fg.size() == 2);
Vector b(2);
b(0) = 20 ; b(1) = 30;
// eliminate x
Ordering ord;
ord.push_back("x");
ChordalBayesNet::shared_ptr cbn = fg.eliminate(ord);
LinearFactor::shared_ptr f2(new LinearFactor("x0", A21, "x1", A22, b));
//verify changes and output
CHECK(fg.size() == 1);
CHECK(cbn->size() == 1);
ConstrainedConditionalGaussian expectedCCG1(b2, Ax1, "y", Ay1);
CHECK(expectedCCG1.equals(*(cbn->get("x"))));
Matrix Ap(2,2);
Ap(0, 0) = 1.0; Ap(0, 1) = -2.0;
Ap(1, 0) = -2.0; Ap(1, 1) = 1.0;
Ap = 33.3333 * Ap;
Vector bp = Vector_(2, 0.0, -10.0);
LinearFactor expectedLF("y", Ap, bp);
CHECK(expectedLF.equals(*(fg[0]), 1e-4));
CHECK(f2->equals(*(fg[0])));
CHECK(f1->equals(*(fg.eq_at(0))));
}
TEST ( ConstrainedLinearFactorGraph, copy )
{
LinearFactorGraph lfg = createLinearFactorGraph();
LinearFactor::shared_ptr f1 = lfg[0];
LinearFactor::shared_ptr f2 = lfg[1];
LinearFactor::shared_ptr f3 = lfg[2];
LinearFactor::shared_ptr f4 = lfg[3];
ConstrainedLinearFactorGraph actual(lfg);
ConstrainedLinearFactorGraph expected;
expected.push_back(f1);
expected.push_back(f2);
expected.push_back(f3);
expected.push_back(f4);
CHECK(actual.equals(expected));
}
TEST( ConstrainedLinearFactorGraph, equals )
{
// basic equality test
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph();
CHECK( fg.equals(fg2) );
// ensuring that equality factors are compared
LinearFactor::shared_ptr f2 = fg[0]; // get a linear factor from existing graph
ConstrainedLinearFactorGraph fg3;
fg3.push_back(f2);
CHECK( !fg3.equals(fg) );
}
TEST( ConstrainedLinearFactorGraph, size )
{
LinearFactorGraph lfg = createLinearFactorGraph();
ConstrainedLinearFactorGraph fg1(lfg);
CHECK(fg1.size() == lfg.size());
ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph();
CHECK(fg2.size() == 2);
}
TEST( ConstrainedLinearFactorGraph, involves_equality )
{
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
CHECK(fg.involves_equality("x0"));
CHECK(!fg.involves_equality("x1"));
// eliminate y
Ordering ord2;
ord2.push_back("y");
cbn = fg.eliminate(ord2);
CHECK(fg.size() == 0);
Matrix Ar(2,2);
Ar(0, 0) = 74.5356; Ar(0, 1) = -59.6285;
Ar(1, 0) = 0.0; Ar(1, 1) = 44.7214;
Vector br = Vector_(2, 8.9443, 4.4721);
ConditionalGaussian expected2(br, Ar);
CHECK(expected2.equals(*(cbn->get("y"))));
}
/* ************************************************************************* */
TEST( ConstrainedLinearFactorGraph, optimize )
{
ConstrainedLinearFactorGraph fg1 = createConstrainedLinearFactorGraph();
ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph();
FGConfig expected = createConstrainedConfig();
Ordering ord1;
ord1.push_back("x0");
ord1.push_back("x1");
Ordering ord2;
ord2.push_back("x1");
ord2.push_back("x0");
FGConfig actual1 = fg1.optimize(ord1);
FGConfig actual2 = fg2.optimize(ord2);
CHECK(actual1.equals(expected));
CHECK(actual1.equals(actual2));
}
TEST (ConstrainedLinearFactorGraph, eliminate )
{
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
FGConfig c = createConstrainedConfig();
Ordering ord1;
ord1.push_back("x0");
ord1.push_back("x1");
ConstrainedChordalBayesNet::shared_ptr actual = fg.eliminate(ord1);
// create an expected bayes net
ConstrainedChordalBayesNet::shared_ptr expected(new ConstrainedChordalBayesNet);
DeltaFunction::shared_ptr d(new DeltaFunction(c["x0"], "x0"));
expected->insert_df("x0", d);
Matrix A = eye(2);
// create unary factor
double sigma = 0.1;
Vector dv = c["x1"];
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(dv/sigma, A/sigma));
expected->insert("x1", cg);
Matrix Ax = eye(2) / sigma;
Vector b1(2);
b1(0) = 1.0;
b1(1) = -1.0;
LinearFactor::shared_ptr f1(new LinearFactor("x", Ax, b1 / sigma));
CHECK(actual->equals(*expected));
}
// create binary constraint factor
Matrix Ax1(2, 2);
Ax1(0, 0) = 1.0; Ax1(0, 1) = 2.0;
Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0;
Matrix Ay1 = eye(2) * 10;
Vector b2 = Vector_(2, 1.0, 2.0);
LinearConstraint::shared_ptr f2(
new LinearConstraint("x", Ax1, "y", Ay1, b2));
TEST (ConstrainedLinearFactorGraph, baseline_optimize)
{
// tests performance when there are no equality factors in the graph
LinearFactorGraph lfg = createLinearFactorGraph();
ConstrainedLinearFactorGraph clfg(lfg); // copy in the linear factor graph
// construct the graph
ConstrainedLinearFactorGraph fg;
fg.push_back(f1);
fg.push_back_constraint(f2);
// perform optimization
Ordering ord;
ord.push_back("l1");
ord.push_back("x1");
ord.push_back("x2");
ord.push_back("y");
ord.push_back("x");
FGConfig actual = fg.optimize(ord);
FGConfig actual = clfg.optimize(ord);
FGConfig expected;
expected.insert("x", Vector_(2, 1.0, -1.0));
expected.insert("y", Vector_(2, 0.2, 0.1));
FGConfig expected = lfg.optimize(ord); // should be identical to regular lfg optimize
CHECK(actual.equals(expected));
}
TEST (ConstrainedLinearFactorGraph, baseline_eliminate_one )
{
LinearFactorGraph fg = createLinearFactorGraph();
ConstrainedLinearFactorGraph cfg(fg);
ConditionalGaussian::shared_ptr actual = cfg.eliminate_one("x1");
// create expected Conditional Gaussian
Matrix R11 = Matrix_(2,2,
15.0, 00.0,
00.0, 15.0
);
Matrix S12 = Matrix_(2,2,
-1.66667, 0.00,
+0.00,-1.66667
);
Matrix S13 = Matrix_(2,2,
-6.66667, 0.00,
+0.00,-6.66667
);
Vector d(2); d(0) = -2; d(1) = -1.0/3.0;
ConditionalGaussian expected(d,R11,"l1",S12,"x2",S13);
CHECK( actual->equals(expected) );
}
TEST (ConstrainedLinearFactorGraph, eliminate_one_eq)
{
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
DeltaFunction::shared_ptr actual = fg.eliminate_one_eq("x0");
FGConfig c = createConstrainedConfig();
DeltaFunction::shared_ptr expected(new DeltaFunction(c["x0"], "x0"));
CHECK(assert_equal(*actual, *expected)); // check output for correct delta function
CHECK(fg.size() == 1); // check size
ConstrainedLinearFactorGraph::eq_const_iterator eit = fg.eq_begin();
CHECK(eit == fg.eq_end()); // ensure no remaining equality factors
// verify the remaining factor - should be a unary factor on x1
ConstrainedLinearFactorGraph::const_iterator it = fg.begin();
LinearFactor::shared_ptr factor_actual = *it;
CHECK(factor_actual->size() == 1);
}
TEST (ConstrainedLinearFactorGraph, eq_combine_and_eliminate )
{
// create a set of factors
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
EqualityFactor::shared_ptr eq = fg.eq_at(0);
LinearFactor::shared_ptr f1 = fg[0];
// make a joint linear factor
set<LinearFactor::shared_ptr> f1_set;
f1_set.insert(f1);
boost::shared_ptr<MutableLinearFactor> joined(new MutableLinearFactor(f1_set));
// create a sample graph
ConstrainedLinearFactorGraph graph;
// combine linear factor and eliminate
graph.eq_combine_and_eliminate(*eq, *joined);
// verify structure
CHECK(graph.size() == 1); // will have only one factor
LinearFactor::shared_ptr actual = graph[0];
CHECK(actual->size() == 1); // remaining factor will be unary
// verify values
FGConfig c = createConstrainedConfig();
Vector exp_v = c["x1"];
Matrix A = actual->get_A("x1");
Vector b = actual->get_b();
Vector act_v = backsubstitution(A, b);
CHECK(assert_equal(act_v, exp_v));
}
TEST (ConstrainedLinearFactorGraph, extract_eq)
{
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
EqualityFactor::shared_ptr actual = fg.extract_eq("x0");
Vector v1(2); v1(0)=1.;v1(1)=2.;
EqualityFactor::shared_ptr expected(new EqualityFactor(v1, "x0"));
// verify output
CHECK(assert_equal(*actual, *expected));
// verify removal
ConstrainedLinearFactorGraph::eq_const_iterator it = fg.eq_begin();
CHECK(it == fg.eq_end());
// verify full size
CHECK(fg.size() == 1);
}
TEST( ConstrainedLinearFactorGraph, GET_ORDERING)
{
ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
Ordering ord = fg.getOrdering();
CHECK(ord[0] == string("x0"));
CHECK(ord[1] == string("x1"));
CHECK(expected.size() == actual.size());
CHECK(assert_equal(expected["x"], actual["x"], 1e-4));
CHECK(assert_equal(expected["y"], actual["y"], 1e-4));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
TEST( ConstrainedLinearFactorGraph, is_constrained )
{
// very simple check
ConstrainedLinearFactorGraph fg;
CHECK(!fg.is_constrained("x"));
// create simple graph
Vector b = Vector_(2, 0.0, 0.0);
LinearFactor::shared_ptr f1(new LinearFactor("x", eye(2), "y", eye(2), b));
LinearFactor::shared_ptr f2(new LinearFactor("z", eye(2), "w", eye(2), b));
LinearConstraint::shared_ptr f3(new LinearConstraint("y", eye(2), "z", eye(2), b));
fg.push_back(f1);
fg.push_back(f2);
fg.push_back_constraint(f3);
CHECK(fg.is_constrained("y"));
CHECK(fg.is_constrained("z"));
CHECK(!fg.is_constrained("x"));
CHECK(!fg.is_constrained("w"));
}
/* ************************************************************************* */
//TEST( ConstrainedLinearFactorGraph, basic )
//{
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
//
// // expected equality factor
// Vector v1(2); v1(0)=1.;v1(1)=2.;
// LinearConstraint::shared_ptr f1(new LinearConstraint(v1, "x0"));
//
// // expected normal linear factor
// Matrix A21(2,2);
// A21(0,0) = -10 ; A21(0,1) = 0;
// A21(1,0) = 0 ; A21(1,1) = -10;
//
// Matrix A22(2,2);
// A22(0,0) = 10 ; A22(0,1) = 0;
// A22(1,0) = 0 ; A22(1,1) = 10;
//
// Vector b(2);
// b(0) = 20 ; b(1) = 30;
//
// LinearFactor::shared_ptr f2(new LinearFactor("x0", A21, "x1", A22, b));
//
// CHECK(f2->equals(*(fg[0])));
// CHECK(f1->equals(*(fg.eq_at(0))));
//}
//TEST ( ConstrainedLinearFactorGraph, copy )
//{
// LinearFactorGraph lfg = createLinearFactorGraph();
// LinearFactor::shared_ptr f1 = lfg[0];
// LinearFactor::shared_ptr f2 = lfg[1];
// LinearFactor::shared_ptr f3 = lfg[2];
// LinearFactor::shared_ptr f4 = lfg[3];
//
// ConstrainedLinearFactorGraph actual(lfg);
//
// ConstrainedLinearFactorGraph expected;
// expected.push_back(f1);
// expected.push_back(f2);
// expected.push_back(f3);
// expected.push_back(f4);
//
// CHECK(actual.equals(expected));
//}
//
//TEST( ConstrainedLinearFactorGraph, equals )
//{
// // basic equality test
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
// ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph();
// CHECK( fg.equals(fg2) );
//
// // ensuring that equality factors are compared
// LinearFactor::shared_ptr f2 = fg[0]; // get a linear factor from existing graph
// ConstrainedLinearFactorGraph fg3;
// fg3.push_back(f2);
// CHECK( !fg3.equals(fg) );
//}
//
//TEST( ConstrainedLinearFactorGraph, size )
//{
// LinearFactorGraph lfg = createLinearFactorGraph();
// ConstrainedLinearFactorGraph fg1(lfg);
//
// CHECK(fg1.size() == lfg.size());
//
// ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph();
//
// CHECK(fg2.size() == 2);
//}
//
//TEST( ConstrainedLinearFactorGraph, is_constrained )
//{
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
//
// CHECK(fg.is_constrained("x0"));
// CHECK(!fg.is_constrained("x1"));
//}
//
//TEST( ConstrainedLinearFactorGraph, optimize )
//{
// ConstrainedLinearFactorGraph fg1 = createConstrainedLinearFactorGraph();
// ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph();
//
// FGConfig expected = createConstrainedConfig();
//
// Ordering ord1;
// ord1.push_back("x0");
// ord1.push_back("x1");
//
// Ordering ord2;
// ord2.push_back("x1");
// ord2.push_back("x0");
//
// FGConfig actual1 = fg1.optimize(ord1);
// FGConfig actual2 = fg2.optimize(ord2);
//
// CHECK(actual1.equals(expected));
// CHECK(actual1.equals(actual2));
//}
//
//TEST (ConstrainedLinearFactorGraph, eliminate )
//{
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
// FGConfig c = createConstrainedConfig();
//
// Ordering ord1;
// ord1.push_back("x0");
// ord1.push_back("x1");
//
// ConstrainedChordalBayesNet::shared_ptr actual = fg.eliminate(ord1);
//
// // create an expected bayes net
// ConstrainedChordalBayesNet::shared_ptr expected(new ConstrainedChordalBayesNet);
//
// ConstrainedConditionalGaussian::shared_ptr d(new ConstrainedConditionalGaussian);//(c["x0"], "x0"));
// expected->insert_df("x0", d);
//
// Matrix A = eye(2);
// double sigma = 0.1;
// Vector dv = c["x1"];
// ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(dv/sigma, A/sigma));
// expected->insert("x1", cg);
//
// CHECK(actual->equals(*expected));
//}
//
//TEST (ConstrainedLinearFactorGraph, baseline_optimize)
//{
// // tests performance when there are no equality factors in the graph
// LinearFactorGraph lfg = createLinearFactorGraph();
// ConstrainedLinearFactorGraph clfg(lfg); // copy in the linear factor graph
//
// Ordering ord;
// ord.push_back("l1");
// ord.push_back("x1");
// ord.push_back("x2");
//
// FGConfig actual = clfg.optimize(ord);
//
// FGConfig expected = lfg.optimize(ord); // should be identical to regular lfg optimize
//
// CHECK(actual.equals(expected));
//}
//
//TEST (ConstrainedLinearFactorGraph, baseline_eliminate_one )
//{
// LinearFactorGraph fg = createLinearFactorGraph();
// ConstrainedLinearFactorGraph cfg(fg);
//
// ConditionalGaussian::shared_ptr actual = cfg.eliminate_one("x1");
//
// // create expected Conditional Gaussian
// Matrix R11 = Matrix_(2,2,
// 15.0, 00.0,
// 00.0, 15.0
// );
// Matrix S12 = Matrix_(2,2,
// -1.66667, 0.00,
// +0.00,-1.66667
// );
// Matrix S13 = Matrix_(2,2,
// -6.66667, 0.00,
// +0.00,-6.66667
// );
// Vector d(2); d(0) = -2; d(1) = -1.0/3.0;
// ConditionalGaussian expected(d,R11,"l1",S12,"x2",S13);
//
// CHECK( actual->equals(expected) );
//}
//
//TEST (ConstrainedLinearFactorGraph, eliminate_constraint)
//{
//// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
//// ConstrainedConditionalGaussian::shared_ptr actual = fg.eliminate_constraint("x0");
////
//// FGConfig c = createConstrainedConfig();
//// ConstrainedConditionalGaussian::shared_ptr expected(new ConstrainedConditionalGaussian);//(c["x0"], "x0"));
////
//// CHECK(assert_equal(*actual, *expected)); // check output for correct delta function
////
//// CHECK(fg.size() == 1); // check size
////
//// ConstrainedLinearFactorGraph::eq_const_iterator eit = fg.eq_begin();
//// CHECK(eit == fg.eq_end()); // ensure no remaining equality factors
////
//// // verify the remaining factor - should be a unary factor on x1
//// ConstrainedLinearFactorGraph::const_iterator it = fg.begin();
//// LinearFactor::shared_ptr factor_actual = *it;
////
//// CHECK(factor_actual->size() == 1);
//}
//
//TEST (ConstrainedLinearFactorGraph, constraintCombineAndEliminate )
//{
// // create a set of factors
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
// LinearConstraint::shared_ptr eq = fg.eq_at(0);
// LinearFactor::shared_ptr f1 = fg[0];
//
// // make a joint linear factor
// set<LinearFactor::shared_ptr> f1_set;
// f1_set.insert(f1);
// boost::shared_ptr<MutableLinearFactor> joined(new MutableLinearFactor(f1_set));
//
// // create a sample graph
// ConstrainedLinearFactorGraph graph;
//
// // combine linear factor and eliminate
// graph.constraintCombineAndEliminate(*eq, *joined);
//
// // verify structure
// CHECK(graph.size() == 1); // will have only one factor
// LinearFactor::shared_ptr actual = graph[0];
// CHECK(actual->size() == 1); // remaining factor will be unary
//
// // verify values
// FGConfig c = createConstrainedConfig();
// Vector exp_v = c["x1"];
// Matrix A = actual->get_A("x1");
// Vector b = actual->get_b();
// Vector act_v = backsubstitution(A, b);
// CHECK(assert_equal(act_v, exp_v));
//}
//
//TEST (ConstrainedLinearFactorGraph, extract_eq)
//{
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
// LinearConstraint::shared_ptr actual = fg.extract_eq("x0");
//
// Vector v1(2); v1(0)=1.;v1(1)=2.;
// LinearConstraint::shared_ptr expected(new LinearConstraint(v1, "x0"));
//
// // verify output
// CHECK(assert_equal(*actual, *expected));
//
// // verify removal
// ConstrainedLinearFactorGraph::eq_const_iterator it = fg.eq_begin();
// CHECK(it == fg.eq_end());
//
// // verify full size
// CHECK(fg.size() == 1);
//}
//
//TEST( ConstrainedLinearFactorGraph, GET_ORDERING)
//{
// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph();
// Ordering ord = fg.getOrdering();
// CHECK(ord[0] == string("x0"));
// CHECK(ord[1] == string("x1"));
//}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -15,66 +15,66 @@ using namespace gtsam;
typedef boost::shared_ptr<NonlinearFactor<FGConfig> > shared;
typedef ConstrainedNonlinearFactorGraph<NonlinearFactor<FGConfig>,FGConfig> TestGraph;
TEST( TestGraph, equals )
{
TestGraph fg = createConstrainedNonlinearFactorGraph();
TestGraph fg2 = createConstrainedNonlinearFactorGraph();
CHECK( fg.equals(fg2) );
}
TEST( TestGraph, copy )
{
ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph();
TestGraph actual(nfg);
shared f1 = nfg[0];
shared f2 = nfg[1];
shared f3 = nfg[2];
shared f4 = nfg[3];
TestGraph expected;
expected.push_back(f1);
expected.push_back(f2);
expected.push_back(f3);
expected.push_back(f4);
CHECK(actual.equals(expected));
}
TEST( TestGraph, baseline )
{
// use existing examples
ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph();
TestGraph cfg(nfg);
FGConfig initial = createNoisyConfig();
ConstrainedLinearFactorGraph linearized = cfg.linearize(initial);
LinearFactorGraph lfg = createLinearFactorGraph();
ConstrainedLinearFactorGraph expected(lfg);
CHECK(expected.equals(linearized));
}
/*
TEST( TestGraph, convert )
{
ExampleNonlinearFactorGraph expected = createNonlinearFactorGraph();
TestGraph cfg(expected);
ExampleNonlinearFactorGraph actual = cfg.convert();
CHECK(actual.equals(expected));
}
*/
TEST( TestGraph, linearize_and_solve )
{
TestGraph nfg = createConstrainedNonlinearFactorGraph();
FGConfig lin = createConstrainedLinConfig();
ConstrainedLinearFactorGraph actual_lfg = nfg.linearize(lin);
FGConfig actual = actual_lfg.optimize(actual_lfg.getOrdering());
FGConfig expected = createConstrainedCorrectDelta();
CHECK(actual.equals(expected));
}
//TEST( TestGraph, equals )
//{
// TestGraph fg = createConstrainedNonlinearFactorGraph();
// TestGraph fg2 = createConstrainedNonlinearFactorGraph();
// CHECK( fg.equals(fg2) );
//}
//
//TEST( TestGraph, copy )
//{
// ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph();
// TestGraph actual(nfg);
//
// shared f1 = nfg[0];
// shared f2 = nfg[1];
// shared f3 = nfg[2];
// shared f4 = nfg[3];
//
// TestGraph expected;
// expected.push_back(f1);
// expected.push_back(f2);
// expected.push_back(f3);
// expected.push_back(f4);
//
// CHECK(actual.equals(expected));
//}
//
//TEST( TestGraph, baseline )
//{
// // use existing examples
// ExampleNonlinearFactorGraph nfg = createNonlinearFactorGraph();
// TestGraph cfg(nfg);
//
// FGConfig initial = createNoisyConfig();
// ConstrainedLinearFactorGraph linearized = cfg.linearize(initial);
// LinearFactorGraph lfg = createLinearFactorGraph();
// ConstrainedLinearFactorGraph expected(lfg);
//
// CHECK(expected.equals(linearized));
//}
//
///*
//TEST( TestGraph, convert )
//{
// ExampleNonlinearFactorGraph expected = createNonlinearFactorGraph();
// TestGraph cfg(expected);
// ExampleNonlinearFactorGraph actual = cfg.convert();
// CHECK(actual.equals(expected));
//}
//*/
//
//TEST( TestGraph, linearize_and_solve )
//{
// TestGraph nfg = createConstrainedNonlinearFactorGraph();
// FGConfig lin = createConstrainedLinConfig();
// ConstrainedLinearFactorGraph actual_lfg = nfg.linearize(lin);
// FGConfig actual = actual_lfg.optimize(actual_lfg.getOrdering());
//
// FGConfig expected = createConstrainedCorrectDelta();
// CHECK(actual.equals(expected));
//}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}

View File

@ -1,27 +0,0 @@
/*
* testDeltaFunction.cpp
*
* Created on: Aug 11, 2009
* Author: alexgc
*/
#include <CppUnitLite/TestHarness.h>
#include "DeltaFunction.h"
using namespace gtsam;
TEST (DeltaFunction, basic)
{
Vector v(2); v(0)=1.0; v(1)=2.0;
DeltaFunction delta(v, "x");
CHECK(assert_equal(v, delta.get_value()));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */

View File

@ -1,62 +0,0 @@
/*
* testEqualityFactor.cpp
*
* Created on: Aug 10, 2009
* Author: Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include "EqualityFactor.h"
#include "smallExample.h"
using namespace gtsam;
using namespace std;
TEST ( EqualityFactor, basic )
{
// create an initialized factor
Vector v(2); v(0)=1.2; v(1)=3.4;
string key = "x0";
EqualityFactor factor(v, key);
// get the data back out of it
CHECK(assert_equal(v, factor.get_value()));
CHECK(key == factor.get_key());
}
TEST ( EqualityFactor, equals )
{
Vector v(2); v(0)=1.2; v(1)=3.4;
string key = "x0";
EqualityFactor factor1(v, key);
EqualityFactor factor2(v, key);
CHECK(factor1.equals(factor2));
}
TEST (EqualityFactor, getDeltaFunction )
{
Vector v(2); v(0)=1.2; v(1)=3.4;
string key = "x0";
EqualityFactor factor(v, key);
DeltaFunction::shared_ptr actual = factor.getDeltaFunction();
DeltaFunction::shared_ptr expected(new DeltaFunction(v, key));
CHECK(assert_equal(*actual, *expected));
}
TEST (EqualityFactor, linearize )
{
FGConfig c = createConstrainedConfig();
EqualityFactor init(c["x0"], "x0");
EqualityFactor::shared_ptr actual = init.linearize();
EqualityFactor::shared_ptr expected(new EqualityFactor(zero(2), "x0"));
CHECK(assert_equal(*actual, *expected));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */

View File

@ -0,0 +1,246 @@
/**
* @file testLinearConstraint.cpp
* @brief Tests for linear constraints
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include "LinearConstraint.h"
#include "smallExample.h"
using namespace gtsam;
using namespace std;
/* ************************************************************************* */
TEST ( LinearConstraint, basic_unary )
{
// create an initialized factor with a unary factor
Vector v(2); v(0)=1.2; v(1)=3.4;
string key = "x0";
LinearConstraint factor(v, key);
// get the data back out of it
CHECK(assert_equal(v, factor.get_b()));
Matrix expected = eye(2);
CHECK(assert_equal(expected, factor.get_A("x0")));
}
/* ************************************************************************* */
TEST( LinearConstraint, basic_binary )
{
Matrix A1(2,2);
A1(0,0) = -10.0 ; A1(0,1) = 0.0;
A1(1,0) = 0.0 ; A1(1,1) = -10.0;
Matrix A2(2,2);
A2(0,0) = 10.0 ; A2(0,1) = 0.0;
A2(1,0) = 0.0 ; A2(1,1) = 10.0;
Vector b(2);
b(0) = 2 ; b(1) = -1;
LinearConstraint lc("x1", A1, "x2", A2, b);
// verify contents
CHECK( assert_equal(A1, lc.get_A("x1")));
CHECK( assert_equal(A2, lc.get_A("x2")));
CHECK( assert_equal(b, lc.get_b()));
}
/* ************************************************************************* */
TEST( LinearConstraint, basic_arbitrary )
{
Matrix A1(2,2);
A1(0,0) = -10.0 ; A1(0,1) = 0.0;
A1(1,0) = 0.0 ; A1(1,1) = -10.0;
Matrix A2(2,2);
A2(0,0) = 10.0 ; A2(0,1) = 0.0;
A2(1,0) = 0.0 ; A2(1,1) = 10.0;
Matrix A3(2,2);
A3(0,0) = 10.0 ; A3(0,1) = 7.0;
A3(1,0) = 7.0 ; A3(1,1) = 10.0;
Vector b(2);
b(0) = 2 ; b(1) = -1;
// build a map
map<string, Matrix> matrices;
matrices.insert(make_pair("x1", A1));
matrices.insert(make_pair("x2", A2));
matrices.insert(make_pair("x3", A3));
LinearConstraint lc(matrices, b);
// verify contents
CHECK( assert_equal(A1, lc.get_A("x1")));
CHECK( assert_equal(A2, lc.get_A("x2")));
CHECK( assert_equal(A3, lc.get_A("x3")));
CHECK( assert_equal(b, lc.get_b()));
}
/* ************************************************************************* */
TEST ( LinearConstraint, size )
{
Matrix A1(2,2);
A1(0,0) = -10.0 ; A1(0,1) = 0.0;
A1(1,0) = 0.0 ; A1(1,1) = -10.0;
Matrix A2(2,2);
A2(0,0) = 10.0 ; A2(0,1) = 0.0;
A2(1,0) = 0.0 ; A2(1,1) = 10.0;
Matrix A3(2,2);
A3(0,0) = 10.0 ; A3(0,1) = 7.0;
A3(1,0) = 7.0 ; A3(1,1) = 10.0;
Vector b(2);
b(0) = 2 ; b(1) = -1;
// build some constraints
LinearConstraint lc1(b, "x1");
LinearConstraint lc2("x1", A1, "x2", A2, b);
map<string, Matrix> matrices;
matrices.insert(make_pair("x1", A1));
matrices.insert(make_pair("x2", A2));
matrices.insert(make_pair("x3", A3));
LinearConstraint lc3(matrices, b);
CHECK(lc1.size() == 1);
CHECK(lc2.size() == 2);
CHECK(lc3.size() == 3);
}
/* ************************************************************************* */
TEST ( LinearConstraint, equals )
{
Matrix A1(2,2);
A1(0,0) = -10.0 ; A1(0,1) = 0.0;
A1(1,0) = 0.0 ; A1(1,1) = -10.0;
Matrix A2(2,2);
A2(0,0) = 10.0 ; A2(0,1) = 0.0;
A2(1,0) = 0.0 ; A2(1,1) = 10.0;
Vector b(2);
b(0) = 2 ; b(1) = -1;
LinearConstraint lc1("x1", A1, "x2", A2, b);
LinearConstraint lc2("x1", A1, "x2", A2, b);
// check for basic equality
CHECK(lc1.equals(lc2));
CHECK(lc2.equals(lc1));
}
/* ************************************************************************* */
TEST ( LinearConstraint, eliminate1 )
{
// construct a linear constraint
Vector v(2); v(0)=1.2; v(1)=3.4;
string key = "x0";
LinearConstraint lc(v, key);
// eliminate it to get a constrained conditional gaussian
ConstrainedConditionalGaussian::shared_ptr ccg = lc.eliminate(key);
// solve the ccg to get a value
FGConfig fg;
CHECK(assert_equal(ccg->solve(fg), v));
}
/* ************************************************************************* */
TEST ( LinearConstraint, eliminate2 )
{
// Construct a linear constraint
// RHS
Vector b(2); b(0)=3.0; b(1)=4.0;
// A1 - invertible
Matrix A1(2,2);
A1(0,0) = 1.0 ; A1(0,1) = 2.0;
A1(1,0) = 2.0 ; A1(1,1) = 1.0;
// A2 - not invertible - solve will throw an exception
Matrix A2(2,2);
A2(0,0) = 1.0 ; A2(0,1) = 2.0;
A2(1,0) = 2.0 ; A2(1,1) = 4.0;
LinearConstraint lc("x", A1, "y", A2, b);
Vector y = Vector_(2, 1.0, 2.0);
FGConfig fg1;
fg1.insert("y", y);
Vector expected = Vector_(2, -3.3333, 0.6667);
// eliminate x for basic check
ConstrainedConditionalGaussian::shared_ptr actual = lc.eliminate("x");
CHECK(assert_equal(expected, actual->solve(fg1), 1e-4));
// eliminate y to test thrown error
FGConfig fg2;
fg2.insert("x", expected);
actual = lc.eliminate("y");
try {
Vector output = actual->solve(fg2);
CHECK(false);
} catch (...) {
CHECK(true);
}
}
/* ************************************************************************* */
TEST ( LinearConstraint, involves )
{
Matrix A1(2,2);
A1(0,0) = -10.0 ; A1(0,1) = 0.0;
A1(1,0) = 0.0 ; A1(1,1) = -10.0;
Matrix A2(2,2);
A2(0,0) = 10.0 ; A2(0,1) = 0.0;
A2(1,0) = 0.0 ; A2(1,1) = 10.0;
Vector b(2);
b(0) = 2 ; b(1) = -1;
LinearConstraint lc("x1", A1, "x2", A2, b);
CHECK(lc.involves("x1"));
CHECK(lc.involves("x2"));
CHECK(!lc.involves("x3"));
}
/* ************************************************************************* */
TEST ( LinearConstraint, keys )
{
Matrix A1(2,2);
A1(0,0) = -10.0 ; A1(0,1) = 0.0;
A1(1,0) = 0.0 ; A1(1,1) = -10.0;
Matrix A2(2,2);
A2(0,0) = 10.0 ; A2(0,1) = 0.0;
A2(1,0) = 0.0 ; A2(1,1) = 10.0;
Vector b(2);
b(0) = 2 ; b(1) = -1;
LinearConstraint lc("x1", A1, "x2", A2, b);
list<string> actual = lc.keys();
list<string> expected;
expected.push_back("x1");
expected.push_back("x2");
CHECK(actual == expected);
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */