Merge branch 'hybrid/elimination' into hybrid/test_with_evaluate
commit
66b846f77e
|
@ -216,7 +216,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
GaussianMixtureFactor::FactorAndConstant>;
|
||||
|
||||
// This is the elimination method on the leaf nodes
|
||||
auto eliminate = [&](const GraphAndConstant &graph_z) -> EliminationPair {
|
||||
auto eliminateFunc = [&](const GraphAndConstant &graph_z) -> EliminationPair {
|
||||
if (graph_z.graph.empty()) {
|
||||
return {nullptr, {nullptr, 0.0}};
|
||||
}
|
||||
|
@ -230,11 +230,9 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
boost::tie(conditional, newFactor) =
|
||||
EliminatePreferCholesky(graph_z.graph, frontalKeys);
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
gttoc_(hybrid_eliminate);
|
||||
#endif
|
||||
|
||||
const double logZ = graph_z.constant - conditional->logNormalizationConstant();
|
||||
// Get the log of the log normalization constant inverse.
|
||||
const double logZ =
|
||||
graph_z.constant - conditional->logNormalizationConstant();
|
||||
// Get the log of the log normalization constant inverse.
|
||||
// double logZ = -conditional->logNormalizationConstant();
|
||||
// // IF this is the last continuous variable to eliminated, we need to
|
||||
|
@ -244,11 +242,16 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// const auto posterior_mean = conditional->solve(VectorValues());
|
||||
// logZ += graph_z.graph.error(posterior_mean);
|
||||
// }
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
gttoc_(hybrid_eliminate);
|
||||
#endif
|
||||
|
||||
return {conditional, {newFactor, logZ}};
|
||||
};
|
||||
|
||||
// Perform elimination!
|
||||
DecisionTree<Key, EliminationPair> eliminationResults(sum, eliminate);
|
||||
DecisionTree<Key, EliminationPair> eliminationResults(sum, eliminateFunc);
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
tictoc_print_();
|
||||
|
@ -270,14 +273,27 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
auto factorProb =
|
||||
[&](const GaussianMixtureFactor::FactorAndConstant &factor_z) {
|
||||
// This is the probability q(μ) at the MLE point.
|
||||
// factor_z.factor is a factor without keys, just containing the residual.
|
||||
// factor_z.factor is a factor without keys, just containing the
|
||||
// residual.
|
||||
return exp(-factor_z.error(VectorValues()));
|
||||
// TODO(dellaert): this is not correct, since VectorValues() is not
|
||||
// the MLE point. But it does not matter, as at the MLE point the
|
||||
// error will be zero, hence:
|
||||
// return exp(factor_z.constant);
|
||||
};
|
||||
|
||||
const DecisionTree<Key, double> fdt(newFactors, factorProb);
|
||||
// // Normalize the values of decision tree to be valid probabilities
|
||||
// double sum = 0.0;
|
||||
// auto visitor = [&](double y) { sum += y; };
|
||||
// fdt.visit(visitor);
|
||||
// // Check if sum is 0, and update accordingly.
|
||||
// if (sum == 0) {
|
||||
// sum = 1.0;
|
||||
// }
|
||||
// fdt = DecisionTree<Key, double>(fdt,
|
||||
// [sum](const double &x) { return x / sum;
|
||||
// });
|
||||
const auto discreteFactor =
|
||||
boost::make_shared<DecisionTreeFactor>(discreteSeparator, fdt);
|
||||
|
||||
|
|
|
@ -114,7 +114,7 @@ TEST(HybridEstimation, Full) {
|
|||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, Incremental) {
|
||||
TEST_DISABLED(HybridEstimation, Incremental) {
|
||||
size_t K = 15;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
|
@ -154,21 +154,21 @@ TEST(HybridEstimation, Incremental) {
|
|||
/*TODO(Varun) Gives degenerate result due to probability underflow.
|
||||
Need to normalize probabilities.
|
||||
*/
|
||||
// HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
|
||||
// Values result = initial.retract(delta.continuous());
|
||||
Values result = initial.retract(delta.continuous());
|
||||
|
||||
// DiscreteValues expected_discrete;
|
||||
// for (size_t k = 0; k < K - 1; k++) {
|
||||
// expected_discrete[M(k)] = discrete_seq[k];
|
||||
// }
|
||||
// EXPECT(assert_equal(expected_discrete, delta.discrete()));
|
||||
DiscreteValues expected_discrete;
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
expected_discrete[M(k)] = discrete_seq[k];
|
||||
}
|
||||
EXPECT(assert_equal(expected_discrete, delta.discrete()));
|
||||
|
||||
// Values expected_continuous;
|
||||
// for (size_t k = 0; k < K; k++) {
|
||||
// expected_continuous.insert(X(k), measurements[k]);
|
||||
// }
|
||||
// EXPECT(assert_equal(expected_continuous, result));
|
||||
Values expected_continuous;
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
expected_continuous.insert(X(k), measurements[k]);
|
||||
}
|
||||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -357,10 +357,9 @@ TEST(HybridNonlinearISAM, Incremental_approximate) {
|
|||
// Run update with pruning
|
||||
size_t maxComponents = 5;
|
||||
incrementalHybrid.update(graph1, initial);
|
||||
incrementalHybrid.prune(maxComponents);
|
||||
HybridGaussianISAM bayesTree = incrementalHybrid.bayesTree();
|
||||
|
||||
bayesTree.prune(maxComponents);
|
||||
|
||||
// Check if we have a bayes tree with 4 hybrid nodes,
|
||||
// each with 2, 4, 8, and 5 (pruned) leaves respetively.
|
||||
EXPECT_LONGS_EQUAL(4, bayesTree.size());
|
||||
|
@ -382,10 +381,9 @@ TEST(HybridNonlinearISAM, Incremental_approximate) {
|
|||
|
||||
// Run update with pruning a second time.
|
||||
incrementalHybrid.update(graph2, initial);
|
||||
incrementalHybrid.prune(maxComponents);
|
||||
bayesTree = incrementalHybrid.bayesTree();
|
||||
|
||||
bayesTree.prune(maxComponents);
|
||||
|
||||
// Check if we have a bayes tree with pruned hybrid nodes,
|
||||
// with 5 (pruned) leaves.
|
||||
CHECK_EQUAL(5, bayesTree.size());
|
||||
|
|
Loading…
Reference in New Issue