Merged two classes

release/4.3a0
dellaert 2016-05-06 09:07:02 -07:00
parent 7769455e63
commit 652242bcaa
3 changed files with 142 additions and 159 deletions

View File

@ -1,24 +1,156 @@
/**
* @file LPInitSolver.h
* @brief This LPInitSolver implements the strategy in Matlab.
* @author Duy Nguyen Ta
* @author Ivan Dario Jimenez
* @date 1/24/16
*/
#pragma once
#include "QPSolver.h"
#include <gtsam_unstable/linear/InfeasibleOrUnboundedProblem.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <CppUnitLite/Test.h>
namespace gtsam {
/**
* Abstract class to solve for an initial value of an LP problem
* This LPInitSolver implements the strategy in Matlab:
* http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9
* Solve for x and y:
* min y
* st Ax = b
* Cx - y <= d
* where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem.
*
* If the solution for this problem {x*,y*} has y* <= 0, we'll have x* a feasible initial point
* of the original problem
* otherwise, if y* > 0 or the problem has no solution, the original problem is infeasible.
*
* The initial value of this initial problem can be found by solving
* min ||x||^2
* s.t. Ax = b
* to have a solution x0
* then y = max_j ( Cj*x0 - dj ) -- due to the constraints y >= Cx - d
*
* WARNING: If some xj in the inequality constraints does not exist in the equality constraints,
* set them as zero for now. If that is the case, the original problem doesn't have a unique
* solution (it could be either infeasible or unbounded).
* So, if the initialization fails because we enforce xj=0 in the problematic
* inequality constraint, we can't conclude that the problem is infeasible.
* However, whether it is infeasible or unbounded, we don't have a unique solution anyway.
*/
class LPInitSolver {
protected:
const LP& lp_;
private:
const LPSolver& lpSolver_;
const LP& lp_;
public:
LPInitSolver(const LPSolver& lpSolver) :
lp_(lpSolver.lp()), lpSolver_(lpSolver) {
lpSolver_(lpSolver), lp_(lpSolver.lp()) {
}
virtual ~LPInitSolver() {
}
virtual VectorValues solve() const {
// Build the graph to solve for the initial value of the initial problem
GaussianFactorGraph::shared_ptr initOfInitGraph = buildInitOfInitGraph();
VectorValues x0 = initOfInitGraph->optimize();
double y0 = compute_y0(x0);
Key yKey = maxKey(lpSolver_.keysDim()) + 1; // the unique key for y0
VectorValues xy0(x0);
xy0.insert(yKey, Vector::Constant(1, y0));
// Formulate and solve the initial LP
LP::shared_ptr initLP = buildInitialLP(yKey);
// solve the initialLP
LPSolver lpSolveInit(*initLP);
VectorValues xyInit = lpSolveInit.optimize(xy0).first;
double yOpt = xyInit.at(yKey)[0];
xyInit.erase(yKey);
if (yOpt > 0)
throw InfeasibleOrUnboundedProblem();
else
return xyInit;
}
private:
/// build initial LP
LP::shared_ptr buildInitialLP(Key yKey) const {
LP::shared_ptr initLP(new LP());
initLP->cost = LinearCost(yKey, I_1x1); // min y
initLP->equalities = lp_.equalities; // st. Ax = b
initLP->inequalities = addSlackVariableToInequalities(yKey,
lp_.inequalities); // Cx-y <= d
return initLP;
}
/// Find the max key in the problem to determine unique keys for additional slack variables
Key maxKey(const KeyDimMap& keysDim) const {
Key maxK = 0;
for (Key key : keysDim | boost::adaptors::map_keys)
if (maxK < key)
maxK = key;
return maxK;
}
/**
* Build the following graph to solve for an initial value of the initial problem
* min ||x||^2 s.t. Ax = b
*/
GaussianFactorGraph::shared_ptr buildInitOfInitGraph() const {
// first add equality constraints Ax = b
GaussianFactorGraph::shared_ptr initGraph(
new GaussianFactorGraph(lp_.equalities));
// create factor ||x||^2 and add to the graph
const KeyDimMap& keysDim = lpSolver_.keysDim();
for (Key key : keysDim | boost::adaptors::map_keys) {
size_t dim = keysDim.at(key);
initGraph->push_back(
JacobianFactor(key, Matrix::Identity(dim, dim), Vector::Zero(dim)));
}
return initGraph;
}
/// y = max_j ( Cj*x0 - dj ) -- due to the inequality constraints y >= Cx - d
double compute_y0(const VectorValues& x0) const {
double y0 = -std::numeric_limits<double>::infinity();
for (const auto& factor : lp_.inequalities) {
double error = factor->error(x0);
if (error > y0)
y0 = error;
}
return y0;
}
/// Collect all terms of a factor into a container.
std::vector<std::pair<Key, Matrix> > collectTerms(
const LinearInequality& factor) const {
std::vector<std::pair<Key, Matrix> > terms;
for (Factor::const_iterator it = factor.begin(); it != factor.end(); it++) {
terms.push_back(make_pair(*it, factor.getA(it)));
}
return terms;
}
/// Turn Cx <= d into Cx - y <= d factors
InequalityFactorGraph addSlackVariableToInequalities(Key yKey,
const InequalityFactorGraph& inequalities) const {
InequalityFactorGraph slackInequalities;
for (const auto& factor : lp_.inequalities) {
std::vector<std::pair<Key, Matrix> > terms = collectTerms(*factor); // Cx
terms.push_back(make_pair(yKey, Matrix::Constant(1, 1, -1.0))); // -y
double d = factor->getb()[0];
slackInequalities.push_back(
LinearInequality(terms, d, factor->dualKey()));
}
return slackInequalities;
}
// friend class for unit-testing private methods
FRIEND_TEST(LPInitSolver, initialization)
;
virtual VectorValues solve() const = 0;
};
}

View File

@ -1,149 +0,0 @@
/**
* @file LPInitSolverMatlab.h
* @brief This LPInitSolver implements the strategy in Matlab:
* @author Ivan Dario Jimenez
* @date 1/24/16
*/
#pragma once
#include <gtsam_unstable/linear/LPInitSolver.h>
#include <gtsam_unstable/linear/InfeasibleOrUnboundedProblem.h>
#include <gtsam_unstable/linear/QPSolver.h>
#include <CppUnitLite/Test.h>
namespace gtsam {
/**
* This LPInitSolver implements the strategy in Matlab:
* http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9
* Solve for x and y:
* min y
* st Ax = b
* Cx - y <= d
* where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem.
*
* If the solution for this problem {x*,y*} has y* <= 0, we'll have x* a feasible initial point
* of the original problem
* otherwise, if y* > 0 or the problem has no solution, the original problem is infeasible.
*
* The initial value of this initial problem can be found by solving
* min ||x||^2
* s.t. Ax = b
* to have a solution x0
* then y = max_j ( Cj*x0 - dj ) -- due to the constraints y >= Cx - d
*
* WARNING: If some xj in the inequality constraints does not exist in the equality constraints,
* set them as zero for now. If that is the case, the original problem doesn't have a unique
* solution (it could be either infeasible or unbounded).
* So, if the initialization fails because we enforce xj=0 in the problematic
* inequality constraint, we can't conclude that the problem is infeasible.
* However, whether it is infeasible or unbounded, we don't have a unique solution anyway.
*/
class LPInitSolverMatlab: public LPInitSolver {
typedef LPInitSolver Base;
public:
LPInitSolverMatlab(const LPSolver& lpSolver) :
Base(lpSolver) {
}
virtual ~LPInitSolverMatlab() {
}
virtual VectorValues solve() const {
// Build the graph to solve for the initial value of the initial problem
GaussianFactorGraph::shared_ptr initOfInitGraph = buildInitOfInitGraph();
VectorValues x0 = initOfInitGraph->optimize();
double y0 = compute_y0(x0);
Key yKey = maxKey(lpSolver_.keysDim()) + 1; // the unique key for y0
VectorValues xy0(x0);
xy0.insert(yKey, Vector::Constant(1, y0));
// Formulate and solve the initial LP
LP::shared_ptr initLP = buildInitialLP(yKey);
// solve the initialLP
LPSolver lpSolveInit(*initLP);
VectorValues xyInit = lpSolveInit.optimize(xy0).first;
double yOpt = xyInit.at(yKey)[0];
xyInit.erase(yKey);
if (yOpt > 0)
throw InfeasibleOrUnboundedProblem();
else
return xyInit;
}
private:
/// build initial LP
LP::shared_ptr buildInitialLP(Key yKey) const {
LP::shared_ptr initLP(new LP());
initLP->cost = LinearCost(yKey, ones(1)); // min y
initLP->equalities = lp_.equalities; // st. Ax = b
initLP->inequalities = addSlackVariableToInequalities(yKey,
lp_.inequalities); // Cx-y <= d
return initLP;
}
/// Find the max key in the problem to determine unique keys for additional slack variables
Key maxKey(const KeyDimMap& keysDim) const {
Key maxK = 0;
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys)
if (maxK < key)
maxK = key;
return maxK;
}
/**
* Build the following graph to solve for an initial value of the initial problem
* min ||x||^2 s.t. Ax = b
*/
GaussianFactorGraph::shared_ptr buildInitOfInitGraph() const {
// first add equality constraints Ax = b
GaussianFactorGraph::shared_ptr initGraph(
new GaussianFactorGraph(lp_.equalities));
// create factor ||x||^2 and add to the graph
const KeyDimMap& keysDim = lpSolver_.keysDim();
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
size_t dim = keysDim.at(key);
initGraph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
}
return initGraph;
}
/// y = max_j ( Cj*x0 - dj ) -- due to the inequality constraints y >= Cx - d
double compute_y0(const VectorValues& x0) const {
double y0 = -std::numeric_limits<double>::infinity();
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) {
double error = factor->error(x0);
if (error > y0)
y0 = error;
}
return y0;
}
/// Collect all terms of a factor into a container.
std::vector<std::pair<Key, Matrix> > collectTerms(
const LinearInequality& factor) const {
std::vector < std::pair<Key, Matrix> > terms;
for (Factor::const_iterator it = factor.begin(); it != factor.end(); it++) {
terms.push_back(make_pair(*it, factor.getA(it)));
}
return terms;
}
/// Turn Cx <= d into Cx - y <= d factors
InequalityFactorGraph addSlackVariableToInequalities(Key yKey,
const InequalityFactorGraph& inequalities) const {
InequalityFactorGraph slackInequalities;
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) {
std::vector<std::pair<Key, Matrix> > terms = collectTerms(*factor); // Cx
terms.push_back(make_pair(yKey, Matrix::Constant(1, 1, -1.0)));// -y
double d = factor->getb()[0];
slackInequalities.push_back(LinearInequality(terms, d, factor->dualKey()));
}
return slackInequalities;
}
// friend class for unit-testing private methods
FRIEND_TEST(LPInitSolverMatlab, initialization);
};
}

View File

@ -61,19 +61,19 @@ public:
/** Construct unary factor */
LinearCost(Key i1, const RowVector& A1) :
Base(i1, A1, zero(1)) {
Base(i1, A1, Vector1::Zero()) {
}
/** Construct binary factor */
LinearCost(Key i1, const RowVector& A1, Key i2, const RowVector& A2,
double b) :
Base(i1, A1, i2, A2, zero(1)) {
Base(i1, A1, i2, A2, Vector1::Zero()) {
}
/** Construct ternary factor */
LinearCost(Key i1, const RowVector& A1, Key i2, const RowVector& A2, Key i3,
const RowVector& A3) :
Base(i1, A1, i2, A2, i3, A3, zero(1)) {
Base(i1, A1, i2, A2, i3, A3, Vector1::Zero()) {
}
/** Construct an n-ary factor
@ -81,7 +81,7 @@ public:
* collection of keys and matrices making up the factor. */
template<typename TERMS>
LinearCost(const TERMS& terms) :
Base(terms, zero(1)) {
Base(terms, Vector1::Zero()) {
}
/** Virtual destructor */