switch from IndexVector to FastVector<size_t> now that pybind/stl.h is enabled
parent
d614fda81f
commit
64c28504ad
|
@ -73,13 +73,10 @@ class GncParams {
|
|||
double weightsTol = 1e-4; ///< If the weights are within weightsTol from being binary, stop iterating (only for TLS)
|
||||
Verbosity verbosity = SILENT; ///< Verbosity level
|
||||
|
||||
//TODO(Varun) replace IndexVector with vector<size_t> once pybind11/stl.h is globally enabled.
|
||||
/// Use IndexVector for inliers and outliers since it is fast + wrapping
|
||||
using IndexVector = FastVector<uint64_t>;
|
||||
///< Slots in the factor graph corresponding to measurements that we know are inliers
|
||||
IndexVector knownInliers = IndexVector();
|
||||
FastVector<size_t> knownInliers;
|
||||
///< Slots in the factor graph corresponding to measurements that we know are outliers
|
||||
IndexVector knownOutliers = IndexVector();
|
||||
FastVector<size_t> knownOutliers;
|
||||
|
||||
/// Set the robust loss function to be used in GNC (chosen among the ones in GncLossType).
|
||||
void setLossType(const GncLossType type) {
|
||||
|
@ -120,7 +117,7 @@ class GncParams {
|
|||
* This functionality is commonly used in SLAM when one may assume the odometry is outlier free, and
|
||||
* only apply GNC to prune outliers from the loop closures.
|
||||
* */
|
||||
void setKnownInliers(const IndexVector& knownIn) {
|
||||
void setKnownInliers(const FastVector<size_t>& knownIn) {
|
||||
for (size_t i = 0; i < knownIn.size(); i++){
|
||||
knownInliers.push_back(knownIn[i]);
|
||||
}
|
||||
|
@ -131,7 +128,7 @@ class GncParams {
|
|||
* corresponds to the slots in the factor graph. For instance, if you have a nonlinear factor graph nfg,
|
||||
* and you provide knownOut = {0, 2, 15}, GNC will not apply outlier rejection to nfg[0], nfg[2], and nfg[15].
|
||||
* */
|
||||
void setKnownOutliers(const IndexVector& knownOut) {
|
||||
void setKnownOutliers(const FastVector<size_t>& knownOut) {
|
||||
for (size_t i = 0; i < knownOut.size(); i++){
|
||||
knownOutliers.push_back(knownOut[i]);
|
||||
}
|
||||
|
|
|
@ -567,7 +567,7 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
FastVector<size_t> knownInliers;
|
||||
knownInliers.push_back(0);
|
||||
knownInliers.push_back(1);
|
||||
knownInliers.push_back(2);
|
||||
|
@ -644,7 +644,7 @@ TEST(GncOptimizer, barcsq) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
FastVector<size_t> knownInliers;
|
||||
knownInliers.push_back(0);
|
||||
knownInliers.push_back(1);
|
||||
knownInliers.push_back(2);
|
||||
|
@ -691,7 +691,7 @@ TEST(GncOptimizer, setInlierCostThresholds) {
|
|||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
FastVector<size_t> knownInliers;
|
||||
knownInliers.push_back(0);
|
||||
knownInliers.push_back(1);
|
||||
knownInliers.push_back(2);
|
||||
|
@ -761,7 +761,7 @@ TEST(GncOptimizer, optimizeSmallPoseGraph) {
|
|||
// GNC
|
||||
// Note: in difficult instances, we set the odometry measurements to be
|
||||
// inliers, but this problem is simple enought to succeed even without that
|
||||
// assumption GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
// assumption;
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(*graph, *initial,
|
||||
gncParams);
|
||||
|
@ -782,12 +782,12 @@ TEST(GncOptimizer, knownInliersAndOutliers) {
|
|||
// nonconvexity with known inliers and known outliers (check early stopping
|
||||
// when all measurements are known to be inliers or outliers)
|
||||
{
|
||||
GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
FastVector<size_t> knownInliers;
|
||||
knownInliers.push_back(0);
|
||||
knownInliers.push_back(1);
|
||||
knownInliers.push_back(2);
|
||||
|
||||
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
|
||||
FastVector<size_t> knownOutliers;
|
||||
knownOutliers.push_back(3);
|
||||
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
|
@ -811,11 +811,11 @@ TEST(GncOptimizer, knownInliersAndOutliers) {
|
|||
|
||||
// nonconvexity with known inliers and known outliers
|
||||
{
|
||||
GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
FastVector<size_t> knownInliers;
|
||||
knownInliers.push_back(2);
|
||||
knownInliers.push_back(0);
|
||||
|
||||
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
|
||||
FastVector<size_t> knownOutliers;
|
||||
knownOutliers.push_back(3);
|
||||
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
|
@ -839,7 +839,7 @@ TEST(GncOptimizer, knownInliersAndOutliers) {
|
|||
|
||||
// only known outliers
|
||||
{
|
||||
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
|
||||
FastVector<size_t> knownOutliers;
|
||||
knownOutliers.push_back(3);
|
||||
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
|
@ -914,11 +914,11 @@ TEST(GncOptimizer, setWeights) {
|
|||
// initialize weights and also set known inliers/outliers
|
||||
{
|
||||
GncParams<GaussNewtonParams> gncParams;
|
||||
GncParams<GaussNewtonParams>::IndexVector knownInliers;
|
||||
FastVector<size_t> knownInliers;
|
||||
knownInliers.push_back(2);
|
||||
knownInliers.push_back(0);
|
||||
|
||||
GncParams<GaussNewtonParams>::IndexVector knownOutliers;
|
||||
FastVector<size_t> knownOutliers;
|
||||
knownOutliers.push_back(3);
|
||||
gncParams.setKnownInliers(knownInliers);
|
||||
gncParams.setKnownOutliers(knownOutliers);
|
||||
|
|
Loading…
Reference in New Issue