Merge pull request #1319 from borglab/hybrid/tests
commit
6466b03b5c
|
@ -103,7 +103,7 @@ bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
|
|||
/* *******************************************************************************/
|
||||
void GaussianMixture::print(const std::string &s,
|
||||
const KeyFormatter &formatter) const {
|
||||
std::cout << s;
|
||||
std::cout << (s.empty() ? "" : s + "\n");
|
||||
if (isContinuous()) std::cout << "Continuous ";
|
||||
if (isDiscrete()) std::cout << "Discrete ";
|
||||
if (isHybrid()) std::cout << "Hybrid ";
|
||||
|
|
|
@ -99,6 +99,7 @@ std::function<double(const Assignment<Key> &, double)> prunerFunc(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// TODO(dellaert): what is this non-const method used for? Abolish it?
|
||||
void HybridBayesNet::updateDiscreteConditionals(
|
||||
const DecisionTreeFactor::shared_ptr &prunedDecisionTree) {
|
||||
KeyVector prunedTreeKeys = prunedDecisionTree->keys();
|
||||
|
@ -107,7 +108,6 @@ void HybridBayesNet::updateDiscreteConditionals(
|
|||
for (size_t i = 0; i < this->size(); i++) {
|
||||
HybridConditional::shared_ptr conditional = this->at(i);
|
||||
if (conditional->isDiscrete()) {
|
||||
// std::cout << demangle(typeid(conditional).name()) << std::endl;
|
||||
auto discrete = conditional->asDiscrete();
|
||||
KeyVector frontals(discrete->frontals().begin(),
|
||||
discrete->frontals().end());
|
||||
|
@ -217,13 +217,18 @@ HybridValues HybridBayesNet::optimize() const {
|
|||
DiscreteValues mpe = DiscreteFactorGraph(discrete_bn).optimize();
|
||||
|
||||
// Given the MPE, compute the optimal continuous values.
|
||||
GaussianBayesNet gbn = choose(mpe);
|
||||
return HybridValues(gbn.optimize(), mpe);
|
||||
return HybridValues(optimize(mpe), mpe);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
|
||||
GaussianBayesNet gbn = choose(assignment);
|
||||
|
||||
// Check if there exists a nullptr in the GaussianBayesNet
|
||||
// If yes, return an empty VectorValues
|
||||
if (std::find(gbn.begin(), gbn.end(), nullptr) != gbn.end()) {
|
||||
return VectorValues();
|
||||
}
|
||||
return gbn.optimize();
|
||||
}
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
* @brief Hybrid Bayes Tree, the result of eliminating a
|
||||
* HybridJunctionTree
|
||||
* @date Mar 11, 2022
|
||||
* @author Fan Jiang
|
||||
* @author Fan Jiang, Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/base/treeTraversal-inst.h>
|
||||
|
@ -73,6 +73,8 @@ struct HybridAssignmentData {
|
|||
GaussianBayesTree::sharedNode parentClique_;
|
||||
// The gaussian bayes tree that will be recursively created.
|
||||
GaussianBayesTree* gaussianbayesTree_;
|
||||
// Flag indicating if all the nodes are valid. Used in optimize().
|
||||
bool valid_;
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Assignment Data object.
|
||||
|
@ -83,10 +85,13 @@ struct HybridAssignmentData {
|
|||
*/
|
||||
HybridAssignmentData(const DiscreteValues& assignment,
|
||||
const GaussianBayesTree::sharedNode& parentClique,
|
||||
GaussianBayesTree* gbt)
|
||||
GaussianBayesTree* gbt, bool valid = true)
|
||||
: assignment_(assignment),
|
||||
parentClique_(parentClique),
|
||||
gaussianbayesTree_(gbt) {}
|
||||
gaussianbayesTree_(gbt),
|
||||
valid_(valid) {}
|
||||
|
||||
bool isValid() const { return valid_; }
|
||||
|
||||
/**
|
||||
* @brief A function used during tree traversal that operates on each node
|
||||
|
@ -101,6 +106,7 @@ struct HybridAssignmentData {
|
|||
HybridAssignmentData& parentData) {
|
||||
// Extract the gaussian conditional from the Hybrid clique
|
||||
HybridConditional::shared_ptr hybrid_conditional = node->conditional();
|
||||
|
||||
GaussianConditional::shared_ptr conditional;
|
||||
if (hybrid_conditional->isHybrid()) {
|
||||
conditional = (*hybrid_conditional->asMixture())(parentData.assignment_);
|
||||
|
@ -111,15 +117,21 @@ struct HybridAssignmentData {
|
|||
conditional = boost::make_shared<GaussianConditional>();
|
||||
}
|
||||
|
||||
// Create the GaussianClique for the current node
|
||||
auto clique = boost::make_shared<GaussianBayesTree::Node>(conditional);
|
||||
// Add the current clique to the GaussianBayesTree.
|
||||
parentData.gaussianbayesTree_->addClique(clique, parentData.parentClique_);
|
||||
GaussianBayesTree::sharedNode clique;
|
||||
if (conditional) {
|
||||
// Create the GaussianClique for the current node
|
||||
clique = boost::make_shared<GaussianBayesTree::Node>(conditional);
|
||||
// Add the current clique to the GaussianBayesTree.
|
||||
parentData.gaussianbayesTree_->addClique(clique,
|
||||
parentData.parentClique_);
|
||||
} else {
|
||||
parentData.valid_ = false;
|
||||
}
|
||||
|
||||
// Create new HybridAssignmentData where the current node is the parent
|
||||
// This will be passed down to the children nodes
|
||||
HybridAssignmentData data(parentData.assignment_, clique,
|
||||
parentData.gaussianbayesTree_);
|
||||
parentData.gaussianbayesTree_, parentData.valid_);
|
||||
return data;
|
||||
}
|
||||
};
|
||||
|
@ -138,6 +150,9 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
|
|||
visitorPost);
|
||||
}
|
||||
|
||||
if (!rootData.isValid()) {
|
||||
return VectorValues();
|
||||
}
|
||||
VectorValues result = gbt.optimize();
|
||||
|
||||
// Return the optimized bayes net result.
|
||||
|
|
|
@ -50,9 +50,12 @@ class GTSAM_EXPORT HybridBayesTreeClique
|
|||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
typedef boost::weak_ptr<This> weak_ptr;
|
||||
HybridBayesTreeClique() {}
|
||||
virtual ~HybridBayesTreeClique() {}
|
||||
HybridBayesTreeClique(const boost::shared_ptr<HybridConditional>& conditional)
|
||||
: Base(conditional) {}
|
||||
///< Copy constructor
|
||||
HybridBayesTreeClique(const HybridBayesTreeClique& clique) : Base(clique) {}
|
||||
|
||||
virtual ~HybridBayesTreeClique() {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Elimination Tree type for Hybrid
|
||||
* Elimination Tree type for Hybrid Factor Graphs.
|
||||
*
|
||||
* @ingroup hybrid
|
||||
*/
|
||||
|
|
|
@ -51,6 +51,8 @@
|
|||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
// #define HYBRID_TIMING
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
template class EliminateableFactorGraph<HybridGaussianFactorGraph>;
|
||||
|
@ -90,7 +92,6 @@ GaussianMixtureFactor::Sum sumFrontals(
|
|||
if (auto cgmf = boost::dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
|
||||
sum = cgmf->add(sum);
|
||||
}
|
||||
|
||||
if (auto gm = boost::dynamic_pointer_cast<HybridConditional>(f)) {
|
||||
sum = gm->asMixture()->add(sum);
|
||||
}
|
||||
|
@ -187,7 +188,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
DiscreteKeys discreteSeparator(discreteSeparatorSet.begin(),
|
||||
discreteSeparatorSet.end());
|
||||
|
||||
// sum out frontals, this is the factor on the separator
|
||||
// sum out frontals, this is the factor 𝜏 on the separator
|
||||
GaussianMixtureFactor::Sum sum = sumFrontals(factors);
|
||||
|
||||
// If a tree leaf contains nullptr,
|
||||
|
@ -214,24 +215,35 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
if (graph.empty()) {
|
||||
return {nullptr, nullptr};
|
||||
}
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
gttic_(hybrid_eliminate);
|
||||
#endif
|
||||
|
||||
std::pair<boost::shared_ptr<GaussianConditional>,
|
||||
boost::shared_ptr<GaussianFactor>>
|
||||
result = EliminatePreferCholesky(graph, frontalKeys);
|
||||
|
||||
if (keysOfEliminated.empty()) {
|
||||
// Initialize the keysOfEliminated to be the keys of the
|
||||
// eliminated GaussianConditional
|
||||
keysOfEliminated = result.first->keys();
|
||||
}
|
||||
if (keysOfSeparator.empty()) {
|
||||
keysOfSeparator = result.second->keys();
|
||||
}
|
||||
// Initialize the keysOfEliminated to be the keys of the
|
||||
// eliminated GaussianConditional
|
||||
keysOfEliminated = result.first->keys();
|
||||
keysOfSeparator = result.second->keys();
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
gttoc_(hybrid_eliminate);
|
||||
#endif
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
// Perform elimination!
|
||||
DecisionTree<Key, EliminationPair> eliminationResults(sum, eliminate);
|
||||
|
||||
#ifdef HYBRID_TIMING
|
||||
tictoc_print_();
|
||||
tictoc_reset_();
|
||||
#endif
|
||||
|
||||
// Separate out decision tree into conditionals and remaining factors.
|
||||
auto pair = unzip(eliminationResults);
|
||||
|
||||
|
@ -245,11 +257,16 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// DiscreteFactor, with the error for each discrete choice.
|
||||
if (keysOfSeparator.empty()) {
|
||||
VectorValues empty_values;
|
||||
auto factorError = [&](const GaussianFactor::shared_ptr &factor) {
|
||||
if (!factor) return 0.0; // TODO(fan): does this make sense?
|
||||
return exp(-factor->error(empty_values));
|
||||
auto factorProb = [&](const GaussianFactor::shared_ptr &factor) {
|
||||
if (!factor) {
|
||||
return 0.0; // If nullptr, return 0.0 probability
|
||||
} else {
|
||||
double error =
|
||||
0.5 * std::abs(factor->augmentedInformation().determinant());
|
||||
return std::exp(-error);
|
||||
}
|
||||
};
|
||||
DecisionTree<Key, double> fdt(separatorFactors, factorError);
|
||||
DecisionTree<Key, double> fdt(separatorFactors, factorProb);
|
||||
|
||||
auto discreteFactor =
|
||||
boost::make_shared<DecisionTreeFactor>(discreteSeparator, fdt);
|
||||
|
@ -327,18 +344,20 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
|
|||
// However this is also the case with iSAM2, so no pressure :)
|
||||
|
||||
// PREPROCESS: Identify the nature of the current elimination
|
||||
std::unordered_map<Key, DiscreteKey> mapFromKeyToDiscreteKey;
|
||||
std::set<DiscreteKey> discreteSeparatorSet;
|
||||
std::set<DiscreteKey> discreteFrontals;
|
||||
|
||||
// First, identify the separator keys, i.e. all keys that are not frontal.
|
||||
KeySet separatorKeys;
|
||||
KeySet allContinuousKeys;
|
||||
KeySet continuousFrontals;
|
||||
KeySet continuousSeparator;
|
||||
|
||||
// This initializes separatorKeys and mapFromKeyToDiscreteKey
|
||||
for (auto &&factor : factors) {
|
||||
separatorKeys.insert(factor->begin(), factor->end());
|
||||
}
|
||||
// remove frontals from separator
|
||||
for (auto &k : frontalKeys) {
|
||||
separatorKeys.erase(k);
|
||||
}
|
||||
|
||||
// Build a map from keys to DiscreteKeys
|
||||
std::unordered_map<Key, DiscreteKey> mapFromKeyToDiscreteKey;
|
||||
for (auto &&factor : factors) {
|
||||
if (!factor->isContinuous()) {
|
||||
for (auto &k : factor->discreteKeys()) {
|
||||
mapFromKeyToDiscreteKey[k.first] = k;
|
||||
|
@ -346,46 +365,50 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
|
|||
}
|
||||
}
|
||||
|
||||
// remove frontals from separator
|
||||
for (auto &k : frontalKeys) {
|
||||
separatorKeys.erase(k);
|
||||
}
|
||||
|
||||
// Fill in discrete frontals and continuous frontals for the end result
|
||||
// Fill in discrete frontals and continuous frontals.
|
||||
std::set<DiscreteKey> discreteFrontals;
|
||||
KeySet continuousFrontals;
|
||||
for (auto &k : frontalKeys) {
|
||||
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
|
||||
discreteFrontals.insert(mapFromKeyToDiscreteKey.at(k));
|
||||
} else {
|
||||
continuousFrontals.insert(k);
|
||||
allContinuousKeys.insert(k);
|
||||
}
|
||||
}
|
||||
|
||||
// Fill in discrete frontals and continuous frontals for the end result
|
||||
// Fill in discrete discrete separator keys and continuous separator keys.
|
||||
std::set<DiscreteKey> discreteSeparatorSet;
|
||||
KeySet continuousSeparator;
|
||||
for (auto &k : separatorKeys) {
|
||||
if (mapFromKeyToDiscreteKey.find(k) != mapFromKeyToDiscreteKey.end()) {
|
||||
discreteSeparatorSet.insert(mapFromKeyToDiscreteKey.at(k));
|
||||
} else {
|
||||
continuousSeparator.insert(k);
|
||||
allContinuousKeys.insert(k);
|
||||
}
|
||||
}
|
||||
|
||||
// Check if we have any continuous keys:
|
||||
const bool discrete_only =
|
||||
continuousFrontals.empty() && continuousSeparator.empty();
|
||||
|
||||
// NOTE: We should really defer the product here because of pruning
|
||||
|
||||
// Case 1: we are only dealing with continuous
|
||||
if (mapFromKeyToDiscreteKey.empty() && !allContinuousKeys.empty()) {
|
||||
return continuousElimination(factors, frontalKeys);
|
||||
}
|
||||
|
||||
// Case 2: we are only dealing with discrete
|
||||
if (allContinuousKeys.empty()) {
|
||||
if (discrete_only) {
|
||||
// Case 1: we are only dealing with discrete
|
||||
return discreteElimination(factors, frontalKeys);
|
||||
} else {
|
||||
// Case 2: we are only dealing with continuous
|
||||
if (mapFromKeyToDiscreteKey.empty()) {
|
||||
return continuousElimination(factors, frontalKeys);
|
||||
} else {
|
||||
// Case 3: We are now in the hybrid land!
|
||||
#ifdef HYBRID_TIMING
|
||||
tictoc_reset_();
|
||||
#endif
|
||||
return hybridElimination(factors, frontalKeys, continuousSeparator,
|
||||
discreteSeparatorSet);
|
||||
}
|
||||
}
|
||||
|
||||
// Case 3: We are now in the hybrid land!
|
||||
return hybridElimination(factors, frontalKeys, continuousSeparator,
|
||||
discreteSeparatorSet);
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
|
@ -51,10 +51,11 @@ class HybridEliminationTree;
|
|||
*/
|
||||
class GTSAM_EXPORT HybridJunctionTree
|
||||
: public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> {
|
||||
|
||||
public:
|
||||
typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>
|
||||
Base; ///< Base class
|
||||
typedef HybridJunctionTree This; ///< This class
|
||||
typedef HybridJunctionTree This; ///< This class
|
||||
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
|
||||
|
||||
/**
|
||||
|
|
|
@ -130,9 +130,11 @@ struct Switching {
|
|||
* @param K The total number of timesteps.
|
||||
* @param between_sigma The stddev between poses.
|
||||
* @param prior_sigma The stddev on priors (also used for measurements).
|
||||
* @param measurements Vector of measurements for each timestep.
|
||||
*/
|
||||
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1,
|
||||
std::vector<double> measurements = {})
|
||||
std::vector<double> measurements = {},
|
||||
std::string discrete_transition_prob = "1/2 3/2")
|
||||
: K(K) {
|
||||
// Create DiscreteKeys for binary K modes.
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
|
@ -147,7 +149,7 @@ struct Switching {
|
|||
}
|
||||
|
||||
// Create hybrid factor graph.
|
||||
// Add a prior on X(1).
|
||||
// Add a prior on X(0).
|
||||
auto prior = boost::make_shared<PriorFactor<double>>(
|
||||
X(0), measurements.at(0), noiseModel::Isotropic::Sigma(1, prior_sigma));
|
||||
nonlinearFactorGraph.push_nonlinear(prior);
|
||||
|
@ -172,7 +174,7 @@ struct Switching {
|
|||
}
|
||||
|
||||
// Add "mode chain"
|
||||
addModeChain(&nonlinearFactorGraph);
|
||||
addModeChain(&nonlinearFactorGraph, discrete_transition_prob);
|
||||
|
||||
// Create the linearization point.
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
|
@ -201,13 +203,14 @@ struct Switching {
|
|||
*
|
||||
* @param fg The nonlinear factor graph to which the mode chain is added.
|
||||
*/
|
||||
void addModeChain(HybridNonlinearFactorGraph *fg) {
|
||||
void addModeChain(HybridNonlinearFactorGraph *fg,
|
||||
std::string discrete_transition_prob = "1/2 3/2") {
|
||||
auto prior = boost::make_shared<DiscreteDistribution>(modes[0], "1/1");
|
||||
fg->push_discrete(prior);
|
||||
for (size_t k = 0; k < K - 2; k++) {
|
||||
auto parents = {modes[k]};
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||
modes[k + 1], parents, "1/2 3/2");
|
||||
modes[k + 1], parents, discrete_transition_prob);
|
||||
fg->push_discrete(conditional);
|
||||
}
|
||||
}
|
||||
|
@ -218,13 +221,14 @@ struct Switching {
|
|||
*
|
||||
* @param fg The gaussian factor graph to which the mode chain is added.
|
||||
*/
|
||||
void addModeChain(HybridGaussianFactorGraph *fg) {
|
||||
void addModeChain(HybridGaussianFactorGraph *fg,
|
||||
std::string discrete_transition_prob = "1/2 3/2") {
|
||||
auto prior = boost::make_shared<DiscreteDistribution>(modes[0], "1/1");
|
||||
fg->push_discrete(prior);
|
||||
for (size_t k = 0; k < K - 2; k++) {
|
||||
auto parents = {modes[k]};
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||
modes[k + 1], parents, "1/2 3/2");
|
||||
modes[k + 1], parents, discrete_transition_prob);
|
||||
fg->push_discrete(conditional);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -203,25 +203,6 @@ TEST(HybridBayesNet, Optimize) {
|
|||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net multifrontal optimize
|
||||
TEST(HybridBayesNet, OptimizeMultifrontal) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesTree::shared_ptr hybridBayesTree =
|
||||
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
|
||||
HybridValues delta = hybridBayesTree->optimize();
|
||||
|
||||
VectorValues expectedValues;
|
||||
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
|
||||
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
|
||||
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
|
||||
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
|
||||
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test bayes net error
|
||||
TEST(HybridBayesNet, Error) {
|
||||
|
|
|
@ -32,6 +32,25 @@ using noiseModel::Isotropic;
|
|||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test multifrontal optimize
|
||||
TEST(HybridBayesTree, OptimizeMultifrontal) {
|
||||
Switching s(4);
|
||||
|
||||
Ordering hybridOrdering = s.linearizedFactorGraph.getHybridOrdering();
|
||||
HybridBayesTree::shared_ptr hybridBayesTree =
|
||||
s.linearizedFactorGraph.eliminateMultifrontal(hybridOrdering);
|
||||
HybridValues delta = hybridBayesTree->optimize();
|
||||
|
||||
VectorValues expectedValues;
|
||||
expectedValues.insert(X(0), -0.999904 * Vector1::Ones());
|
||||
expectedValues.insert(X(1), -0.99029 * Vector1::Ones());
|
||||
expectedValues.insert(X(2), -1.00971 * Vector1::Ones());
|
||||
expectedValues.insert(X(3), -1.0001 * Vector1::Ones());
|
||||
|
||||
EXPECT(assert_equal(expectedValues, delta.continuous(), 1e-5));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test for optimizing a HybridBayesTree with a given assignment.
|
||||
TEST(HybridBayesTree, OptimizeAssignment) {
|
||||
|
@ -105,7 +124,7 @@ TEST(HybridBayesTree, Optimize) {
|
|||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the Gaussian factors, 1 prior on X(1),
|
||||
// Add the Gaussian factors, 1 prior on X(0),
|
||||
// 3 measurements on X(2), X(3), X(4)
|
||||
graph1.push_back(s.linearizedFactorGraph.at(0));
|
||||
for (size_t i = 4; i <= 6; i++) {
|
||||
|
@ -137,6 +156,12 @@ TEST(HybridBayesTree, Optimize) {
|
|||
boost::dynamic_pointer_cast<DecisionTreeFactor>(factor->inner()));
|
||||
}
|
||||
|
||||
// Add the probabilities for each branch
|
||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}, {M(2), 2}};
|
||||
vector<double> probs = {0.012519475, 0.041280228, 0.075018647, 0.081663656,
|
||||
0.037152205, 0.12248971, 0.07349729, 0.08};
|
||||
dfg.emplace_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||
|
||||
DiscreteValues expectedMPE = dfg.optimize();
|
||||
VectorValues expectedValues = hybridBayesNet->optimize(expectedMPE);
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
|
@ -23,6 +24,7 @@
|
|||
#include <gtsam/hybrid/MixtureFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesTree.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
@ -69,15 +71,40 @@ Ordering getOrdering(HybridGaussianFactorGraph& factors,
|
|||
return ordering;
|
||||
}
|
||||
|
||||
TEST(HybridEstimation, Full) {
|
||||
size_t K = 3;
|
||||
std::vector<double> measurements = {0, 1, 2};
|
||||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0};
|
||||
// Switching example of robot moving in 1D
|
||||
// with given measurements and equal mode priors.
|
||||
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
|
||||
HybridGaussianFactorGraph graph = switching.linearizedFactorGraph;
|
||||
|
||||
Ordering hybridOrdering;
|
||||
hybridOrdering += X(0);
|
||||
hybridOrdering += X(1);
|
||||
hybridOrdering += X(2);
|
||||
hybridOrdering += M(0);
|
||||
hybridOrdering += M(1);
|
||||
HybridBayesNet::shared_ptr bayesNet =
|
||||
graph.eliminateSequential(hybridOrdering);
|
||||
|
||||
EXPECT_LONGS_EQUAL(5, bayesNet->size());
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridNonlinearISAM, Incremental) {
|
||||
size_t K = 10;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6};
|
||||
TEST(HybridEstimation, Incremental) {
|
||||
size_t K = 15;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0};
|
||||
Switching switching(K, 1.0, 0.1, measurements);
|
||||
// HybridNonlinearISAM smoother;
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
|
||||
// Switching example of robot moving in 1D with given measurements and equal
|
||||
// mode priors.
|
||||
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
|
||||
HybridSmoother smoother;
|
||||
HybridNonlinearFactorGraph graph;
|
||||
Values initial;
|
||||
|
@ -90,7 +117,6 @@ TEST(HybridNonlinearISAM, Incremental) {
|
|||
HybridGaussianFactorGraph bayesNet;
|
||||
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
std::cout << ">>>>>>>>>>>>>>>>>>> k=" << k << std::endl;
|
||||
// Motion Model
|
||||
graph.push_back(switching.nonlinearFactorGraph.at(k));
|
||||
// Measurement
|
||||
|
@ -105,6 +131,7 @@ TEST(HybridNonlinearISAM, Incremental) {
|
|||
smoother.update(linearized, ordering, 3);
|
||||
graph.resize(0);
|
||||
}
|
||||
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
|
||||
Values result = initial.retract(delta.continuous());
|
||||
|
@ -122,6 +149,333 @@ TEST(HybridNonlinearISAM, Incremental) {
|
|||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief A function to get a specific 1D robot motion problem as a linearized
|
||||
* factor graph. This is the problem P(X|Z, M), i.e. estimating the continuous
|
||||
* positions given the measurements and discrete sequence.
|
||||
*
|
||||
* @param K The number of timesteps.
|
||||
* @param measurements The vector of measurements for each timestep.
|
||||
* @param discrete_seq The discrete sequence governing the motion of the robot.
|
||||
* @param measurement_sigma Noise model sigma for measurements.
|
||||
* @param between_sigma Noise model sigma for the between factor.
|
||||
* @return GaussianFactorGraph::shared_ptr
|
||||
*/
|
||||
GaussianFactorGraph::shared_ptr specificModesFactorGraph(
|
||||
size_t K, const std::vector<double>& measurements,
|
||||
const std::vector<size_t>& discrete_seq, double measurement_sigma = 0.1,
|
||||
double between_sigma = 1.0) {
|
||||
NonlinearFactorGraph graph;
|
||||
Values linearizationPoint;
|
||||
|
||||
// Add measurement factors
|
||||
auto measurement_noise = noiseModel::Isotropic::Sigma(1, measurement_sigma);
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
graph.emplace_shared<PriorFactor<double>>(X(k), measurements.at(k),
|
||||
measurement_noise);
|
||||
linearizationPoint.insert<double>(X(k), static_cast<double>(k + 1));
|
||||
}
|
||||
|
||||
using MotionModel = BetweenFactor<double>;
|
||||
|
||||
// Add "motion models".
|
||||
auto motion_noise_model = noiseModel::Isotropic::Sigma(1, between_sigma);
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
auto motion_model = boost::make_shared<MotionModel>(
|
||||
X(k), X(k + 1), discrete_seq.at(k), motion_noise_model);
|
||||
graph.push_back(motion_model);
|
||||
}
|
||||
GaussianFactorGraph::shared_ptr linear_graph =
|
||||
graph.linearize(linearizationPoint);
|
||||
return linear_graph;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the discrete sequence from the integer `x`.
|
||||
*
|
||||
* @tparam K Template parameter so we can set the correct bitset size.
|
||||
* @param x The integer to convert to a discrete binary sequence.
|
||||
* @return std::vector<size_t>
|
||||
*/
|
||||
template <size_t K>
|
||||
std::vector<size_t> getDiscreteSequence(size_t x) {
|
||||
std::bitset<K - 1> seq = x;
|
||||
std::vector<size_t> discrete_seq(K - 1);
|
||||
for (size_t i = 0; i < K - 1; i++) {
|
||||
// Save to discrete vector in reverse order
|
||||
discrete_seq[K - 2 - i] = seq[i];
|
||||
}
|
||||
return discrete_seq;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Helper method to get the tree of unnormalized probabilities
|
||||
* as per the new elimination scheme.
|
||||
*
|
||||
* @param graph The HybridGaussianFactorGraph to eliminate.
|
||||
* @return AlgebraicDecisionTree<Key>
|
||||
*/
|
||||
AlgebraicDecisionTree<Key> probPrimeTree(
|
||||
const HybridGaussianFactorGraph& graph) {
|
||||
HybridBayesNet::shared_ptr bayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingGraph;
|
||||
Ordering continuous(graph.continuousKeys());
|
||||
std::tie(bayesNet, remainingGraph) =
|
||||
graph.eliminatePartialSequential(continuous);
|
||||
|
||||
auto last_conditional = bayesNet->at(bayesNet->size() - 1);
|
||||
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
|
||||
|
||||
const std::vector<DiscreteValues> assignments =
|
||||
DiscreteValues::CartesianProduct(discrete_keys);
|
||||
|
||||
std::reverse(discrete_keys.begin(), discrete_keys.end());
|
||||
|
||||
vector<VectorValues::shared_ptr> vector_values;
|
||||
for (const DiscreteValues& assignment : assignments) {
|
||||
VectorValues values = bayesNet->optimize(assignment);
|
||||
vector_values.push_back(boost::make_shared<VectorValues>(values));
|
||||
}
|
||||
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
|
||||
vector_values);
|
||||
|
||||
std::vector<double> probPrimes;
|
||||
for (const DiscreteValues& assignment : assignments) {
|
||||
double error = 0.0;
|
||||
VectorValues delta = *delta_tree(assignment);
|
||||
for (auto factor : graph) {
|
||||
if (factor->isHybrid()) {
|
||||
auto f = boost::static_pointer_cast<GaussianMixtureFactor>(factor);
|
||||
error += f->error(delta, assignment);
|
||||
|
||||
} else if (factor->isContinuous()) {
|
||||
auto f = boost::static_pointer_cast<HybridGaussianFactor>(factor);
|
||||
error += f->inner()->error(delta);
|
||||
}
|
||||
}
|
||||
probPrimes.push_back(exp(-error));
|
||||
}
|
||||
AlgebraicDecisionTree<Key> probPrimeTree(discrete_keys, probPrimes);
|
||||
return probPrimeTree;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/**
|
||||
* Test for correctness of different branches of the P'(Continuous | Discrete).
|
||||
* The values should match those of P'(Continuous) for each discrete mode.
|
||||
*/
|
||||
TEST(HybridEstimation, Probability) {
|
||||
constexpr size_t K = 4;
|
||||
std::vector<double> measurements = {0, 1, 2, 2};
|
||||
double between_sigma = 1.0, measurement_sigma = 0.1;
|
||||
|
||||
// Switching example of robot moving in 1D with
|
||||
// given measurements and equal mode priors.
|
||||
Switching switching(K, between_sigma, measurement_sigma, measurements,
|
||||
"1/1 1/1");
|
||||
auto graph = switching.linearizedFactorGraph;
|
||||
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
|
||||
|
||||
HybridBayesNet::shared_ptr bayesNet = graph.eliminateSequential(ordering);
|
||||
auto discreteConditional = bayesNet->atDiscrete(bayesNet->size() - 3);
|
||||
|
||||
HybridValues hybrid_values = bayesNet->optimize();
|
||||
|
||||
// This is the correct sequence as designed
|
||||
DiscreteValues discrete_seq;
|
||||
discrete_seq[M(0)] = 1;
|
||||
discrete_seq[M(1)] = 1;
|
||||
discrete_seq[M(2)] = 0;
|
||||
|
||||
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/**
|
||||
* Test for correctness of different branches of the P'(Continuous | Discrete)
|
||||
* in the multi-frontal setting. The values should match those of P'(Continuous)
|
||||
* for each discrete mode.
|
||||
*/
|
||||
TEST(HybridEstimation, ProbabilityMultifrontal) {
|
||||
constexpr size_t K = 4;
|
||||
std::vector<double> measurements = {0, 1, 2, 2};
|
||||
|
||||
double between_sigma = 1.0, measurement_sigma = 0.1;
|
||||
|
||||
// Switching example of robot moving in 1D with given measurements and equal
|
||||
// mode priors.
|
||||
Switching switching(K, between_sigma, measurement_sigma, measurements,
|
||||
"1/1 1/1");
|
||||
auto graph = switching.linearizedFactorGraph;
|
||||
Ordering ordering = getOrdering(graph, HybridGaussianFactorGraph());
|
||||
|
||||
// Get the tree of unnormalized probabilities for each mode sequence.
|
||||
AlgebraicDecisionTree<Key> expected_probPrimeTree = probPrimeTree(graph);
|
||||
|
||||
// Eliminate continuous
|
||||
Ordering continuous_ordering(graph.continuousKeys());
|
||||
HybridBayesTree::shared_ptr bayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr discreteGraph;
|
||||
std::tie(bayesTree, discreteGraph) =
|
||||
graph.eliminatePartialMultifrontal(continuous_ordering);
|
||||
|
||||
// Get the last continuous conditional which will have all the discrete keys
|
||||
Key last_continuous_key =
|
||||
continuous_ordering.at(continuous_ordering.size() - 1);
|
||||
auto last_conditional = (*bayesTree)[last_continuous_key]->conditional();
|
||||
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
|
||||
|
||||
Ordering discrete(graph.discreteKeys());
|
||||
auto discreteBayesTree =
|
||||
discreteGraph->BaseEliminateable::eliminateMultifrontal(discrete);
|
||||
|
||||
EXPECT_LONGS_EQUAL(1, discreteBayesTree->size());
|
||||
// DiscreteBayesTree should have only 1 clique
|
||||
auto discrete_clique = (*discreteBayesTree)[discrete.at(0)];
|
||||
|
||||
std::set<HybridBayesTreeClique::shared_ptr> clique_set;
|
||||
for (auto node : bayesTree->nodes()) {
|
||||
clique_set.insert(node.second);
|
||||
}
|
||||
|
||||
// Set the root of the bayes tree as the discrete clique
|
||||
for (auto clique : clique_set) {
|
||||
if (clique->conditional()->parents() ==
|
||||
discrete_clique->conditional()->frontals()) {
|
||||
discreteBayesTree->addClique(clique, discrete_clique);
|
||||
|
||||
} else {
|
||||
// Remove the clique from the children of the parents since it will get
|
||||
// added again in addClique.
|
||||
auto clique_it = std::find(clique->parent()->children.begin(),
|
||||
clique->parent()->children.end(), clique);
|
||||
clique->parent()->children.erase(clique_it);
|
||||
discreteBayesTree->addClique(clique, clique->parent());
|
||||
}
|
||||
}
|
||||
|
||||
HybridValues hybrid_values = discreteBayesTree->optimize();
|
||||
|
||||
// This is the correct sequence as designed
|
||||
DiscreteValues discrete_seq;
|
||||
discrete_seq[M(0)] = 1;
|
||||
discrete_seq[M(1)] = 1;
|
||||
discrete_seq[M(2)] = 0;
|
||||
|
||||
EXPECT(assert_equal(discrete_seq, hybrid_values.discrete()));
|
||||
}
|
||||
|
||||
/*********************************************************************************
|
||||
// Create a hybrid nonlinear factor graph f(x0, x1, m0; z0, z1)
|
||||
********************************************************************************/
|
||||
static HybridNonlinearFactorGraph createHybridNonlinearFactorGraph() {
|
||||
HybridNonlinearFactorGraph nfg;
|
||||
|
||||
constexpr double sigma = 0.5; // measurement noise
|
||||
const auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
|
||||
// Add "measurement" factors:
|
||||
nfg.emplace_nonlinear<PriorFactor<double>>(X(0), 0.0, noise_model);
|
||||
nfg.emplace_nonlinear<PriorFactor<double>>(X(1), 1.0, noise_model);
|
||||
|
||||
// Add mixture factor:
|
||||
DiscreteKey m(M(0), 2);
|
||||
const auto zero_motion =
|
||||
boost::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
|
||||
const auto one_motion =
|
||||
boost::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
|
||||
nfg.emplace_hybrid<MixtureFactor>(
|
||||
KeyVector{X(0), X(1)}, DiscreteKeys{m},
|
||||
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
|
||||
|
||||
return nfg;
|
||||
}
|
||||
|
||||
/*********************************************************************************
|
||||
// Create a hybrid nonlinear factor graph f(x0, x1, m0; z0, z1)
|
||||
********************************************************************************/
|
||||
static HybridGaussianFactorGraph::shared_ptr createHybridGaussianFactorGraph() {
|
||||
HybridNonlinearFactorGraph nfg = createHybridNonlinearFactorGraph();
|
||||
|
||||
Values initial;
|
||||
double z0 = 0.0, z1 = 1.0;
|
||||
initial.insert<double>(X(0), z0);
|
||||
initial.insert<double>(X(1), z1);
|
||||
return nfg.linearize(initial);
|
||||
}
|
||||
|
||||
/*********************************************************************************
|
||||
* Do hybrid elimination and do regression test on discrete conditional.
|
||||
********************************************************************************/
|
||||
TEST(HybridEstimation, eliminateSequentialRegression) {
|
||||
// 1. Create the factor graph from the nonlinear factor graph.
|
||||
HybridGaussianFactorGraph::shared_ptr fg = createHybridGaussianFactorGraph();
|
||||
|
||||
// 2. Eliminate into BN
|
||||
const Ordering ordering = fg->getHybridOrdering();
|
||||
HybridBayesNet::shared_ptr bn = fg->eliminateSequential(ordering);
|
||||
// GTSAM_PRINT(*bn);
|
||||
|
||||
// TODO(dellaert): dc should be discrete conditional on m0, but it is an
|
||||
// unnormalized factor? DiscreteKey m(M(0), 2); DiscreteConditional expected(m
|
||||
// % "0.51341712/1"); auto dc = bn->back()->asDiscreteConditional();
|
||||
// EXPECT(assert_equal(expected, *dc, 1e-9));
|
||||
}
|
||||
|
||||
/*********************************************************************************
|
||||
* Test for correctness via sampling.
|
||||
*
|
||||
* Compute the conditional P(x0, m0, x1| z0, z1)
|
||||
* with measurements z0, z1. To do so, we:
|
||||
* 1. Start with the corresponding Factor Graph `FG`.
|
||||
* 2. Eliminate the factor graph into a Bayes Net `BN`.
|
||||
* 3. Sample from the Bayes Net.
|
||||
* 4. Check that the ratio `BN(x)/FG(x) = constant` for all samples `x`.
|
||||
********************************************************************************/
|
||||
TEST(HybridEstimation, CorrectnessViaSampling) {
|
||||
// 1. Create the factor graph from the nonlinear factor graph.
|
||||
HybridGaussianFactorGraph::shared_ptr fg = createHybridGaussianFactorGraph();
|
||||
|
||||
// 2. Eliminate into BN
|
||||
const Ordering ordering = fg->getHybridOrdering();
|
||||
HybridBayesNet::shared_ptr bn = fg->eliminateSequential(ordering);
|
||||
|
||||
// Set up sampling
|
||||
std::mt19937_64 rng(11);
|
||||
|
||||
// 3. Do sampling
|
||||
int num_samples = 10;
|
||||
|
||||
// Functor to compute the ratio between the
|
||||
// Bayes net and the factor graph.
|
||||
auto compute_ratio =
|
||||
[](const HybridBayesNet::shared_ptr& bayesNet,
|
||||
const HybridGaussianFactorGraph::shared_ptr& factorGraph,
|
||||
const HybridValues& sample) -> double {
|
||||
const DiscreteValues assignment = sample.discrete();
|
||||
// Compute in log form for numerical stability
|
||||
double log_ratio = bayesNet->error(sample.continuous(), assignment) -
|
||||
factorGraph->error(sample.continuous(), assignment);
|
||||
double ratio = exp(-log_ratio);
|
||||
return ratio;
|
||||
};
|
||||
|
||||
// The error evaluated by the factor graph and the Bayes net should differ by
|
||||
// the normalizing term computed via the Bayes net determinant.
|
||||
const HybridValues sample = bn->sample(&rng);
|
||||
double ratio = compute_ratio(bn, fg, sample);
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.0, ratio, 1e-9);
|
||||
|
||||
// 4. Check that all samples == constant
|
||||
for (size_t i = 0; i < num_samples; i++) {
|
||||
// Sample from the bayes net
|
||||
const HybridValues sample = bn->sample(&rng);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(ratio, compute_ratio(bn, fg, sample), 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -182,7 +182,9 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
|||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
||||
|
||||
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
// TODO(Varun) Adding extra discrete variable not connected to continuous
|
||||
// variable throws segfault
|
||||
// hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
|
||||
HybridBayesTree::shared_ptr result =
|
||||
hfg.eliminateMultifrontal(hfg.getHybridOrdering());
|
||||
|
@ -569,6 +571,31 @@ TEST(HybridGaussianFactorGraph, ErrorAndProbPrime) {
|
|||
|
||||
HybridGaussianFactorGraph graph = s.linearizedFactorGraph;
|
||||
|
||||
Ordering hybridOrdering = graph.getHybridOrdering();
|
||||
HybridBayesNet::shared_ptr hybridBayesNet =
|
||||
graph.eliminateSequential(hybridOrdering);
|
||||
|
||||
HybridValues delta = hybridBayesNet->optimize();
|
||||
double error = graph.error(delta.continuous(), delta.discrete());
|
||||
|
||||
double expected_error = 0.490243199;
|
||||
// regression
|
||||
EXPECT(assert_equal(expected_error, error, 1e-9));
|
||||
|
||||
double probs = exp(-error);
|
||||
double expected_probs = graph.probPrime(delta.continuous(), delta.discrete());
|
||||
|
||||
// regression
|
||||
EXPECT(assert_equal(expected_probs, probs, 1e-7));
|
||||
}
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test hybrid gaussian factor graph error and unnormalized probabilities
|
||||
TEST(HybridGaussianFactorGraph, ErrorAndProbPrimeTree) {
|
||||
Switching s(3);
|
||||
|
||||
HybridGaussianFactorGraph graph = s.linearizedFactorGraph;
|
||||
|
||||
Ordering hybridOrdering = graph.getHybridOrdering();
|
||||
HybridBayesNet::shared_ptr hybridBayesNet =
|
||||
graph.eliminateSequential(hybridOrdering);
|
||||
|
|
|
@ -164,7 +164,8 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
discrete_ordering += M(0);
|
||||
discrete_ordering += M(1);
|
||||
HybridBayesTree::shared_ptr discreteBayesTree =
|
||||
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering);
|
||||
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
|
||||
discrete_ordering);
|
||||
|
||||
DiscreteValues m00;
|
||||
m00[M(0)] = 0, m00[M(1)] = 0;
|
||||
|
@ -174,12 +175,12 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
|
||||
auto discreteConditional = isam[M(1)]->conditional()->asDiscrete();
|
||||
|
||||
// Test if the probability values are as expected with regression tests.
|
||||
// Test the probability values with regression tests.
|
||||
DiscreteValues assignment;
|
||||
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
|
||||
assignment[M(0)] = 0;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(0)] = 1;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
|
||||
|
@ -192,11 +193,15 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
|
||||
// Check if the clique conditional generated from incremental elimination
|
||||
// matches that of batch elimination.
|
||||
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
|
||||
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
(*expectedChordal)[M(1)]->conditional()->inner());
|
||||
auto expectedChordal =
|
||||
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal();
|
||||
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
isam[M(1)]->conditional()->inner());
|
||||
// Account for the probability terms from evaluating continuous FGs
|
||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||
vector<double> probs = {0.061923317, 0.20415914, 0.18374323, 0.2};
|
||||
auto expectedConditional =
|
||||
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
|
||||
}
|
||||
|
||||
|
|
|
@ -385,11 +385,11 @@ TEST(HybridFactorGraph, Partial_Elimination) {
|
|||
|
||||
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||
|
||||
// Create ordering.
|
||||
// Create ordering of only continuous variables.
|
||||
Ordering ordering;
|
||||
for (size_t k = 0; k < self.K; k++) ordering += X(k);
|
||||
|
||||
// Eliminate partially.
|
||||
// Eliminate partially i.e. only continuous part.
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
|
@ -439,6 +439,7 @@ TEST(HybridFactorGraph, Full_Elimination) {
|
|||
auto df = dynamic_pointer_cast<HybridDiscreteFactor>(factor);
|
||||
discrete_fg.push_back(df->inner());
|
||||
}
|
||||
|
||||
ordering.clear();
|
||||
for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
|
||||
discreteBayesNet =
|
||||
|
@ -586,7 +587,7 @@ factor 6: Discrete [m1 m0]
|
|||
// Expected output for hybridBayesNet.
|
||||
string expected_hybridBayesNet = R"(
|
||||
size: 3
|
||||
factor 0: Hybrid P( x0 | x1 m0)
|
||||
conditional 0: Hybrid P( x0 | x1 m0)
|
||||
Discrete Keys = (m0, 2),
|
||||
Choice(m0)
|
||||
0 Leaf p(x0 | x1)
|
||||
|
@ -601,7 +602,7 @@ factor 0: Hybrid P( x0 | x1 m0)
|
|||
d = [ -9.95037 ]
|
||||
No noise model
|
||||
|
||||
factor 1: Hybrid P( x1 | x2 m0 m1)
|
||||
conditional 1: Hybrid P( x1 | x2 m0 m1)
|
||||
Discrete Keys = (m0, 2), (m1, 2),
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
|
@ -630,7 +631,7 @@ factor 1: Hybrid P( x1 | x2 m0 m1)
|
|||
d = [ -10 ]
|
||||
No noise model
|
||||
|
||||
factor 2: Hybrid P( x2 | m0 m1)
|
||||
conditional 2: Hybrid P( x2 | m0 m1)
|
||||
Discrete Keys = (m0, 2), (m1, 2),
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
|
|
|
@ -152,7 +152,8 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
HybridBayesTree::shared_ptr expectedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
|
||||
std::tie(expectedHybridBayesTree, expectedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
switching.linearizedFactorGraph
|
||||
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
|
||||
|
||||
// The densities on X(1) should be the same
|
||||
auto x0_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
|
@ -181,7 +182,8 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
discrete_ordering += M(0);
|
||||
discrete_ordering += M(1);
|
||||
HybridBayesTree::shared_ptr discreteBayesTree =
|
||||
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering);
|
||||
expectedRemainingGraph->BaseEliminateable::eliminateMultifrontal(
|
||||
discrete_ordering);
|
||||
|
||||
DiscreteValues m00;
|
||||
m00[M(0)] = 0, m00[M(1)] = 0;
|
||||
|
@ -192,12 +194,12 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
auto discreteConditional =
|
||||
bayesTree[M(1)]->conditional()->asDiscrete();
|
||||
|
||||
// Test if the probability values are as expected with regression tests.
|
||||
// Test the probability values with regression tests.
|
||||
DiscreteValues assignment;
|
||||
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, m00_prob, 1e-5));
|
||||
assignment[M(0)] = 0;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
|
||||
EXPECT(assert_equal(0.0619233, (*discreteConditional)(assignment), 1e-5));
|
||||
assignment[M(0)] = 1;
|
||||
assignment[M(1)] = 0;
|
||||
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
|
||||
|
@ -211,10 +213,13 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
|||
// Check if the clique conditional generated from incremental elimination
|
||||
// matches that of batch elimination.
|
||||
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
|
||||
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
(*expectedChordal)[M(1)]->conditional()->inner());
|
||||
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
|
||||
bayesTree[M(1)]->conditional()->inner());
|
||||
// Account for the probability terms from evaluating continuous FGs
|
||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||
vector<double> probs = {0.061923317, 0.20415914, 0.18374323, 0.2};
|
||||
auto expectedConditional =
|
||||
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
|
||||
}
|
||||
|
||||
|
@ -249,7 +254,8 @@ TEST(HybridNonlinearISAM, Approx_inference) {
|
|||
HybridBayesTree::shared_ptr unprunedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph;
|
||||
std::tie(unprunedHybridBayesTree, unprunedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
switching.linearizedFactorGraph
|
||||
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
|
||||
|
||||
size_t maxNrLeaves = 5;
|
||||
incrementalHybrid.update(graph1, initial);
|
||||
|
|
|
@ -31,7 +31,14 @@ namespace gtsam {
|
|||
template <class CONDITIONAL>
|
||||
void BayesNet<CONDITIONAL>::print(const std::string& s,
|
||||
const KeyFormatter& formatter) const {
|
||||
Base::print(s, formatter);
|
||||
std::cout << (s.empty() ? "" : s + " ") << std::endl;
|
||||
std::cout << "size: " << this->size() << std::endl;
|
||||
for (size_t i = 0; i < this->size(); i++) {
|
||||
const auto& conditional = this->at(i);
|
||||
std::stringstream ss;
|
||||
ss << "conditional " << i << ": ";
|
||||
if (conditional) conditional->print(ss.str(), formatter);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -73,7 +73,7 @@ public:
|
|||
/**
|
||||
* @brief Append new keys to the ordering as `ordering += keys`.
|
||||
*
|
||||
* @param key
|
||||
* @param keys The key vector to append to this ordering.
|
||||
* @return The ordering variable with appended keys.
|
||||
*/
|
||||
This& operator+=(KeyVector& keys);
|
||||
|
|
Loading…
Reference in New Issue