Unit test for essential matrix with prototype code, and lyx file with derivatives

release/4.3a0
Frank Dellaert 2013-12-17 05:24:12 +00:00
parent b4139842a1
commit 6459053cf9
3 changed files with 456 additions and 8 deletions

View File

@ -904,14 +904,6 @@
<useDefaultCommand>true</useDefaultCommand> <useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders> <runAllBuilders>true</runAllBuilders>
</target> </target>
<target name="testEssentialMatrix.run" path="build/gtsam/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrix.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> <target name="all" path="build_wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand> <buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments> <buildArguments>-j2</buildArguments>
@ -1916,6 +1908,14 @@
<useDefaultCommand>true</useDefaultCommand> <useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders> <runAllBuilders>true</runAllBuilders>
</target> </target>
<target name="testEssentialMatrix.run" path="build/gtsam/geometry" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testEssentialMatrix.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder"> <target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand> <buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments> <buildArguments>-j2</buildArguments>

120
doc/EssentialMatrix.lyx Normal file
View File

@ -0,0 +1,120 @@
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 11
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1in
\topmargin 1in
\rightmargin 1in
\bottommargin 1in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
Derivative of EssentialMatrix epipolar error.
\end_layout
\begin_layout Standard
With respect to orientation:
\begin_inset Formula
\[
e(\omega)=a^{T}[t]_{\times}Re^{\omega}b=a^{T}Ee^{\omega}b
\]
\end_inset
\begin_inset Formula
\[
\frac{\partial e(\omega)}{\partial v}=a^{T}E[b]_{\times}
\]
\end_inset
\end_layout
\begin_layout Standard
With respect to tangent to sphere:
\begin_inset Formula
\[
e(v)=a^{T}(Bv\times Rb)
\]
\end_inset
\begin_inset Formula
\[
\frac{\partial e(v)}{\partial v}=a^{T}\frac{\partial(Bv\times Rb)}{\partial v}=a^{T}[-Rb]_{\times}B=a^{T}R[-b]_{\times}RB
\]
\end_inset
\begin_inset Formula
\[
(1*3)(3*3)(3*2)
\]
\end_inset
\end_layout
\end_body
\end_document

View File

@ -0,0 +1,328 @@
/*
* @file testEssentialMatrix.cpp
* @brief Test EssentialMatrix class
* @author Frank Dellaert
* @date December 17, 2013
*/
//#include <gtsam/geometry/EssentialMatrix.h>
#include <gtsam/geometry/Sphere2.h>
#include <gtsam/geometry/CalibratedCamera.h>
#include <gtsam/base/Testable.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <boost/assign/std/vector.hpp>
#include <vector>
using namespace std;
using namespace boost::assign;
using namespace gtsam;
/**
* An essential matrix is like a Pose3, except with translation up to scale
* It is named after the 3*3 matrix aEb = [aTb]x aRb from computer vision,
* but here we choose instead to parameterize it as a (Rot3,Sphere2) pair.
* We can then non-linearly optimize immediately on this 5-dimensional manifold.
*/
class EssentialMatrix: public DerivedValue<EssentialMatrix> {
private:
Rot3 aRb_; ///< Rotation between a and b
Sphere2 aTb_; ///< translation direction from a to b
Matrix E_; ///< Essential matrix
/// Static function to convert Point2 to 3D
static Point3 Upgrade(const Point2& p) {
return Point3(p.x(), p.y(), 1);
}
public:
/// Static function to convert Point2 to homogeneous coordinates
static Vector Homogeneous(const Point2& p) {
return Vector(3) << p.x(), p.y(), 1;
}
/// @name Constructors and named constructors
/// @{
/// Construct from rotation and translation
EssentialMatrix(const Rot3& aRb, const Sphere2& aTb) :
aRb_(aRb), aTb_(aTb), E_(aTb_.skew() * aRb_.matrix()) {
}
/// @}
/// @name Value
/// @{
/// Return the dimensionality of the tangent space
virtual size_t dim() const {
return 5;
}
/// Retract delta to manifold
virtual EssentialMatrix retract(const Vector& xi) const {
assert(xi.size()==5);
Vector3 omega(sub(xi, 0, 3));
Vector2 z(sub(xi, 3, 5));
Rot3 R = aRb_.retract(omega);
Sphere2 t = aTb_.retract(z);
return EssentialMatrix(R, t);
}
/// Compute the coordinates in the tangent space
virtual Vector localCoordinates(const EssentialMatrix& value) const {
return Vector(5) << 0, 0, 0, 0, 0;
}
/// @}
/// @name Testable
/// @{
/// print with optional string
void print(const string& s) const {
cout << s;
aRb_.print("R:\n");
aTb_.print("d: ");
}
/// assert equality up to a tolerance
bool equals(const EssentialMatrix& other, double tol) const {
return aRb_.equals(other.aRb_, tol) && aTb_.equals(other.aTb_, tol);
}
/// @}
/// @name Essential matrix methods
/// @{
/// Rotation
const Rot3& rotation() const {
return aRb_;
}
/// Direction
const Sphere2& direction() const {
return aTb_;
}
/// Return 3*3 matrix representation
const Matrix& matrix() const {
return E_;
}
/// epipolar error, algebraic
double error(const Vector& vA, const Vector& vB, //
boost::optional<Matrix&> H = boost::none) const {
if (H) {
H->resize(1, 5);
Matrix HR = vA.transpose() * E_ * skewSymmetric(-vB);
Matrix HD = vA.transpose() * skewSymmetric(-aRb_.matrix() * vB)
* aTb_.getBasis();
*H << HR, HD;
}
return dot(vA, E_ * vB);
}
/// @}
};
/**
* Factor that evaluates epipolar error p'Ep for given essential matrix
*/
class EssentialMatrixFactor: public NoiseModelFactor1<EssentialMatrix> {
Point2 pA_, pB_; ///< Measurements in image A and B
Vector vA_, vB_; ///< Homogeneous versions
typedef NoiseModelFactor1<EssentialMatrix> Base;
public:
/// Constructor
EssentialMatrixFactor(Key key, const Point2& pA, const Point2& pB,
const SharedNoiseModel& model) :
Base(model, key), pA_(pA), pB_(pB), //
vA_(EssentialMatrix::Homogeneous(pA)), //
vB_(EssentialMatrix::Homogeneous(pB)) {
}
/// print
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
Base::print(s);
std::cout << " EssentialMatrixFactor with measurements\n ("
<< pA_.vector().transpose() << ")' and (" << pB_.vector().transpose()
<< ")'" << endl;
}
/// vector of errors returns 1D vector
Vector evaluateError(const EssentialMatrix& E, boost::optional<Matrix&> H =
boost::none) const {
return (Vector(1) << E.error(vA_, vB_, H));
}
};
//*************************************************************************
// Create two cameras and corresponding essential matrix E
Rot3 aRb = Rot3::yaw(M_PI_2);
Point3 aTb(0.1, 0, 0);
Pose3 identity, aPb(aRb, aTb);
typedef CalibratedCamera Cam;
Cam cameraA(identity), cameraB(aPb);
Matrix aEb_matrix = skewSymmetric(aTb.x(), aTb.y(), aTb.z()) * aRb.matrix();
// Create test data, we need at least 5 points
Point3 P[5] = { Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), //
Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5) };
// Project points in both cameras
vector<Point2> pA(5), pB(5);
vector<Point2>::iterator //
it1 = std::transform(P, P + 5, pA.begin(),
boost::bind(&Cam::project, &cameraA, _1, boost::none, boost::none)), //
it2 = std::transform(P, P + 5, pB.begin(),
boost::bind(&Cam::project, &cameraB, _1, boost::none, boost::none));
// Converto to homogenous coordinates
vector<Vector> vA(5), vB(5);
vector<Vector>::iterator //
it3 = std::transform(pA.begin(), pA.end(), vA.begin(),
&EssentialMatrix::Homogeneous), //
it4 = std::transform(pB.begin(), pB.end(), vB.begin(),
&EssentialMatrix::Homogeneous);
//*************************************************************************
TEST (EssentialMatrix, testData) {
// Check E matrix
Matrix expected(3, 3);
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
EXPECT(assert_equal(expected, aEb_matrix));
// Check some projections
EXPECT(assert_equal(Point2(0,0),pA[0]));
EXPECT(assert_equal(Point2(0,0.1),pB[0]));
EXPECT(assert_equal(Point2(0,-1),pA[4]));
EXPECT(assert_equal(Point2(-1,0.2),pB[4]));
// Check homogeneous version
EXPECT(assert_equal((Vector(3) << -1,0.2,1),vB[4]));
// Check epipolar constraint
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, vA[i].transpose() * aEb_matrix * vB[i], 1e-8);
// Check epipolar constraint
EssentialMatrix trueE(aRb, aTb);
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA[i],vB[i]), 1e-8);
}
//*************************************************************************
TEST (EssentialMatrix, equality) {
// EssentialMatrix actual, expected;
// EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, retract1) {
EssentialMatrix expected(aRb.retract((Vector(3) << 0.1, 0, 0)), aTb);
EssentialMatrix trueE(aRb, aTb);
EssentialMatrix actual = trueE.retract((Vector(5) << 0.1, 0, 0, 0, 0));
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, retract2) {
EssentialMatrix expected(aRb, Sphere2(aTb).retract((Vector(2) << 0.1, 0)));
EssentialMatrix trueE(aRb, aTb);
EssentialMatrix actual = trueE.retract((Vector(5) << 0, 0, 0, 0.1, 0));
EXPECT(assert_equal(expected, actual));
}
//*************************************************************************
TEST (EssentialMatrix, factor) {
EssentialMatrix trueE(aRb, aTb);
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(1);
for (size_t i = 0; i < 5; i++) {
EssentialMatrixFactor factor(1, pA[i], pB[i], model);
// Check evaluation
Vector expected(1);
expected << 0;
Matrix HActual;
Vector actual = factor.evaluateError(trueE, HActual);
EXPECT(assert_equal(expected, actual, 1e-8));
// Use numerical derivatives to calculate the expected Jacobian
Matrix HExpected;
HExpected = numericalDerivative11<EssentialMatrix>(
boost::bind(&EssentialMatrixFactor::evaluateError, &factor, _1,
boost::none), trueE);
// Verify the Jacobian is correct
CHECK(assert_equal(HExpected, HActual, 1e-9));
}
}
//*************************************************************************
TEST (EssentialMatrix, fromConstraints) {
// Here we want to optimize directly on essential matrix constraints
// Yi Ma's algorithm (Ma01ijcv) is a bit cumbersome to implement,
// but GTSAM does the equivalent anyway, provided we give the right
// factors. In this case, the factors are the constraints.
// We start with a factor graph and add constraints to it
// Noise sigma is 1cm, assuming metric measurements
NonlinearFactorGraph graph;
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(1,0.01);
for (size_t i = 0; i < 5; i++)
graph.add(EssentialMatrixFactor(1, pA[i], pB[i], model));
// Check error at ground truth
Values truth;
EssentialMatrix trueE(aRb, aTb);
truth.insert(1, trueE);
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Check error at initial estimate
Values initial;
EssentialMatrix initialE = trueE.retract((Vector(5) << 0.1, -0.1, 0.1, 0.1, -0.1));
initial.insert(1, initialE);
EXPECT_DOUBLES_EQUAL(640, graph.error(initial), 1e-2);
// Optimize
LevenbergMarquardtParams parameters;
LevenbergMarquardtOptimizer optimizer(graph, initial, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(1);
EXPECT(assert_equal(trueE, actual,1e-1));
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
// Check errors individually
for (size_t i = 0; i < 5; i++)
EXPECT_DOUBLES_EQUAL(0, actual.error(vA[i],vB[i]), 1e-6);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */