Self-calibration example with GeneralSMFactor, compiles but throws an exception
parent
d0cc7fbccc
commit
642e486ba9
|
@ -0,0 +1,92 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SelfCalibrationExample.cpp
|
||||
* @brief Based on VisualSLAMExample, but with unknown (yet fixed) calibration.
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
/*
|
||||
* See the detailed documentation in Visual SLAM.
|
||||
* The only documentation below with deal with the self-calibration.
|
||||
*/
|
||||
|
||||
// For loading the data
|
||||
#include "visualSLAMdata.h"
|
||||
|
||||
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
// Inference and optimization
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/DoglegOptimizer.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// SFM-specific factors
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h> // does calibration !
|
||||
|
||||
// Standard headers
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
// Create the set of ground-truth
|
||||
std::vector<gtsam::Point3> points = createPoints();
|
||||
std::vector<gtsam::Pose3> poses = createPoses();
|
||||
|
||||
// Create the factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Add a prior on pose x1.
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(Vector_(6, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1)); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise)); // add directly to graph
|
||||
|
||||
// Simulated measurements from each camera pose, adding them to the factor graph
|
||||
Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
SimpleCamera camera(poses[i], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
// The only real difference with the Visual SLAM example is that here we use a
|
||||
// different factor type, that also calculates the Jacobian with respect to calibration
|
||||
graph.push_back(GeneralSFMFactor2<Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0)));
|
||||
}
|
||||
}
|
||||
|
||||
// Add a prior on the position of the first landmark.
|
||||
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
// Including an estimate on the camera calibration parameters
|
||||
Values initialEstimate;
|
||||
initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
|
||||
|
||||
/* Optimize the graph and print results */
|
||||
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
|
||||
result.print("Final results:\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
Loading…
Reference in New Issue