From 6365dbaba58bcfb59011af3334543417ec94d915 Mon Sep 17 00:00:00 2001 From: dellaert Date: Sun, 22 Feb 2015 14:03:13 +0100 Subject: [PATCH] Moved from smartfactors_ceres --- timing/DummyFactor.h | 56 +++++++++++++ timing/timeSchurFactors.cpp | 152 ++++++++++++++++++++++++++++++++++++ 2 files changed, 208 insertions(+) create mode 100644 timing/DummyFactor.h create mode 100644 timing/timeSchurFactors.cpp diff --git a/timing/DummyFactor.h b/timing/DummyFactor.h new file mode 100644 index 000000000..ff9732909 --- /dev/null +++ b/timing/DummyFactor.h @@ -0,0 +1,56 @@ +/** + * @file DummyFactor.h + * @brief Just to help in timing overhead + * @author Frank Dellaert + */ + +#pragma once + +#include + +namespace gtsam { + +/** + * DummyFactor + */ +template // +class DummyFactor: public RegularImplicitSchurFactor { + +public: + + typedef Eigen::Matrix Matrix2D; + typedef std::pair KeyMatrix2D; + + DummyFactor() { + } + + DummyFactor(const std::vector& Fblocks, const Matrix& E, + const Matrix3& P, const Vector& b) :RegularImplicitSchurFactor(Fblocks,E,P,b) + { + } + + virtual ~DummyFactor() { + } + +public: + + /** + * @brief Dummy version to measure overhead of key access + */ + void multiplyHessian(double alpha, const VectorValues& x, + VectorValues& y) const { + + BOOST_FOREACH(const KeyMatrix2D& Fi, this->Fblocks_) { + static const Vector empty; + Key key = Fi.first; + std::pair it = y.tryInsert(key, empty); + Vector& yi = it.first->second; + yi = x.at(key); + } + } + +}; +// DummyFactor + +} + diff --git a/timing/timeSchurFactors.cpp b/timing/timeSchurFactors.cpp new file mode 100644 index 000000000..06a526567 --- /dev/null +++ b/timing/timeSchurFactors.cpp @@ -0,0 +1,152 @@ +/** + * @file timeSchurFactors.cpp + * @brief Time various Schur-complement Jacobian factors + * @author Frank Dellaert + * @date Oct 27, 2013 + */ + +#include "DummyFactor.h" +#include + +#include +#include "gtsam/slam/JacobianFactorQR.h" +#include + +#include +#include +#include + +using namespace std; +using namespace boost::assign; +using namespace gtsam; + +#define SLOW +#define RAW +#define HESSIAN +#define NUM_ITERATIONS 1000 + +// Create CSV file for results +ofstream os("timeSchurFactors.csv"); + +/*************************************************************************************/ +template +void timeAll(size_t m, size_t N) { + + cout << m << endl; + + // create F + typedef Eigen::Matrix Matrix2D; + typedef pair KeyMatrix2D; + vector < pair > Fblocks; + for (size_t i = 0; i < m; i++) + Fblocks.push_back(KeyMatrix2D(i, (i + 1) * Matrix::Ones(2, D))); + + // create E + Matrix E(2 * m, 3); + for (size_t i = 0; i < m; i++) + E.block < 2, 3 > (2 * i, 0) = Matrix::Ones(2, 3); + + // Calculate point covariance + Matrix P = (E.transpose() * E).inverse(); + + // RHS and sigmas + const Vector b = gtsam::repeat(2 * m, 1); + const SharedDiagonal model; + + // parameters for multiplyHessianAdd + double alpha = 0.5; + VectorValues xvalues, yvalues; + for (size_t i = 0; i < m; i++) + xvalues.insert(i, gtsam::repeat(D, 2)); + + // Implicit + RegularImplicitSchurFactor implicitFactor(Fblocks, E, P, b); + // JacobianFactor with same error + JacobianFactorQ jf(Fblocks, E, P, b, model); + // JacobianFactorQR with same error + JacobianFactorQR jqr(Fblocks, E, P, b, model); + // Hessian + HessianFactor hessianFactor(jqr); + +#define TIME(label,factor,xx,yy) {\ + for (size_t t = 0; t < N; t++) \ + factor.multiplyHessianAdd(alpha, xx, yy);\ + gttic_(label);\ + for (size_t t = 0; t < N; t++) {\ + factor.multiplyHessianAdd(alpha, xx, yy);\ + }\ + gttoc_(label);\ + tictoc_getNode(timer, label)\ + os << timer->secs()/NUM_ITERATIONS << ", ";\ + } + +#ifdef SLOW + TIME(Implicit, implicitFactor, xvalues, yvalues) + TIME(Jacobian, jf, xvalues, yvalues) + TIME(JacobianQR, jqr, xvalues, yvalues) +#endif + +#ifdef HESSIAN + TIME(Hessian, hessianFactor, xvalues, yvalues) +#endif + +#ifdef OVERHEAD + DummyFactor dummy(Fblocks, E, P, b); + TIME(Overhead,dummy,xvalues,yvalues) +#endif + +#ifdef RAW + { // Raw memory Version + FastVector < Key > keys; + for (size_t i = 0; i < m; i++) + keys += i; + Vector x = xvalues.vector(keys); + double* xdata = x.data(); + + // create a y + Vector y = zero(m * D); + TIME(RawImplicit, implicitFactor, xdata, y.data()) + TIME(RawJacobianQ, jf, xdata, y.data()) + TIME(RawJacobianQR, jqr, xdata, y.data()) + } +#endif + + os << m << endl; + +} // timeAll + +/*************************************************************************************/ +int main(void) { +#ifdef SLOW + os << "Implicit,"; + os << "JacobianQ,"; + os << "JacobianQR,"; +#endif +#ifdef HESSIAN + os << "Hessian,"; +#endif +#ifdef OVERHEAD + os << "Overhead,"; +#endif +#ifdef RAW + os << "RawImplicit,"; + os << "RawJacobianQ,"; + os << "RawJacobianQR,"; +#endif + os << "m" << endl; + // define images + vector < size_t > ms; + // ms += 2; + // ms += 3, 4, 5, 6, 7, 8, 9, 10; + // ms += 11,12,13,14,15,16,17,18,19; + // ms += 20, 30, 40, 50; + // ms += 20,30,40,50,60,70,80,90,100; + for (size_t m = 2; m <= 50; m += 2) + ms += m; + //for (size_t m=10;m<=100;m+=10) ms += m; + // loop over number of images + BOOST_FOREACH(size_t m,ms) + timeAll<6>(m, NUM_ITERATIONS); +} + +//*************************************************************************************