Rot2::vec, Rot3::vec, Pose2::vec, Pose3::vec
parent
6d47bd4552
commit
63257bcf19
|
@ -323,6 +323,32 @@ double Pose2::range(const Pose2& pose,
|
|||
return r;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Compute vectorized Lie algebra generators for SE(2)
|
||||
static Matrix93 VectorizedGenerators() {
|
||||
Matrix93 G;
|
||||
for (size_t j = 0; j < 3; j++) {
|
||||
const Matrix3 X = Pose2::Hat(Vector::Unit(3, j));
|
||||
G.col(j) = Eigen::Map<const Vector9>(X.data());
|
||||
}
|
||||
return G;
|
||||
}
|
||||
|
||||
Vector9 Pose2::vec(OptionalJacobian<9, 3> H) const {
|
||||
// Vectorize
|
||||
const Matrix3 M = matrix();
|
||||
const Vector9 X = Eigen::Map<const Vector9>(M.data());
|
||||
|
||||
// If requested, calculate H as (I_3 \oplus M) * G.
|
||||
if (H) {
|
||||
static const Matrix93 G = VectorizedGenerators(); // static to compute only once
|
||||
for (size_t i = 0; i < 3; i++)
|
||||
H->block(i * 3, 0, 3, dimension) = M * G.block(i * 3, 0, 3, dimension);
|
||||
}
|
||||
|
||||
return X;
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
* Align finds the angle using a linear method:
|
||||
* a = Pose2::transformFrom(b) = t + R*b
|
||||
|
|
|
@ -328,6 +328,9 @@ public:
|
|||
*/
|
||||
static std::pair<size_t, size_t> rotationInterval() { return {2, 2}; }
|
||||
|
||||
/// Return vectorized SE(2) matrix in column order.
|
||||
Vector9 vec(OptionalJacobian<9, 3> H = {}) const;
|
||||
|
||||
/// Output stream operator
|
||||
GTSAM_EXPORT
|
||||
friend std::ostream &operator<<(std::ostream &os, const Pose2& p);
|
||||
|
|
|
@ -534,6 +534,34 @@ Pose3 Pose3::slerp(double t, const Pose3& other, OptionalJacobian<6, 6> Hx, Opti
|
|||
return interpolate(*this, other, t, Hx, Hy);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Compute vectorized Lie algebra generators for SE(3)
|
||||
using Matrix16x6 = Eigen::Matrix<double, 16, 6>;
|
||||
using Vector16 = Eigen::Matrix<double, 16, 1>;
|
||||
static Matrix16x6 VectorizedGenerators() {
|
||||
Matrix16x6 G;
|
||||
for (size_t j = 0; j < 6; j++) {
|
||||
const Matrix4 X = Pose3::Hat(Vector::Unit(6, j));
|
||||
G.col(j) = Eigen::Map<const Vector16>(X.data());
|
||||
}
|
||||
return G;
|
||||
}
|
||||
|
||||
Vector Pose3::vec(OptionalJacobian<16, 6> H) const {
|
||||
// Vectorize
|
||||
const Matrix4 M = matrix();
|
||||
const Vector X = Eigen::Map<const Vector16>(M.data());
|
||||
|
||||
// If requested, calculate H as (I_4 \oplus M) * G.
|
||||
if (H) {
|
||||
static const Matrix16x6 G = VectorizedGenerators(); // static to compute only once
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
H->block(i * 4, 0, 4, dimension) = M * G.block(i * 4, 0, 4, dimension);
|
||||
}
|
||||
|
||||
return X;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::ostream &operator<<(std::ostream &os, const Pose3& pose) {
|
||||
// Both Rot3 and Point3 have ostream definitions so we use them.
|
||||
|
|
|
@ -392,6 +392,9 @@ public:
|
|||
Pose3 slerp(double t, const Pose3& other, OptionalJacobian<6, 6> Hx = {},
|
||||
OptionalJacobian<6, 6> Hy = {}) const;
|
||||
|
||||
/// Return vectorized SE(3) matrix in column order.
|
||||
Vector vec(OptionalJacobian<16, 6> H = {}) const;
|
||||
|
||||
/// Output stream operator
|
||||
GTSAM_EXPORT
|
||||
friend std::ostream &operator<<(std::ostream &os, const Pose3& p);
|
||||
|
|
|
@ -157,6 +157,22 @@ Rot2 Rot2::ClosestTo(const Matrix2& M) {
|
|||
return Rot2::fromCosSin(c, s);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector4 Rot2::vec(OptionalJacobian<4, 1> H) const {
|
||||
// Vectorize
|
||||
const Matrix2 M = matrix();
|
||||
const Vector4 X = Eigen::Map<const Vector4>(M.data());
|
||||
|
||||
// If requested, calculate H as (I_3 \oplus M) * G.
|
||||
if (H) {
|
||||
static const Matrix41 G = (Matrix41() << 0, 1, -1, 0).finished();
|
||||
for (size_t i = 0; i < 2; i++)
|
||||
H->block(i * 2, 0, 2, dimension) = M * G.block(i * 2, 0, 2, dimension);
|
||||
}
|
||||
|
||||
return X;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
} // gtsam
|
||||
|
|
|
@ -223,6 +223,9 @@ namespace gtsam {
|
|||
/** Find closest valid rotation matrix, given a 2x2 matrix */
|
||||
static Rot2 ClosestTo(const Matrix2& M);
|
||||
|
||||
/// Return vectorized SO(2) matrix in column order.
|
||||
Vector4 vec(OptionalJacobian<4, 1> H = {}) const;
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
|
|
@ -146,6 +146,7 @@ Point3 Rot3::unrotate(const Point3& p, OptionalJacobian<3,3> H1,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V43
|
||||
Point3 Rot3::column(int index) const{
|
||||
if(index == 3)
|
||||
return r3();
|
||||
|
@ -156,6 +157,7 @@ Point3 Rot3::column(int index) const{
|
|||
else
|
||||
throw invalid_argument("Argument to Rot3::column must be 1, 2, or 3");
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector3 Rot3::xyz(OptionalJacobian<3, 3> H) const {
|
||||
|
|
|
@ -459,9 +459,6 @@ class GTSAM_EXPORT Rot3 : public LieGroup<Rot3, 3> {
|
|||
*/
|
||||
Matrix3 transpose() const;
|
||||
|
||||
/// @deprecated, this is base 1, and was just confusing
|
||||
Point3 column(int index) const;
|
||||
|
||||
Point3 r1() const; ///< first column
|
||||
Point3 r2() const; ///< second column
|
||||
Point3 r3() const; ///< third column
|
||||
|
@ -530,14 +527,26 @@ class GTSAM_EXPORT Rot3 : public LieGroup<Rot3, 3> {
|
|||
/**
|
||||
* @brief Spherical Linear intERPolation between *this and other
|
||||
* @param t a value between 0 and 1
|
||||
* @param other final point of iterpolation geodesic on manifold
|
||||
* @param other final point of interpolation geodesic on manifold
|
||||
*/
|
||||
Rot3 slerp(double t, const Rot3& other) const;
|
||||
|
||||
/// Vee maps from Lie algebra to tangent vector
|
||||
inline Vector9 vec(OptionalJacobian<9, 3> H = {}) const { return SO3(matrix()).vec(H); }
|
||||
|
||||
/// Output stream operator
|
||||
GTSAM_EXPORT friend std::ostream &operator<<(std::ostream &os, const Rot3& p);
|
||||
|
||||
/// @}
|
||||
/// @name deprecated
|
||||
/// @{
|
||||
|
||||
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V43
|
||||
/// @deprecated, this is base 1, and was just confusing
|
||||
Point3 column(int index) const;
|
||||
#endif
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
#if GTSAM_ENABLE_BOOST_SERIALIZATION
|
||||
|
|
|
@ -958,6 +958,23 @@ TEST(Pose2, Print) {
|
|||
EXPECT(assert_print_equal(expected2, pose, s));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose2, vec) {
|
||||
// Test a simple pose
|
||||
Pose2 pose(Rot2::fromAngle(M_PI / 4), Point2(1, 2));
|
||||
|
||||
// Test the 'vec' method
|
||||
Vector9 expected_vec = Eigen::Map<Vector9>(pose.matrix().data());
|
||||
Matrix93 actualH;
|
||||
Vector9 actual_vec = pose.vec(actualH);
|
||||
EXPECT(assert_equal(expected_vec, actual_vec));
|
||||
|
||||
// Verify Jacobian with numerical derivatives
|
||||
std::function<Vector9(const Pose2&)> f = [](const Pose2& p) { return p.vec(); };
|
||||
Matrix93 numericalH = numericalDerivative11<Vector9, Pose2>(f, pose);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -1401,6 +1401,21 @@ TEST(Pose3, ExpmapChainRule) {
|
|||
EXPECT(assert_equal<Matrix6>(expected2, analytic, 1e-5)); // note tolerance
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Pose3, vec) {
|
||||
// Test the 'vec' method
|
||||
using Vector16 = Eigen::Matrix<double, 16, 1>;
|
||||
Vector16 expected_vec = Eigen::Map<Vector16>(T.matrix().data());
|
||||
Matrix actualH;
|
||||
Vector16 actual_vec = T.vec(actualH);
|
||||
EXPECT(assert_equal(expected_vec, actual_vec));
|
||||
|
||||
// Verify Jacobian with numerical derivatives
|
||||
std::function<Vector16(const Pose3&)> f = [](const Pose3& p) { return p.vec(); };
|
||||
Matrix numericalH = numericalDerivative11<Vector16, Pose3>(f, T);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -174,6 +174,20 @@ TEST( Rot2, relativeBearing )
|
|||
CHECK(assert_equal(expectedH,actualH));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(Rot2, vec) {
|
||||
// Test the 'vec' method
|
||||
Vector4 expected_vec = Eigen::Map<Vector4>(R.matrix().data());
|
||||
Matrix41 actualH;
|
||||
Vector4 actual_vec = R.vec(actualH);
|
||||
EXPECT(assert_equal(expected_vec, actual_vec));
|
||||
|
||||
// Verify Jacobian with numerical derivatives
|
||||
std::function<Vector4(const Rot2&)> f = [](const Rot2& p) { return p.vec(); };
|
||||
Matrix41 numericalH = numericalDerivative11<Vector4, Rot2>(f, R);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
namespace {
|
||||
Rot2 id;
|
||||
|
|
Loading…
Reference in New Issue