Add explicit HMM example
parent
33f0457298
commit
621e79f06c
|
@ -18,6 +18,7 @@
|
|||
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||
#include <gtsam/inference/BayesNet-inst.h>
|
||||
|
||||
#include <iomanip>
|
||||
|
||||
|
|
|
@ -0,0 +1,94 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file DiscreteBayesNetExample.cpp
|
||||
* @brief Hidden Markov Model example, discrete.
|
||||
* @author Frank Dellaert
|
||||
* @date July 12, 2020
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteMarginals.h>
|
||||
#include <gtsam/inference/BayesNet-inst.h>
|
||||
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
const int nrNodes = 4;
|
||||
const size_t nrStates = 3;
|
||||
|
||||
// Define variables as well as ordering
|
||||
Ordering ordering;
|
||||
vector<DiscreteKey> keys;
|
||||
for (int k = 0; k < nrNodes; k++) {
|
||||
DiscreteKey key_i(k, nrStates);
|
||||
keys.push_back(key_i);
|
||||
ordering.emplace_back(k);
|
||||
}
|
||||
|
||||
// Create HMM as a DiscreteBayesNet
|
||||
DiscreteBayesNet hmm;
|
||||
|
||||
// Define backbone
|
||||
const string transition = "8/1/1 1/8/1 1/1/8";
|
||||
for (int k = 1; k < nrNodes; k++) {
|
||||
hmm.add(keys[k] | keys[k - 1] = transition);
|
||||
}
|
||||
|
||||
// Add some measurements, not needed for all time steps!
|
||||
hmm.add(keys[0] % "7/2/1");
|
||||
hmm.add(keys[1] % "1/9/0");
|
||||
hmm.add(keys.back() % "5/4/1");
|
||||
|
||||
// print
|
||||
hmm.print("HMM");
|
||||
|
||||
// Convert to factor graph
|
||||
DiscreteFactorGraph factorGraph(hmm);
|
||||
|
||||
// Create solver and eliminate
|
||||
// This will create a DAG ordered with arrow of time reversed
|
||||
DiscreteBayesNet::shared_ptr chordal =
|
||||
factorGraph.eliminateSequential(ordering);
|
||||
chordal->print("Eliminated");
|
||||
|
||||
// solve
|
||||
DiscreteFactor::sharedValues mpe = chordal->optimize();
|
||||
GTSAM_PRINT(*mpe);
|
||||
|
||||
// We can also sample from it
|
||||
cout << "\n10 samples:" << endl;
|
||||
for (size_t k = 0; k < 10; k++) {
|
||||
DiscreteFactor::sharedValues sample = chordal->sample();
|
||||
GTSAM_PRINT(*sample);
|
||||
}
|
||||
|
||||
// Or compute the marginals. This re-eliminates the FG into a Bayes tree
|
||||
cout << "\nComputing Node Marginals .." << endl;
|
||||
DiscreteMarginals marginals(factorGraph);
|
||||
for (int k = 0; k < nrNodes; k++) {
|
||||
Vector margProbs = marginals.marginalProbabilities(keys[k]);
|
||||
stringstream ss;
|
||||
ss << "marginal " << k;
|
||||
print(margProbs, ss.str());
|
||||
}
|
||||
|
||||
// TODO(frank): put in the glue to have DiscreteMarginals produce *arbitrary*
|
||||
// joints efficiently, by the Bayes tree shortcut magic. All the code is there
|
||||
// but it's not yet connected.
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue