temporarily revive the old VisualISAMExample
							parent
							
								
									43fb6b76e9
								
							
						
					
					
						commit
						61e95f4ace
					
				| 
						 | 
					@ -0,0 +1,110 @@
 | 
				
			||||||
 | 
					%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
				
			||||||
 | 
					% GTSAM Copyright 3510, Georgia Tech Research Corporation, 
 | 
				
			||||||
 | 
					% Atlanta, Georgia 30332-0415
 | 
				
			||||||
 | 
					% All Rights Reserved
 | 
				
			||||||
 | 
					% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
				
			||||||
 | 
					% 
 | 
				
			||||||
 | 
					% See LICENSE for the license information
 | 
				
			||||||
 | 
					%
 | 
				
			||||||
 | 
					% @brief A simple visual SLAM example for structure from motion
 | 
				
			||||||
 | 
					% @author Duy-Nguyen Ta
 | 
				
			||||||
 | 
					%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Create a triangle target, just 3 points on a plane
 | 
				
			||||||
 | 
					nPoints = 3;
 | 
				
			||||||
 | 
					r = 10;
 | 
				
			||||||
 | 
					points = {};
 | 
				
			||||||
 | 
					for j=1:nPoints
 | 
				
			||||||
 | 
					    theta = (j-1)*2*pi/nPoints;
 | 
				
			||||||
 | 
					    points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Create camera cameras on a circle around the triangle
 | 
				
			||||||
 | 
					nCameras = 30;
 | 
				
			||||||
 | 
					height = 10;
 | 
				
			||||||
 | 
					r = 30;
 | 
				
			||||||
 | 
					cameras = {};
 | 
				
			||||||
 | 
					K = gtsamCal3_S2(500,500,0,640/2,480/2);
 | 
				
			||||||
 | 
					for i=1:nCameras
 | 
				
			||||||
 | 
					    theta = (i-1)*2*pi/nCameras;
 | 
				
			||||||
 | 
					    t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
 | 
				
			||||||
 | 
					    cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
 | 
					odometry = cameras{1}.pose.between(cameras{2}.pose);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.5 0.5 0.5]');
 | 
				
			||||||
 | 
					pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
 | 
				
			||||||
 | 
					measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Create an ISAM object for inference
 | 
				
			||||||
 | 
					isam = visualSLAMISAM(5);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					%% Update ISAM
 | 
				
			||||||
 | 
					newFactors = visualSLAMGraph;
 | 
				
			||||||
 | 
					initialEstimates = visualSLAMValues;
 | 
				
			||||||
 | 
					figure(1); clf;
 | 
				
			||||||
 | 
					for i=1:nCameras
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    % Prior for the first pose or odometry for subsequent cameras
 | 
				
			||||||
 | 
					    if (i==1)
 | 
				
			||||||
 | 
					        newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
 | 
				
			||||||
 | 
					        for j=1:nPoints
 | 
				
			||||||
 | 
					            newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					        newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, poseNoise);
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    % Visual measurement factors
 | 
				
			||||||
 | 
					    for j=1:nPoints
 | 
				
			||||||
 | 
					        zij = cameras{i}.project(points{j});
 | 
				
			||||||
 | 
					        newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    % Initial estimates for the new pose. Also initialize points while in 
 | 
				
			||||||
 | 
					    % the first frame.
 | 
				
			||||||
 | 
					    if (i==1)
 | 
				
			||||||
 | 
					        initialEstimates.insertPose(symbol('x',i), cameras{i}.pose);
 | 
				
			||||||
 | 
					        for j=1:size(points,2)
 | 
				
			||||||
 | 
					            initialEstimates.insertPoint(symbol('l',j), points{j});
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					    else
 | 
				
			||||||
 | 
					        %TODO: this might be suboptimal since "result" is not the fully
 | 
				
			||||||
 | 
					        %optimized result
 | 
				
			||||||
 | 
					        if (i==2), prevPose = cameras{1}.pose;
 | 
				
			||||||
 | 
					        else, prevPose = result.pose(symbol('x',i-1)); end
 | 
				
			||||||
 | 
					        initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    % Update ISAM, only update for the second frame onward
 | 
				
			||||||
 | 
					    % Update the first frame will cause error, since it's under constrained
 | 
				
			||||||
 | 
					    if (i>=2)
 | 
				
			||||||
 | 
					        isam.update(newFactors, initialEstimates);
 | 
				
			||||||
 | 
					        result = isam.estimate();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        % Plot results
 | 
				
			||||||
 | 
					        h=figure(1);
 | 
				
			||||||
 | 
					        hold on;
 | 
				
			||||||
 | 
					        for j=1:size(points,2)
 | 
				
			||||||
 | 
					            P = isam.marginalCovariance(symbol('l',j));
 | 
				
			||||||
 | 
					            point_j = result.point(symbol('l',j));
 | 
				
			||||||
 | 
					            plot3(point_j.x, point_j.y, point_j.z,'marker','o');
 | 
				
			||||||
 | 
					            covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        for ii=i-1:i
 | 
				
			||||||
 | 
					            P = isam.marginalCovariance(symbol('x',ii));
 | 
				
			||||||
 | 
					            pose_ii = result.pose(symbol('x',ii));
 | 
				
			||||||
 | 
					            plotPose3(pose_ii,P,10);
 | 
				
			||||||
 | 
					        end
 | 
				
			||||||
 | 
					        axis([-35 35 -35 35 -35 35])
 | 
				
			||||||
 | 
					        view([36 34])
 | 
				
			||||||
 | 
					        colormap('hot')
 | 
				
			||||||
 | 
					%         print(h,'-dpng',sprintf('vISAM_%03d.png',i));
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        % Reset newFactors and initialEstimates to prepare for the next 
 | 
				
			||||||
 | 
					        % update
 | 
				
			||||||
 | 
					        newFactors = visualSLAMGraph;
 | 
				
			||||||
 | 
					        initialEstimates = visualSLAMValues;
 | 
				
			||||||
 | 
					    end
 | 
				
			||||||
 | 
					end
 | 
				
			||||||
		Loading…
	
		Reference in New Issue