Renamed project_to_camera to PinholeBase::Project

release/4.3a0
dellaert 2015-03-06 08:46:56 -08:00
parent 861ee8fef3
commit 61e8b42249
9 changed files with 75 additions and 549 deletions

View File

@ -778,7 +778,7 @@ class CalibratedCamera {
// Action on Point3 // Action on Point3
gtsam::Point2 project(const gtsam::Point3& point) const; gtsam::Point2 project(const gtsam::Point3& point) const;
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint); static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
// Standard Interface // Standard Interface
gtsam::Pose3 pose() const; gtsam::Pose3 pose() const;
@ -815,7 +815,7 @@ class SimpleCamera {
static size_t Dim(); static size_t Dim();
// Transformations and measurement functions // Transformations and measurement functions
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint); static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const; pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point); gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const; gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
@ -854,7 +854,7 @@ class PinholeCamera {
static size_t Dim(); static size_t Dim();
// Transformations and measurement functions // Transformations and measurement functions
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint); static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const; pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point); gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const; gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;

View File

@ -85,8 +85,7 @@ const Pose3& PinholeBase::getPose(OptionalJacobian<6, 6> H) const {
} }
/* ************************************************************************* */ /* ************************************************************************* */
Point2 PinholeBase::project_to_camera(const Point3& pc, Point2 PinholeBase::Project(const Point3& pc, OptionalJacobian<2, 3> Dpoint) {
OptionalJacobian<2, 3> Dpoint) {
double d = 1.0 / pc.z(); double d = 1.0 / pc.z();
const double u = pc.x() * d, v = pc.y() * d; const double u = pc.x() * d, v = pc.y() * d;
if (Dpoint) if (Dpoint)
@ -95,22 +94,27 @@ Point2 PinholeBase::project_to_camera(const Point3& pc,
} }
/* ************************************************************************* */ /* ************************************************************************* */
Point2 PinholeBase::project_to_camera(const Unit3& pc, Point2 PinholeBase::project_to_camera_old(const Point3& pc,
OptionalJacobian<2, 2> Dpoint) { OptionalJacobian<2, 3> Dpoint) {
return Project(pc);
}
/* ************************************************************************* */
Point2 PinholeBase::Project(const Unit3& pc, OptionalJacobian<2, 2> Dpoint) {
if (Dpoint) { if (Dpoint) {
Matrix32 Dpoint3_pc; Matrix32 Dpoint3_pc;
Matrix23 Duv_point3; Matrix23 Duv_point3;
Point2 uv = project_to_camera(pc.point3(Dpoint3_pc), Duv_point3); Point2 uv = Project(pc.point3(Dpoint3_pc), Duv_point3);
*Dpoint = Duv_point3 * Dpoint3_pc; *Dpoint = Duv_point3 * Dpoint3_pc;
return uv; return uv;
} else } else
return project_to_camera(pc.point3()); return Project(pc.point3());
} }
/* ************************************************************************* */ /* ************************************************************************* */
pair<Point2, bool> PinholeBase::projectSafe(const Point3& pw) const { pair<Point2, bool> PinholeBase::projectSafe(const Point3& pw) const {
const Point3 pc = pose().transform_to(pw); const Point3 pc = pose().transform_to(pw);
const Point2 pn = project_to_camera(pc); const Point2 pn = Project(pc);
return make_pair(pn, pc.z() > 0); return make_pair(pn, pc.z() > 0);
} }
@ -124,7 +128,7 @@ Point2 PinholeBase::project2(const Point3& point, OptionalJacobian<2, 6> Dpose,
if (q.z() <= 0) if (q.z() <= 0)
throw CheiralityException(); throw CheiralityException();
#endif #endif
const Point2 pn = project_to_camera(q); const Point2 pn = Project(q);
if (Dpose || Dpoint) { if (Dpose || Dpoint) {
const double d = 1.0 / q.z(); const double d = 1.0 / q.z();
@ -148,8 +152,7 @@ Point2 PinholeBase::project2(const Unit3& pw, OptionalJacobian<2, 6> Dpose,
// camera to normalized image coordinate // camera to normalized image coordinate
Matrix2 Dpn_pc; Matrix2 Dpn_pc;
const Point2 pn = PinholeBase::project_to_camera(pc, const Point2 pn = Project(pc, Dpose || Dpoint ? &Dpn_pc : 0);
Dpose || Dpoint ? &Dpn_pc : 0);
// chain the Jacobian matrices // chain the Jacobian matrices
if (Dpose) { if (Dpose) {

View File

@ -164,7 +164,11 @@ public:
* Does *not* throw a CheiralityException, even if pc behind image plane * Does *not* throw a CheiralityException, even if pc behind image plane
* @param pc point in camera coordinates * @param pc point in camera coordinates
*/ */
static Point2 project_to_camera(const Point3& pc, // static Point2 Project(const Point3& pc, //
OptionalJacobian<2, 3> Dpoint = boost::none);
/// @deprecated not correct naming for static function, use Project above
static Point2 project_to_camera_old(const Point3& pc, //
OptionalJacobian<2, 3> Dpoint = boost::none); OptionalJacobian<2, 3> Dpoint = boost::none);
/** /**
@ -172,7 +176,7 @@ public:
* Does *not* throw a CheiralityException, even if pc behind image plane * Does *not* throw a CheiralityException, even if pc behind image plane
* @param pc point in camera coordinates * @param pc point in camera coordinates
*/ */
static Point2 project_to_camera(const Unit3& pc, // static Point2 Project(const Unit3& pc, //
OptionalJacobian<2, 2> Dpoint = boost::none); OptionalJacobian<2, 2> Dpoint = boost::none);
/// Project a point into the image and check depth /// Project a point into the image and check depth
@ -193,8 +197,9 @@ public:
* @param point 3D point in world coordinates * @param point 3D point in world coordinates
* @return the intrinsic coordinates of the projected point * @return the intrinsic coordinates of the projected point
*/ */
Point2 project2(const Unit3& point, OptionalJacobian<2, 6> Dpose = Point2 project2(const Unit3& point,
boost::none, OptionalJacobian<2, 2> Dpoint = boost::none) const; OptionalJacobian<2, 6> Dpose = boost::none,
OptionalJacobian<2, 2> Dpoint = boost::none) const;
/// backproject a 2-dimensional point to a 3-dimensional point at given depth /// backproject a 2-dimensional point to a 3-dimensional point at given depth
static Point3 backproject_from_camera(const Point2& p, const double depth); static Point3 backproject_from_camera(const Point2& p, const double depth);
@ -214,7 +219,6 @@ public:
/// @} /// @}
private: private:
/** Serialization function */ /** Serialization function */

View File

@ -100,7 +100,7 @@ public:
*/ */
Point2 project(const Unit3& pw) const { Point2 project(const Unit3& pw) const {
const Unit3 pc = pose().rotation().unrotate(pw); // convert to camera frame const Unit3 pc = pose().rotation().unrotate(pw); // convert to camera frame
const Point2 pn = PinholeBase::project_to_camera(pc); const Point2 pn = PinholeBase::Project(pc);
return calibration().uncalibrate(pn); return calibration().uncalibrate(pn);
} }

View File

@ -88,28 +88,28 @@ TEST( CalibratedCamera, project)
} }
/* ************************************************************************* */ /* ************************************************************************* */
static Point2 project_to_camera1(const Point3& point) { static Point2 Project1(const Point3& point) {
return PinholeBase::project_to_camera(point); return PinholeBase::Project(point);
} }
TEST( CalibratedCamera, Dproject_to_camera1) { TEST( CalibratedCamera, DProject1) {
Point3 pp(155, 233, 131); Point3 pp(155, 233, 131);
Matrix test1; Matrix test1;
CalibratedCamera::project_to_camera(pp, test1); CalibratedCamera::Project(pp, test1);
Matrix test2 = numericalDerivative11<Point2, Point3>(project_to_camera1, pp); Matrix test2 = numericalDerivative11<Point2, Point3>(Project1, pp);
CHECK(assert_equal(test1, test2)); CHECK(assert_equal(test1, test2));
} }
/* ************************************************************************* */ /* ************************************************************************* */
static Point2 project_to_camera2(const Unit3& point) { static Point2 Project2(const Unit3& point) {
return PinholeBase::project_to_camera(point); return PinholeBase::Project(point);
} }
Unit3 pointAtInfinity(0, 0, 1000); Unit3 pointAtInfinity(0, 0, 1000);
TEST( CalibratedCamera, Dproject_to_cameraInfinity) { TEST( CalibratedCamera, DProjectInfinity) {
Matrix test1; Matrix test1;
CalibratedCamera::project_to_camera(pointAtInfinity, test1); CalibratedCamera::Project(pointAtInfinity, test1);
Matrix test2 = numericalDerivative11<Point2, Unit3>(project_to_camera2, Matrix test2 = numericalDerivative11<Point2, Unit3>(Project2,
pointAtInfinity); pointAtInfinity);
CHECK(assert_equal(test1, test2)); CHECK(assert_equal(test1, test2));
} }

View File

@ -166,7 +166,8 @@ using namespace binary;
Expression<Cal3_S2> K(3); Expression<Cal3_S2> K(3);
// Create expression tree // Create expression tree
Expression<Point2> projection(PinholeCamera<Cal3_S2>::project_to_camera, p_cam); Point2 (*f)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
Expression<Point2> projection(f, p_cam);
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection); Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -1,502 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testExpressionFactor.cpp
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief unit tests for Block Automatic Differentiation
*/
#include <gtsam/slam/expressions.h>
#include <gtsam/slam/GeneralSFMFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/expressionTesting.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/list_of.hpp>
using boost::assign::list_of;
using namespace std;
using namespace gtsam;
Point2 measured(-17, 30);
SharedNoiseModel model = noiseModel::Unit::Create(2);
namespace leaf {
// Create some values
struct MyValues: public Values {
MyValues() {
insert(2, Point2(3, 5));
}
} values;
// Create leaf
Point2_ p(2);
}
/* ************************************************************************* */
// Leaf
TEST(ExpressionFactor, Leaf) {
using namespace leaf;
// Create old-style factor to create expected value and derivatives
PriorFactor<Point2> old(2, Point2(0, 0), model);
// Concise version
ExpressionFactor<Point2> f(model, Point2(0, 0), p);
EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f.dim());
boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
EXPECT( assert_equal(*old.linearize(values), *gf2, 1e-9));
}
/* ************************************************************************* */
// non-zero noise model
TEST(ExpressionFactor, Model) {
using namespace leaf;
SharedNoiseModel model = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.01));
// Create old-style factor to create expected value and derivatives
PriorFactor<Point2> old(2, Point2(0, 0), model);
// Concise version
ExpressionFactor<Point2> f(model, Point2(0, 0), p);
// Check values and derivatives
EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f.dim());
boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
EXPECT( assert_equal(*old.linearize(values), *gf2, 1e-9));
EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-5, 1e-5); // another way
}
/* ************************************************************************* */
// Constrained noise model
TEST(ExpressionFactor, Constrained) {
using namespace leaf;
SharedDiagonal model = noiseModel::Constrained::MixedSigmas(Vector2(0.2, 0));
// Create old-style factor to create expected value and derivatives
PriorFactor<Point2> old(2, Point2(0, 0), model);
// Concise version
ExpressionFactor<Point2> f(model, Point2(0, 0), p);
EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f.dim());
boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
EXPECT( assert_equal(*old.linearize(values), *gf2, 1e-9));
}
/* ************************************************************************* */
// Unary(Leaf))
TEST(ExpressionFactor, Unary) {
// Create some values
Values values;
values.insert(2, Point3(0, 0, 1));
JacobianFactor expected( //
2, (Matrix(2, 3) << 1, 0, 0, 0, 1, 0).finished(), //
Vector2(-17, 30));
// Create leaves
Point3_ p(2);
// Concise version
ExpressionFactor<Point2> f(model, measured, project(p));
EXPECT_LONGS_EQUAL(2, f.dim());
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf, 1e-9));
}
/* ************************************************************************* */
// Unary(Leaf)) and Unary(Unary(Leaf)))
// wide version (not handled in fixed-size pipeline)
typedef Eigen::Matrix<double,9,3> Matrix93;
Vector9 wide(const Point3& p, OptionalJacobian<9,3> H) {
Vector9 v;
v << p.vector(), p.vector(), p.vector();
if (H) *H << eye(3), eye(3), eye(3);
return v;
}
typedef Eigen::Matrix<double,9,9> Matrix9;
Vector9 id9(const Vector9& v, OptionalJacobian<9,9> H) {
if (H) *H = Matrix9::Identity();
return v;
}
TEST(ExpressionFactor, Wide) {
// Create some values
Values values;
values.insert(2, Point3(0, 0, 1));
Point3_ point(2);
Vector9 measured;
measured.setZero();
Expression<Vector9> expression(wide,point);
SharedNoiseModel model = noiseModel::Unit::Create(9);
ExpressionFactor<Vector9> f1(model, measured, expression);
EXPECT_CORRECT_FACTOR_JACOBIANS(f1, values, 1e-5, 1e-9);
Expression<Vector9> expression2(id9,expression);
ExpressionFactor<Vector9> f2(model, measured, expression2);
EXPECT_CORRECT_FACTOR_JACOBIANS(f2, values, 1e-5, 1e-9);
}
/* ************************************************************************* */
static Point2 myUncal(const Cal3_S2& K, const Point2& p,
OptionalJacobian<2,5> Dcal, OptionalJacobian<2,2> Dp) {
return K.uncalibrate(p, Dcal, Dp);
}
// Binary(Leaf,Leaf)
TEST(ExpressionFactor, Binary) {
typedef BinaryExpression<Point2, Cal3_S2, Point2> Binary;
Cal3_S2_ K_(1);
Point2_ p_(2);
Binary binary(myUncal, K_, p_);
// Create some values
Values values;
values.insert(1, Cal3_S2());
values.insert(2, Point2(0, 0));
// traceRaw will fill raw with [Trace<Point2> | Binary::Record]
EXPECT_LONGS_EQUAL(8, sizeof(double));
EXPECT_LONGS_EQUAL(16, sizeof(Point2));
EXPECT_LONGS_EQUAL(40, sizeof(Cal3_S2));
EXPECT_LONGS_EQUAL(16, sizeof(ExecutionTrace<Point2>));
EXPECT_LONGS_EQUAL(16, sizeof(ExecutionTrace<Cal3_S2>));
EXPECT_LONGS_EQUAL(2*5*8, sizeof(Jacobian<Point2,Cal3_S2>::type));
EXPECT_LONGS_EQUAL(2*2*8, sizeof(Jacobian<Point2,Point2>::type));
size_t expectedRecordSize = 16 + 16 + 40 + 2 * 16 + 80 + 32;
EXPECT_LONGS_EQUAL(expectedRecordSize + 8, sizeof(Binary::Record));
// Check size
size_t size = binary.traceSize();
CHECK(size);
EXPECT_LONGS_EQUAL(expectedRecordSize + 8, size);
// Use Variable Length Array, allocated on stack by gcc
// Note unclear for Clang: http://clang.llvm.org/compatibility.html#vla
ExecutionTraceStorage traceStorage[size];
ExecutionTrace<Point2> trace;
Point2 value = binary.traceExecution(values, trace, traceStorage);
EXPECT(assert_equal(Point2(),value, 1e-9));
// trace.print();
// Expected Jacobians
Matrix25 expected25;
expected25 << 0, 0, 0, 1, 0, 0, 0, 0, 0, 1;
Matrix2 expected22;
expected22 << 1, 0, 0, 1;
// Check matrices
boost::optional<Binary::Record*> r = trace.record<Binary::Record>();
CHECK(r);
EXPECT(
assert_equal(expected25, (Matrix) (*r)-> jacobian<Cal3_S2, 1>(), 1e-9));
EXPECT( assert_equal(expected22, (Matrix) (*r)->jacobian<Point2, 2>(), 1e-9));
}
/* ************************************************************************* */
// Unary(Binary(Leaf,Leaf))
TEST(ExpressionFactor, Shallow) {
// Create some values
Values values;
values.insert(1, Pose3());
values.insert(2, Point3(0, 0, 1));
// Create old-style factor to create expected value and derivatives
GenericProjectionFactor<Pose3, Point3> old(measured, model, 1, 2,
boost::make_shared<Cal3_S2>());
double expected_error = old.error(values);
GaussianFactor::shared_ptr expected = old.linearize(values);
// Create leaves
Pose3_ x_(1);
Point3_ p_(2);
// Construct expression, concise evrsion
Point2_ expression = project(transform_to(x_, p_));
// Get and check keys and dims
FastVector<Key> keys;
FastVector<int> dims;
boost::tie(keys, dims) = expression.keysAndDims();
LONGS_EQUAL(2,keys.size());
LONGS_EQUAL(2,dims.size());
LONGS_EQUAL(1,keys[0]);
LONGS_EQUAL(2,keys[1]);
LONGS_EQUAL(6,dims[0]);
LONGS_EQUAL(3,dims[1]);
// traceExecution of shallow tree
typedef UnaryExpression<Point2, Point3> Unary;
typedef BinaryExpression<Point3, Pose3, Point3> Binary;
size_t expectedTraceSize = sizeof(Unary::Record) + sizeof(Binary::Record);
EXPECT_LONGS_EQUAL(112, sizeof(Unary::Record));
#ifdef GTSAM_USE_QUATERNIONS
EXPECT_LONGS_EQUAL(352, sizeof(Binary::Record));
LONGS_EQUAL(112+352, expectedTraceSize);
#else
EXPECT_LONGS_EQUAL(400, sizeof(Binary::Record));
LONGS_EQUAL(112+400, expectedTraceSize);
#endif
size_t size = expression.traceSize();
CHECK(size);
EXPECT_LONGS_EQUAL(expectedTraceSize, size);
ExecutionTraceStorage traceStorage[size];
ExecutionTrace<Point2> trace;
Point2 value = expression.traceExecution(values, trace, traceStorage);
EXPECT(assert_equal(Point2(),value, 1e-9));
// trace.print();
// Expected Jacobians
Matrix23 expected23;
expected23 << 1, 0, 0, 0, 1, 0;
// Check matrices
boost::optional<Unary::Record*> r = trace.record<Unary::Record>();
CHECK(r);
EXPECT(assert_equal(expected23, (Matrix)(*r)->jacobian<Point3, 1>(), 1e-9));
// Linearization
ExpressionFactor<Point2> f2(model, measured, expression);
EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f2.dim());
boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
EXPECT( assert_equal(*expected, *gf2, 1e-9));
}
/* ************************************************************************* */
// Binary(Leaf,Unary(Binary(Leaf,Leaf)))
TEST(ExpressionFactor, tree) {
// Create some values
Values values;
values.insert(1, Pose3());
values.insert(2, Point3(0, 0, 1));
values.insert(3, Cal3_S2());
// Create old-style factor to create expected value and derivatives
GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
double expected_error = old.error(values);
GaussianFactor::shared_ptr expected = old.linearize(values);
// Create leaves
Pose3_ x(1);
Point3_ p(2);
Cal3_S2_ K(3);
// Create expression tree
Point3_ p_cam(x, &Pose3::transform_to, p);
Point2_ xy_hat(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
// Create factor and check value, dimension, linearization
ExpressionFactor<Point2> f(model, measured, uv_hat);
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f.dim());
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
EXPECT( assert_equal(*expected, *gf, 1e-9));
// Concise version
ExpressionFactor<Point2> f2(model, measured,
uncalibrate(K, project(transform_to(x, p))));
EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f2.dim());
boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
EXPECT( assert_equal(*expected, *gf2, 1e-9));
TernaryExpression<Point2, Pose3, Point3, Cal3_S2>::Function fff = project6;
// Try ternary version
ExpressionFactor<Point2> f3(model, measured, project3(x, p, K));
EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9);
EXPECT_LONGS_EQUAL(2, f3.dim());
boost::shared_ptr<GaussianFactor> gf3 = f3.linearize(values);
EXPECT( assert_equal(*expected, *gf3, 1e-9));
}
/* ************************************************************************* */
TEST(ExpressionFactor, Compose1) {
// Create expression
Rot3_ R1(1), R2(2);
Rot3_ R3 = R1 * R2;
// Create factor
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
// Create some values
Values values;
values.insert(1, Rot3());
values.insert(2, Rot3());
// Check unwhitenedError
std::vector<Matrix> H(2);
Vector actual = f.unwhitenedError(values, H);
EXPECT( assert_equal(eye(3), H[0],1e-9));
EXPECT( assert_equal(eye(3), H[1],1e-9));
// Check linearization
JacobianFactor expected(1, eye(3), 2, eye(3), zero(3));
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf,1e-9));
}
/* ************************************************************************* */
// Test compose with arguments referring to the same rotation
TEST(ExpressionFactor, compose2) {
// Create expression
Rot3_ R1(1), R2(1);
Rot3_ R3 = R1 * R2;
// Create factor
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
// Create some values
Values values;
values.insert(1, Rot3());
// Check unwhitenedError
std::vector<Matrix> H(1);
Vector actual = f.unwhitenedError(values, H);
EXPECT_LONGS_EQUAL(1, H.size());
EXPECT( assert_equal(2*eye(3), H[0],1e-9));
// Check linearization
JacobianFactor expected(1, 2 * eye(3), zero(3));
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf,1e-9));
}
/* ************************************************************************* */
// Test compose with one arguments referring to a constant same rotation
TEST(ExpressionFactor, compose3) {
// Create expression
Rot3_ R1(Rot3::identity()), R2(3);
Rot3_ R3 = R1 * R2;
// Create factor
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
// Create some values
Values values;
values.insert(3, Rot3());
// Check unwhitenedError
std::vector<Matrix> H(1);
Vector actual = f.unwhitenedError(values, H);
EXPECT_LONGS_EQUAL(1, H.size());
EXPECT( assert_equal(eye(3), H[0],1e-9));
// Check linearization
JacobianFactor expected(3, eye(3), zero(3));
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf,1e-9));
}
/* ************************************************************************* */
// Test compose with three arguments
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
OptionalJacobian<3, 3> H1, OptionalJacobian<3, 3> H2, OptionalJacobian<3, 3> H3) {
// return dummy derivatives (not correct, but that's ok for testing here)
if (H1)
*H1 = eye(3);
if (H2)
*H2 = eye(3);
if (H3)
*H3 = eye(3);
return R1 * (R2 * R3);
}
TEST(ExpressionFactor, composeTernary) {
// Create expression
Rot3_ A(1), B(2), C(3);
Rot3_ ABC(composeThree, A, B, C);
// Create factor
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), ABC);
// Create some values
Values values;
values.insert(1, Rot3());
values.insert(2, Rot3());
values.insert(3, Rot3());
// Check unwhitenedError
std::vector<Matrix> H(3);
Vector actual = f.unwhitenedError(values, H);
EXPECT_LONGS_EQUAL(3, H.size());
EXPECT( assert_equal(eye(3), H[0],1e-9));
EXPECT( assert_equal(eye(3), H[1],1e-9));
EXPECT( assert_equal(eye(3), H[2],1e-9));
// Check linearization
JacobianFactor expected(1, eye(3), 2, eye(3), 3, eye(3), zero(3));
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
boost::shared_ptr<JacobianFactor> jf = //
boost::dynamic_pointer_cast<JacobianFactor>(gf);
EXPECT( assert_equal(expected, *jf,1e-9));
}
TEST(ExpressionFactor, tree_finite_differences) {
// Create some values
Values values;
values.insert(1, Pose3());
values.insert(2, Point3(0, 0, 1));
values.insert(3, Cal3_S2());
// Create leaves
Pose3_ x(1);
Point3_ p(2);
Cal3_S2_ K(3);
// Create expression tree
Point3_ p_cam(x, &Pose3::transform_to, p);
Point2_ xy_hat(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
const double fd_step = 1e-5;
const double tolerance = 1e-5;
EXPECT_CORRECT_EXPRESSION_JACOBIANS(uv_hat, values, fd_step, tolerance);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -173,7 +173,7 @@ public:
Point3 _1T2 = E.direction().point3(); Point3 _1T2 = E.direction().point3();
Point3 d1T2 = d * _1T2; Point3 d1T2 = d * _1T2;
Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2); // 2R1*((x,y,1)-d*1T2) Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2); // 2R1*((x,y,1)-d*1T2)
pn = SimpleCamera::project_to_camera(dP2); pn = PinholeBase::Project(dP2);
} else { } else {
@ -186,7 +186,7 @@ public:
Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2, DdP2_rot, DP2_point); Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2, DdP2_rot, DP2_point);
Matrix23 Dpn_dP2; Matrix23 Dpn_dP2;
pn = SimpleCamera::project_to_camera(dP2, Dpn_dP2); pn = PinholeBase::Project(dP2, Dpn_dP2);
if (DE) { if (DE) {
Matrix DdP2_E(3, 5); Matrix DdP2_E(3, 5);

View File

@ -28,6 +28,7 @@ inline Point2_ transform_to(const Pose2_& x, const Point2_& p) {
// 3D Geometry // 3D Geometry
typedef Expression<Point3> Point3_; typedef Expression<Point3> Point3_;
typedef Expression<Unit3> Unit3_;
typedef Expression<Rot3> Rot3_; typedef Expression<Rot3> Rot3_;
typedef Expression<Pose3> Pose3_; typedef Expression<Pose3> Pose3_;
@ -40,33 +41,52 @@ inline Point3_ transform_to(const Pose3_& x, const Point3_& p) {
typedef Expression<Cal3_S2> Cal3_S2_; typedef Expression<Cal3_S2> Cal3_S2_;
typedef Expression<Cal3Bundler> Cal3Bundler_; typedef Expression<Cal3Bundler> Cal3Bundler_;
/// Expression version of PinholeBase::Project
inline Point2_ project(const Point3_& p_cam) { inline Point2_ project(const Point3_& p_cam) {
return Point2_(PinholeCamera<Cal3_S2>::project_to_camera, p_cam); Point2 (*f)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
return Point2_(f, p_cam);
} }
template <class CAMERA> inline Point2_ project(const Unit3_& p_cam) {
Point2 project4(const CAMERA& camera, const Point3& p, Point2 (*f)(const Unit3&, OptionalJacobian<2, 2>) = &PinholeBase::Project;
OptionalJacobian<2, CAMERA::dimension> Dcam, OptionalJacobian<2, 3> Dpoint) { return Point2_(f, p_cam);
}
namespace internal {
// Helper template for project2 expression below
template<class CAMERA, class POINT>
Point2 project4(const CAMERA& camera, const POINT& p,
OptionalJacobian<2, CAMERA::dimension> Dcam,
OptionalJacobian<2, FixedDimension<POINT>::value> Dpoint) {
return camera.project2(p, Dcam, Dpoint); return camera.project2(p, Dcam, Dpoint);
} }
template <class CAMERA>
Point2_ project2(const Expression<CAMERA>& camera_, const Point3_& p_) {
return Point2_(project4<CAMERA>, camera_, p_);
} }
template<class CAMERA, class POINT>
Point2_ project2(const Expression<CAMERA>& camera_,
const Expression<POINT>& p_) {
return Point2_(internal::project4<CAMERA, POINT>, camera_, p_);
}
namespace internal {
// Helper template for project3 expression below
template<class CALIBRATION, class POINT>
inline Point2 project6(const Pose3& x, const Point3& p, const Cal3_S2& K, inline Point2 project6(const Pose3& x, const Point3& p, const Cal3_S2& K,
OptionalJacobian<2, 6> Dpose, OptionalJacobian<2, 3> Dpoint, OptionalJacobian<2, 5> Dcal) { OptionalJacobian<2, 6> Dpose, OptionalJacobian<2, 3> Dpoint,
OptionalJacobian<2, 5> Dcal) {
return PinholeCamera<Cal3_S2>(x, K).project(p, Dpose, Dpoint, Dcal); return PinholeCamera<Cal3_S2>(x, K).project(p, Dpose, Dpoint, Dcal);
} }
inline Point2_ project3(const Pose3_& x, const Point3_& p, const Cal3_S2_& K) {
return Point2_(project6, x, p, K);
} }
template<class CAL> template<class CALIBRATION, class POINT>
Point2_ uncalibrate(const Expression<CAL>& K, const Point2_& xy_hat) { inline Point2_ project3(const Pose3_& x, const Expression<POINT>& p,
return Point2_(K, &CAL::uncalibrate, xy_hat); const Expression<CALIBRATION>& K) {
return Point2_(internal::project6<CALIBRATION, POINT>, x, p, K);
}
template<class CALIBRATION>
Point2_ uncalibrate(const Expression<CALIBRATION>& K, const Point2_& xy_hat) {
return Point2_(K, &CALIBRATION::uncalibrate, xy_hat);
} }
} // \namespace gtsam } // \namespace gtsam