Merge pull request #1386 from borglab/hybrid/more_tests

Test and fix all conditionals
release/4.3a0
Frank Dellaert 2023-01-15 08:15:12 -08:00 committed by GitHub
commit 618ac28f2c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 337 additions and 40 deletions

View File

@ -20,7 +20,7 @@
#include <gtsam/base/debug.h> #include <gtsam/base/debug.h>
#include <gtsam/discrete/DiscreteConditional.h> #include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/Signature.h> #include <gtsam/discrete/Signature.h>
#include <gtsam/inference/Conditional-inst.h> #include <gtsam/hybrid/HybridValues.h>
#include <algorithm> #include <algorithm>
#include <boost/make_shared.hpp> #include <boost/make_shared.hpp>
@ -510,6 +510,10 @@ string DiscreteConditional::html(const KeyFormatter& keyFormatter,
return ss.str(); return ss.str();
} }
/* ************************************************************************* */
double DiscreteConditional::evaluate(const HybridValues& x) const{
return this->evaluate(x.discrete());
}
/* ************************************************************************* */ /* ************************************************************************* */
} // namespace gtsam } // namespace gtsam

View File

@ -160,10 +160,13 @@ class GTSAM_EXPORT DiscreteConditional
} }
/// Evaluate, just look up in AlgebraicDecisonTree /// Evaluate, just look up in AlgebraicDecisonTree
double operator()(const DiscreteValues& values) const override { double evaluate(const DiscreteValues& values) const {
return ADT::operator()(values); return ADT::operator()(values);
} }
using DecisionTreeFactor::error; ///< DiscreteValues version
using DecisionTreeFactor::operator(); ///< DiscreteValues version
/** /**
* @brief restrict to given *parent* values. * @brief restrict to given *parent* values.
* *
@ -235,6 +238,14 @@ class GTSAM_EXPORT DiscreteConditional
/// @name HybridValues methods. /// @name HybridValues methods.
/// @{ /// @{
/**
* Calculate probability for HybridValues `x`.
* Dispatches to DiscreteValues version.
*/
double evaluate(const HybridValues& x) const override;
using BaseConditional::operator(); ///< HybridValues version
/** /**
* Calculate log-probability log(evaluate(x)) for HybridValues `x`. * Calculate log-probability log(evaluate(x)) for HybridValues `x`.
* This is actually just -error(x). * This is actually just -error(x).
@ -243,8 +254,6 @@ class GTSAM_EXPORT DiscreteConditional
return -error(x); return -error(x);
} }
using DecisionTreeFactor::evaluate;
/// @} /// @}
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V42 #ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V42

View File

@ -82,6 +82,7 @@ virtual class DecisionTreeFactor : gtsam::DiscreteFactor {
}; };
#include <gtsam/discrete/DiscreteConditional.h> #include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/HybridValues.h>
virtual class DiscreteConditional : gtsam::DecisionTreeFactor { virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
DiscreteConditional(); DiscreteConditional();
DiscreteConditional(size_t nFrontals, const gtsam::DecisionTreeFactor& f); DiscreteConditional(size_t nFrontals, const gtsam::DecisionTreeFactor& f);
@ -95,9 +96,12 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
DiscreteConditional(const gtsam::DecisionTreeFactor& joint, DiscreteConditional(const gtsam::DecisionTreeFactor& joint,
const gtsam::DecisionTreeFactor& marginal, const gtsam::DecisionTreeFactor& marginal,
const gtsam::Ordering& orderedKeys); const gtsam::Ordering& orderedKeys);
// Standard interface
double logNormalizationConstant() const;
double logProbability(const gtsam::DiscreteValues& values) const; double logProbability(const gtsam::DiscreteValues& values) const;
double evaluate(const gtsam::DiscreteValues& values) const; double evaluate(const gtsam::DiscreteValues& values) const;
double operator()(const gtsam::DiscreteValues& values) const; double error(const gtsam::DiscreteValues& values) const;
gtsam::DiscreteConditional operator*( gtsam::DiscreteConditional operator*(
const gtsam::DiscreteConditional& other) const; const gtsam::DiscreteConditional& other) const;
gtsam::DiscreteConditional marginal(gtsam::Key key) const; gtsam::DiscreteConditional marginal(gtsam::Key key) const;
@ -119,6 +123,8 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
size_t sample(size_t value) const; size_t sample(size_t value) const;
size_t sample() const; size_t sample() const;
void sampleInPlace(gtsam::DiscreteValues @parentsValues) const; void sampleInPlace(gtsam::DiscreteValues @parentsValues) const;
// Markdown and HTML
string markdown(const gtsam::KeyFormatter& keyFormatter = string markdown(const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const; gtsam::DefaultKeyFormatter) const;
string markdown(const gtsam::KeyFormatter& keyFormatter, string markdown(const gtsam::KeyFormatter& keyFormatter,
@ -127,6 +133,11 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
gtsam::DefaultKeyFormatter) const; gtsam::DefaultKeyFormatter) const;
string html(const gtsam::KeyFormatter& keyFormatter, string html(const gtsam::KeyFormatter& keyFormatter,
std::map<gtsam::Key, std::vector<std::string>> names) const; std::map<gtsam::Key, std::vector<std::string>> names) const;
// Expose HybridValues versions
double logProbability(const gtsam::HybridValues& x) const;
double evaluate(const gtsam::HybridValues& x) const;
double error(const gtsam::HybridValues& x) const;
}; };
#include <gtsam/discrete/DiscreteDistribution.h> #include <gtsam/discrete/DiscreteDistribution.h>

View File

@ -96,6 +96,7 @@ TEST(DiscreteConditional, PriorProbability) {
DiscreteConditional dc(Asia, "4/6"); DiscreteConditional dc(Asia, "4/6");
DiscreteValues values{{asiaKey, 0}}; DiscreteValues values{{asiaKey, 0}};
EXPECT_DOUBLES_EQUAL(0.4, dc.evaluate(values), 1e-9); EXPECT_DOUBLES_EQUAL(0.4, dc.evaluate(values), 1e-9);
EXPECT(DiscreteConditional::CheckInvariants(dc, values));
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -109,6 +110,7 @@ TEST(DiscreteConditional, probability) {
EXPECT_DOUBLES_EQUAL(0.2, C_given_DE(given), 1e-9); EXPECT_DOUBLES_EQUAL(0.2, C_given_DE(given), 1e-9);
EXPECT_DOUBLES_EQUAL(log(0.2), C_given_DE.logProbability(given), 1e-9); EXPECT_DOUBLES_EQUAL(log(0.2), C_given_DE.logProbability(given), 1e-9);
EXPECT_DOUBLES_EQUAL(-log(0.2), C_given_DE.error(given), 1e-9); EXPECT_DOUBLES_EQUAL(-log(0.2), C_given_DE.error(given), 1e-9);
EXPECT(DiscreteConditional::CheckInvariants(C_given_DE, given));
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -290,10 +290,22 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
} }
/* *******************************************************************************/ /* *******************************************************************************/
double GaussianMixture::logProbability(const HybridValues &values) const { double GaussianMixture::error(const HybridValues &values) const {
// Directly index to get the conditional, no need to build the whole tree. // Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
return conditional->error(values.continuous()) - conditional->logNormalizationConstant();
}
/* *******************************************************************************/
double GaussianMixture::logProbability(const HybridValues &values) const {
auto conditional = conditionals_(values.discrete()); auto conditional = conditionals_(values.discrete());
return conditional->logProbability(values.continuous()); return conditional->logProbability(values.continuous());
} }
/* *******************************************************************************/
double GaussianMixture::evaluate(const HybridValues &values) const {
auto conditional = conditionals_(values.discrete());
return conditional->evaluate(values.continuous());
}
} // namespace gtsam } // namespace gtsam

View File

@ -174,20 +174,44 @@ class GTSAM_EXPORT GaussianMixture
const VectorValues &continuousValues) const; const VectorValues &continuousValues) const;
/** /**
* @brief Compute the logProbability of this Gaussian Mixture given the * @brief Compute the error of this Gaussian Mixture.
* continuous values and a discrete assignment. *
* This requires some care, as different mixture components may have
* different normalization constants. Let's consider p(x|y,m), where m is
* discrete. We need the error to satisfy the invariant:
*
* error(x;y,m) = K - log(probability(x;y,m))
*
* For all x,y,m. But note that K, for the GaussianMixture, cannot depend on
* any arguments. Hence, we delegate to the underlying Gaussian
* conditionals, indexed by m, which do satisfy:
*
* log(probability_m(x;y)) = K_m - error_m(x;y)
*
* We resolve by having K == 0.0 and
*
* error(x;y,m) = error_m(x;y) - K_m
*
* @param values Continuous values and discrete assignment.
* @return double
*/
double error(const HybridValues &values) const override;
/**
* @brief Compute the logProbability of this Gaussian Mixture.
* *
* @param values Continuous values and discrete assignment. * @param values Continuous values and discrete assignment.
* @return double * @return double
*/ */
double logProbability(const HybridValues &values) const override; double logProbability(const HybridValues &values) const override;
// /// Calculate probability density for given values `x`. /// Calculate probability density for given `values`.
// double evaluate(const HybridValues &values) const; double evaluate(const HybridValues &values) const override;
// /// Evaluate probability density, sugar. /// Evaluate probability density, sugar.
// double operator()(const HybridValues &values) const { return double operator()(const HybridValues &values) const {
// evaluate(values); } return evaluate(values);
}
/** /**
* @brief Prune the decision tree of Gaussian factors as per the discrete * @brief Prune the decision tree of Gaussian factors as per the discrete

View File

@ -121,6 +121,21 @@ bool HybridConditional::equals(const HybridFactor &other, double tol) const {
: !(e->inner_); : !(e->inner_);
} }
/* ************************************************************************ */
double HybridConditional::error(const HybridValues &values) const {
if (auto gc = asGaussian()) {
return gc->error(values.continuous());
}
if (auto gm = asMixture()) {
return gm->error(values);
}
if (auto dc = asDiscrete()) {
return dc->error(values.discrete());
}
throw std::runtime_error(
"HybridConditional::error: conditional type not handled");
}
/* ************************************************************************ */ /* ************************************************************************ */
double HybridConditional::logProbability(const HybridValues &values) const { double HybridConditional::logProbability(const HybridValues &values) const {
if (auto gc = asGaussian()) { if (auto gc = asGaussian()) {
@ -136,4 +151,24 @@ double HybridConditional::logProbability(const HybridValues &values) const {
"HybridConditional::logProbability: conditional type not handled"); "HybridConditional::logProbability: conditional type not handled");
} }
/* ************************************************************************ */
double HybridConditional::logNormalizationConstant() const {
if (auto gc = asGaussian()) {
return gc->logNormalizationConstant();
}
if (auto gm = asMixture()) {
return gm->logNormalizationConstant(); // 0.0!
}
if (auto dc = asDiscrete()) {
return dc->logNormalizationConstant(); // 0.0!
}
throw std::runtime_error(
"HybridConditional::logProbability: conditional type not handled");
}
/* ************************************************************************ */
double HybridConditional::evaluate(const HybridValues &values) const {
return std::exp(logProbability(values));
}
} // namespace gtsam } // namespace gtsam

View File

@ -176,9 +176,22 @@ class GTSAM_EXPORT HybridConditional
/// Get the type-erased pointer to the inner type /// Get the type-erased pointer to the inner type
boost::shared_ptr<Factor> inner() const { return inner_; } boost::shared_ptr<Factor> inner() const { return inner_; }
/// Return the logProbability of the underlying conditional. /// Return the error of the underlying conditional.
double error(const HybridValues& values) const override;
/// Return the log-probability (or density) of the underlying conditional.
double logProbability(const HybridValues& values) const override; double logProbability(const HybridValues& values) const override;
/**
* Return the log normalization constant.
* Note this is 0.0 for discrete and hybrid conditionals, but depends
* on the continuous parameters for Gaussian conditionals.
*/
double logNormalizationConstant() const override;
/// Return the probability (or density) of the underlying conditional.
double evaluate(const HybridValues& values) const override;
/// Check if VectorValues `measurements` contains all frontal keys. /// Check if VectorValues `measurements` contains all frontal keys.
bool frontalsIn(const VectorValues& measurements) const { bool frontalsIn(const VectorValues& measurements) const {
for (Key key : frontals()) { for (Key key : frontals()) {

View File

@ -61,6 +61,7 @@ virtual class HybridConditional {
size_t nrParents() const; size_t nrParents() const;
// Standard interface: // Standard interface:
double logNormalizationConstant() const;
double logProbability(const gtsam::HybridValues& values) const; double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const; double evaluate(const gtsam::HybridValues& values) const;
double operator()(const gtsam::HybridValues& values) const; double operator()(const gtsam::HybridValues& values) const;

View File

@ -0,0 +1,83 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridConditional.cpp
* @brief Unit tests for HybridConditional class
* @date January 2023
*/
#include <gtsam/hybrid/HybridConditional.h>
#include "TinyHybridExample.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
/* ****************************************************************************/
// Check invariants for all conditionals in a tiny Bayes net.
TEST(HybridConditional, Invariants) {
// Create hybrid Bayes net p(z|x,m)p(x)P(m)
auto bn = tiny::createHybridBayesNet();
// Create values to check invariants.
const VectorValues c{{X(0), Vector1(5.1)}, {Z(0), Vector1(4.9)}};
const DiscreteValues d{{M(0), 1}};
const HybridValues values{c, d};
// Check invariants for p(z|x,m)
auto hc0 = bn.at(0);
CHECK(hc0->isHybrid());
// Check invariants as a GaussianMixture.
const auto mixture = hc0->asMixture();
EXPECT(GaussianMixture::CheckInvariants(*mixture, values));
// Check invariants as a HybridConditional.
EXPECT(HybridConditional::CheckInvariants(*hc0, values));
// Check invariants for p(x)
auto hc1 = bn.at(1);
CHECK(hc1->isContinuous());
// Check invariants as a GaussianConditional.
const auto gaussian = hc1->asGaussian();
EXPECT(GaussianConditional::CheckInvariants(*gaussian, c));
EXPECT(GaussianConditional::CheckInvariants(*gaussian, values));
// Check invariants as a HybridConditional.
EXPECT(HybridConditional::CheckInvariants(*hc1, values));
// Check invariants for p(m)
auto hc2 = bn.at(2);
CHECK(hc2->isDiscrete());
// Check invariants as a DiscreteConditional.
const auto discrete = hc2->asDiscrete();
EXPECT(DiscreteConditional::CheckInvariants(*discrete, d));
EXPECT(DiscreteConditional::CheckInvariants(*discrete, values));
// Check invariants as a HybridConditional.
EXPECT(HybridConditional::CheckInvariants(*hc2, values));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -56,4 +56,30 @@ double Conditional<FACTOR, DERIVEDCONDITIONAL>::evaluate(
const HybridValues& c) const { const HybridValues& c) const {
throw std::runtime_error("Conditional::evaluate is not implemented"); throw std::runtime_error("Conditional::evaluate is not implemented");
} }
/* ************************************************************************* */
template <class FACTOR, class DERIVEDCONDITIONAL>
double Conditional<FACTOR, DERIVEDCONDITIONAL>::normalizationConstant() const {
return std::exp(logNormalizationConstant());
}
/* ************************************************************************* */
template <class FACTOR, class DERIVEDCONDITIONAL>
template <class VALUES>
bool Conditional<FACTOR, DERIVEDCONDITIONAL>::CheckInvariants(
const DERIVEDCONDITIONAL& conditional, const VALUES& values) {
const double prob_or_density = conditional.evaluate(values);
if (prob_or_density < 0.0) return false; // prob_or_density is negative.
if (std::abs(prob_or_density - conditional(values)) > 1e-9)
return false; // operator and evaluate differ
const double logProb = conditional.logProbability(values);
if (std::abs(prob_or_density - std::exp(logProb)) > 1e-9)
return false; // logProb is not consistent with prob_or_density
const double expected =
conditional.logNormalizationConstant() - conditional.error(values);
if (std::abs(logProb - expected) > 1e-9)
return false; // logProb is not consistent with error
return true;
}
} // namespace gtsam } // namespace gtsam

View File

@ -141,6 +141,15 @@ namespace gtsam {
return evaluate(x); return evaluate(x);
} }
/**
* By default, log normalization constant = 0.0.
* Override if this depends on the parameters.
*/
virtual double logNormalizationConstant() const { return 0.0; }
/** Non-virtual, exponentiate logNormalizationConstant. */
double normalizationConstant() const;
/// @} /// @}
/// @name Advanced Interface /// @name Advanced Interface
/// @{ /// @{
@ -172,7 +181,17 @@ namespace gtsam {
/** Mutable iterator pointing past the last parent key. */ /** Mutable iterator pointing past the last parent key. */
typename FACTOR::iterator endParents() { return asFactor().end(); } typename FACTOR::iterator endParents() { return asFactor().end(); }
template <class VALUES>
static bool CheckInvariants(const DERIVEDCONDITIONAL& conditional,
const VALUES& values);
/// @}
private: private:
/// @name Serialization
/// @{
// Cast to factor type (non-const) (casts down to derived conditional type, then up to factor type) // Cast to factor type (non-const) (casts down to derived conditional type, then up to factor type)
FACTOR& asFactor() { return static_cast<FACTOR&>(static_cast<DERIVEDCONDITIONAL&>(*this)); } FACTOR& asFactor() { return static_cast<FACTOR&>(static_cast<DERIVEDCONDITIONAL&>(*this)); }

View File

@ -205,9 +205,14 @@ namespace gtsam {
} }
/* ************************************************************************* */ /* ************************************************************************* */
double GaussianConditional::evaluate(const VectorValues& c) const { double GaussianConditional::evaluate(const VectorValues& x) const {
return exp(logProbability(c)); return exp(logProbability(x));
} }
double GaussianConditional::evaluate(const HybridValues& x) const {
return evaluate(x.continuous());
}
/* ************************************************************************* */ /* ************************************************************************* */
VectorValues GaussianConditional::solve(const VectorValues& x) const { VectorValues GaussianConditional::solve(const VectorValues& x) const {
// Concatenate all vector values that correspond to parent variables // Concatenate all vector values that correspond to parent variables

View File

@ -34,7 +34,7 @@ namespace gtsam {
/** /**
* A GaussianConditional functions as the node in a Bayes network. * A GaussianConditional functions as the node in a Bayes network.
* It has a set of parents y,z, etc. and implements a probability density on x. * It has a set of parents y,z, etc. and implements a probability density on x.
* The negative log-probability is given by \f$ \frac{1}{2} |Rx - (d - Sy - Tz - ...)|^2 \f$ * The negative log-density is given by \f$ \frac{1}{2} |Rx - (d - Sy - Tz - ...)|^2 \f$
* @ingroup linear * @ingroup linear
*/ */
class GTSAM_EXPORT GaussianConditional : class GTSAM_EXPORT GaussianConditional :
@ -136,14 +136,7 @@ namespace gtsam {
* normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma)) * normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma))
* log = - 0.5 * n*log(2*pi) - 0.5 * log det(Sigma) * log = - 0.5 * n*log(2*pi) - 0.5 * log det(Sigma)
*/ */
double logNormalizationConstant() const; double logNormalizationConstant() const override;
/**
* normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma))
*/
inline double normalizationConstant() const {
return exp(logNormalizationConstant());
}
/** /**
* Calculate log-probability log(evaluate(x)) for given values `x`: * Calculate log-probability log(evaluate(x)) for given values `x`:
@ -269,9 +262,14 @@ namespace gtsam {
*/ */
double logProbability(const HybridValues& x) const override; double logProbability(const HybridValues& x) const override;
using Conditional::evaluate; // Expose evaluate(const HybridValues&) method.. /**
* Calculate probability for HybridValues `x`.
* Simply dispatches to VectorValues version.
*/
double evaluate(const HybridValues& x) const override;
using Conditional::operator(); // Expose evaluate(const HybridValues&) method.. using Conditional::operator(); // Expose evaluate(const HybridValues&) method..
using Base::error; // Expose error(const HybridValues&) method.. using JacobianFactor::error; // Expose error(const HybridValues&) method..
/// @} /// @}

View File

@ -196,6 +196,9 @@ namespace gtsam {
/** Compare to another factor for testing (implementing Testable) */ /** Compare to another factor for testing (implementing Testable) */
bool equals(const GaussianFactor& lf, double tol = 1e-9) const override; bool equals(const GaussianFactor& lf, double tol = 1e-9) const override;
/// HybridValues simply extracts the \class VectorValues and calls error.
using GaussianFactor::error;
/** /**
* Evaluate the factor error f(x). * Evaluate the factor error f(x).
* returns 0.5*[x -1]'*H*[x -1] (also see constructor documentation) * returns 0.5*[x -1]'*H*[x -1] (also see constructor documentation)

View File

@ -198,7 +198,12 @@ namespace gtsam {
Vector unweighted_error(const VectorValues& c) const; /** (A*x-b) */ Vector unweighted_error(const VectorValues& c) const; /** (A*x-b) */
Vector error_vector(const VectorValues& c) const; /** (A*x-b)/sigma */ Vector error_vector(const VectorValues& c) const; /** (A*x-b)/sigma */
double error(const VectorValues& c) const override; /** 0.5*(A*x-b)'*D*(A*x-b) */
/// HybridValues simply extracts the \class VectorValues and calls error.
using GaussianFactor::error;
//// 0.5*(A*x-b)'*D*(A*x-b).
double error(const VectorValues& c) const override;
/** Return the augmented information matrix represented by this GaussianFactor. /** Return the augmented information matrix represented by this GaussianFactor.
* The augmented information matrix contains the information matrix with an * The augmented information matrix contains the information matrix with an

View File

@ -456,6 +456,7 @@ class GaussianFactorGraph {
}; };
#include <gtsam/linear/GaussianConditional.h> #include <gtsam/linear/GaussianConditional.h>
#include <gtsam/hybrid/HybridValues.h>
virtual class GaussianConditional : gtsam::JacobianFactor { virtual class GaussianConditional : gtsam::JacobianFactor {
// Constructors // Constructors
GaussianConditional(size_t key, Vector d, Matrix R, GaussianConditional(size_t key, Vector d, Matrix R,
@ -497,6 +498,7 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
bool equals(const gtsam::GaussianConditional& cg, double tol) const; bool equals(const gtsam::GaussianConditional& cg, double tol) const;
// Standard Interface // Standard Interface
double logNormalizationConstant() const;
double logProbability(const gtsam::VectorValues& x) const; double logProbability(const gtsam::VectorValues& x) const;
double evaluate(const gtsam::VectorValues& x) const; double evaluate(const gtsam::VectorValues& x) const;
double error(const gtsam::VectorValues& x) const; double error(const gtsam::VectorValues& x) const;
@ -518,6 +520,11 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
// enabling serialization functionality // enabling serialization functionality
void serialize() const; void serialize() const;
// Expose HybridValues versions
double logProbability(const gtsam::HybridValues& x) const;
double evaluate(const gtsam::HybridValues& x) const;
double error(const gtsam::HybridValues& x) const;
}; };
#include <gtsam/linear/GaussianDensity.h> #include <gtsam/linear/GaussianDensity.h>

View File

@ -25,6 +25,7 @@
#include <gtsam/linear/GaussianConditional.h> #include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/GaussianDensity.h> #include <gtsam/linear/GaussianDensity.h>
#include <gtsam/linear/GaussianBayesNet.h> #include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/hybrid/HybridValues.h>
#include <boost/make_shared.hpp> #include <boost/make_shared.hpp>
@ -154,6 +155,13 @@ TEST(GaussianConditional, Evaluate1) {
using density::key; using density::key;
using density::sigma; using density::sigma;
// Check Invariants at the mean and a different value
for (auto vv : {mean, VectorValues{{key, Vector1(4)}}}) {
EXPECT(GaussianConditional::CheckInvariants(density::unitPrior, vv));
EXPECT(GaussianConditional::CheckInvariants(density::unitPrior,
HybridValues{vv, {}, {}}));
}
// Let's numerically integrate and see that we integrate to 1.0. // Let's numerically integrate and see that we integrate to 1.0.
double integral = 0.0; double integral = 0.0;
// Loop from -5*sigma to 5*sigma in 0.1*sigma steps: // Loop from -5*sigma to 5*sigma in 0.1*sigma steps:
@ -180,6 +188,13 @@ TEST(GaussianConditional, Evaluate2) {
using density::key; using density::key;
using density::sigma; using density::sigma;
// Check Invariants at the mean and a different value
for (auto vv : {mean, VectorValues{{key, Vector1(4)}}}) {
EXPECT(GaussianConditional::CheckInvariants(density::widerPrior, vv));
EXPECT(GaussianConditional::CheckInvariants(density::widerPrior,
HybridValues{vv, {}, {}}));
}
// Let's numerically integrate and see that we integrate to 1.0. // Let's numerically integrate and see that we integrate to 1.0.
double integral = 0.0; double integral = 0.0;
// Loop from -5*sigma to 5*sigma in 0.1*sigma steps: // Loop from -5*sigma to 5*sigma in 0.1*sigma steps:
@ -384,17 +399,18 @@ TEST(GaussianConditional, FromMeanAndStddev) {
double expected1 = 0.5 * e1.dot(e1); double expected1 = 0.5 * e1.dot(e1);
EXPECT_DOUBLES_EQUAL(expected1, conditional1.error(values), 1e-9); EXPECT_DOUBLES_EQUAL(expected1, conditional1.error(values), 1e-9);
double expected2 = conditional1.logNormalizationConstant() - 0.5 * e1.dot(e1);
EXPECT_DOUBLES_EQUAL(expected2, conditional1.logProbability(values), 1e-9);
auto conditional2 = GaussianConditional::FromMeanAndStddev(X(0), A1, X(1), A2, auto conditional2 = GaussianConditional::FromMeanAndStddev(X(0), A1, X(1), A2,
X(2), b, sigma); X(2), b, sigma);
Vector2 e2 = (x0 - (A1 * x1 + A2 * x2 + b)) / sigma; Vector2 e2 = (x0 - (A1 * x1 + A2 * x2 + b)) / sigma;
double expected3 = 0.5 * e2.dot(e2); double expected2 = 0.5 * e2.dot(e2);
EXPECT_DOUBLES_EQUAL(expected3, conditional2.error(values), 1e-9); EXPECT_DOUBLES_EQUAL(expected2, conditional2.error(values), 1e-9);
double expected4 = conditional2.logNormalizationConstant() - 0.5 * e2.dot(e2); // Check Invariants for both conditionals
EXPECT_DOUBLES_EQUAL(expected4, conditional2.logProbability(values), 1e-9); for (auto conditional : {conditional1, conditional2}) {
EXPECT(GaussianConditional::CheckInvariants(conditional, values));
EXPECT(GaussianConditional::CheckInvariants(conditional,
HybridValues{values, {}, {}}));
}
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -17,8 +17,8 @@ import numpy as np
from gtsam.symbol_shorthand import A, X from gtsam.symbol_shorthand import A, X
from gtsam.utils.test_case import GtsamTestCase from gtsam.utils.test_case import GtsamTestCase
from gtsam import (DiscreteConditional, DiscreteKeys, GaussianConditional, from gtsam import (DiscreteConditional, DiscreteKeys, DiscreteValues, GaussianConditional,
GaussianMixture, HybridBayesNet, HybridValues, noiseModel) GaussianMixture, HybridBayesNet, HybridValues, noiseModel, VectorValues)
class TestHybridBayesNet(GtsamTestCase): class TestHybridBayesNet(GtsamTestCase):
@ -53,9 +53,13 @@ class TestHybridBayesNet(GtsamTestCase):
# Create values at which to evaluate. # Create values at which to evaluate.
values = HybridValues() values = HybridValues()
values.insert(asiaKey, 0) continuous = VectorValues()
values.insert(X(0), [-6]) continuous.insert(X(0), [-6])
values.insert(X(1), [1]) continuous.insert(X(1), [1])
values.insert(continuous)
discrete = DiscreteValues()
discrete[asiaKey] = 0
values.insert(discrete)
conditionalProbability = conditional.evaluate(values.continuous()) conditionalProbability = conditional.evaluate(values.continuous())
mixtureProbability = conditional0.evaluate(values.continuous()) mixtureProbability = conditional0.evaluate(values.continuous())
@ -68,6 +72,26 @@ class TestHybridBayesNet(GtsamTestCase):
self.assertAlmostEqual(bayesNet.logProbability(values), self.assertAlmostEqual(bayesNet.logProbability(values),
math.log(bayesNet.evaluate(values))) math.log(bayesNet.evaluate(values)))
# Check invariance for all conditionals:
self.check_invariance(bayesNet.at(0).asGaussian(), continuous)
self.check_invariance(bayesNet.at(0).asGaussian(), values)
self.check_invariance(bayesNet.at(0), values)
self.check_invariance(bayesNet.at(1), values)
self.check_invariance(bayesNet.at(2).asDiscrete(), discrete)
self.check_invariance(bayesNet.at(2).asDiscrete(), values)
self.check_invariance(bayesNet.at(2), values)
def check_invariance(self, conditional, values):
"""Check invariance for given conditional."""
probability = conditional.evaluate(values)
self.assertTrue(probability >= 0.0)
logProb = conditional.logProbability(values)
self.assertAlmostEqual(probability, np.exp(logProb))
expected = conditional.logNormalizationConstant() - conditional.error(values)
self.assertAlmostEqual(logProb, expected)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()