added test for negative error in Huber Robust noise model
parent
d3305d27f4
commit
60f5ee7cf1
|
@ -452,19 +452,24 @@ TEST(NoiseModel, WhitenInPlace)
|
|||
/*
|
||||
* These tests are responsible for testing the weight functions for the m-estimators in GTSAM.
|
||||
* The weight function is related to the analytic derivative of the residual function. See
|
||||
* http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
|
||||
* https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/ZhangIVC-97-01.pdf
|
||||
* for details. This weight function is required when optimizing cost functions with robust
|
||||
* penalties using iteratively re-weighted least squares.
|
||||
*/
|
||||
|
||||
TEST(NoiseModel, robustFunctionHuber)
|
||||
{
|
||||
const double k = 5.0, error1 = 1.0, error2 = 10.0;
|
||||
const double k = 5.0, error1 = 1.0, error2 = 10.0, error3 = -10.0, error4 = -1.0;
|
||||
const mEstimator::Huber::shared_ptr huber = mEstimator::Huber::Create(k);
|
||||
const double weight1 = huber->weight(error1),
|
||||
weight2 = huber->weight(error2);
|
||||
weight2 = huber->weight(error2),
|
||||
weight3 = huber->weight(error3),
|
||||
weight4 = huber->weight(error4);
|
||||
DOUBLES_EQUAL(1.0, weight1, 1e-8);
|
||||
DOUBLES_EQUAL(0.5, weight2, 1e-8);
|
||||
// Test negative value to ensure we take absolute value of error.
|
||||
DOUBLES_EQUAL(0.5, weight3, 1e-8);
|
||||
DOUBLES_EQUAL(1.0, weight4, 1e-8);
|
||||
}
|
||||
|
||||
TEST(NoiseModel, robustFunctionGemanMcClure)
|
||||
|
|
Loading…
Reference in New Issue