Binary Bayes Net, incomplete

release/4.3a0
Manohar Paluri 2009-12-06 21:46:46 +00:00
parent 2a4e90a283
commit 60a3a21d5a
3 changed files with 151 additions and 12 deletions

88
cpp/BinaryConditional.h Normal file
View File

@ -0,0 +1,88 @@
/**
* @file DiscreteConditional.h
* @brief Discrete Conditional node for use in Bayes nets
* @author Manohar Paluri
*/
// \callgraph
#pragma once
#include <list>
#include <string>
#include <iostream>
#include <boost/shared_ptr.hpp>
#include <boost/foreach.hpp> // TODO: make cpp file
#include <boost/serialization/list.hpp>
#include "Conditional.h"
namespace gtsam {
/**
* Conditional node for use in a Bayes net
*/
class BinaryConditional: public Conditional {
private:
std::list<std::string> parents_;
public:
/** convenience typename for a shared pointer to this class */
typedef boost::shared_ptr<BinaryConditional> shared_ptr;
/**
* Empty Constructor to make serialization possible
*/
BinaryConditional(){}
/**
* No parents
*/
BinaryConditional(const std::string& key, double p) :
Conditional(key) {
}
/**
* Single parent
*/
BinaryConditional(const std::string& key, const std::string& parent, const std::vector<double>& cpt) :
Conditional(key) {
parents_.push_back(parent);
}
/** print */
void print(const std::string& s = "BinaryConditional") const {
std::cout << s << " P(" << key_;
if (parents_.size()>0) std::cout << " |";
BOOST_FOREACH(std::string parent, parents_) std::cout << " " << parent;
std::cout << ")" << std::endl;
}
/** check equality */
bool equals(const Conditional& c, double tol = 1e-9) const {
if (!Conditional::equals(c)) return false;
const BinaryConditional* p = dynamic_cast<const BinaryConditional*> (&c);
if (p == NULL) return false;
return parents_ == p->parents_;
}
/** return parents */
std::list<std::string> parents() const { return parents_;}
/** find the number of parents */
size_t nrParents() const {
return parents_.size();
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("Conditional", boost::serialization::base_object<Conditional>(*this));
ar & BOOST_SERIALIZATION_NVP(parents_);
}
};
} /// namespace gtsam

View File

@ -85,6 +85,12 @@ testSymbolicFactorGraph_LDADD = libgtsam.la
testSymbolicBayesNet_SOURCES = $(example) testSymbolicBayesNet.cpp
testSymbolicBayesNet_LDADD = libgtsam.la
# Binary Inference
headers += BinaryConditional.h
check_PROGRAMS += testBinaryBayesNet
testBinaryBayesNet_SOURCES = testBinaryBayesNet.cpp
testBinaryBayesNet_LDADD = libgtsam.la
# Gaussian inference
headers += GaussianFactorSet.h
sources += VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp

View File

@ -1,27 +1,72 @@
/**
* @file testBinaryBayesNet.cpp
* @brief Unit tests for Bayes Tree
* @author Frank Dellaert
* @brief Unit tests for BinaryBayesNet
* @author Manohar Paluri
*/
// STL/C++
#include <iostream>
#include <sstream>
#include <CppUnitLite/TestHarness.h>
#include <boost/tuple/tuple.hpp>
#include <boost/foreach.hpp>
#include <boost/assign/std/vector.hpp> // for operator +=
using namespace boost::assign;
#ifdef HAVE_BOOST_SERIALIZATION
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#endif //HAVE_BOOST_SERIALIZATION
#include "BinaryConditional.h"
#include "BayesNet-inl.h"
#include "smallExample.h"
#include "Ordering.h"
using namespace std;
using namespace gtsam;
/** A Bayes net made from binary conditional probability tables */
typedef BayesNet<BinaryConditional> BinaryBayesNet;
struct BinaryConfig {
bool px_;
bool py_;
BinaryConfig( bool px, bool py ):px_(px), py_(py){}
};
double probability(const BinaryBayesNet& bayesNet, const BinaryConfig& config) {
return 0;
}
/* ************************************************************************* */
TEST( BinaryBayesNet, constructor )
{
map<string,BinaryCPT> tables;
BinaryCPT pA(0.01);tables.insert("A",pA);
BinaryCPT pB("S",0.6,0.3);
BinaryBayesNet binaryBayesNet(tables);
BinaryConfig allFalse(false,false,false,...);
DOUBLES_EQUAL(0.12,binaryBayesNet.probability(allFalse));
// small Bayes Net x <- y
// p(y) = 0.2
// p(x|y=0) = 0.3
// p(x|y=1) = 0.5
// unary conditional for y
boost::shared_ptr<BinaryConditional> py(new BinaryConditional("y",0.2));
// single parent conditional for x
vector<double> cpt;
cpt += 0.3, 0.5; // array index corresponds to binary parent configuration
boost::shared_ptr<BinaryConditional> px_y(new BinaryConditional("x","y",cpt));
// push back conditionals in topological sort order (parents last)
BinaryBayesNet bbn;
bbn.push_back(py);
bbn.push_back(px_y);
// Test probability of 00,01,10,11
//DOUBLES_EQUAL(0.56,probability(bbn,BinaryConfig(false,false)),0.01); // P(y=0)P(x=0|y=0) = 0.8 * 0.7 = 0.56;
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */