Fixed bug: first point (pA) had to be calibrated and it was not.

release/4.3a0
Frank Dellaert 2013-12-24 17:14:28 -05:00
parent 707c745aad
commit 606b9dce5c
2 changed files with 67 additions and 2 deletions

View File

@ -106,7 +106,8 @@ public:
// The homogeneous coordinates of can be written as
// 2R1*(P1-1T2) == 2R1*d*(P1-1T2) == 2R1*((x,y,1)-d*1T2)
// Note that this is just a homography for d==0
Point3 dP1(pA_.x(), pA_.y(), 1);
Point2 xy = K_.calibrate(pA_);
Point3 dP1(xy.x(), xy.y(), 1);
// Project to normalized image coordinates, then uncalibrate
Point2 pi;

View File

@ -20,6 +20,8 @@ using namespace gtsam;
typedef noiseModel::Isotropic::shared_ptr Model;
namespace example1 {
const string filename = findExampleDataFile("5pointExample1.txt");
SfM_data data;
bool readOK = readBAL(filename, data);
@ -207,12 +209,74 @@ TEST (EssentialMatrixFactor2, minimization) {
EssentialMatrix actual = result.at<EssentialMatrix>(100);
EXPECT(assert_equal(trueE, actual,1e-1));
for (size_t i = 0; i < 5; i++)
EXPECT(assert_equal(result.at<LieScalar>(i), truth.at<LieScalar>(i),1e-1));
EXPECT(assert_equal(truth.at<LieScalar>(i),result.at<LieScalar>(i),1e-1));
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
} // namespace example1
//*************************************************************************
namespace example2 {
const string filename = findExampleDataFile("5pointExample2.txt");
SfM_data data;
bool readOK = readBAL(filename, data);
Rot3 aRb = data.cameras[1].pose().rotation();
Point3 aTb = data.cameras[1].pose().translation();
double baseline = 10; // actual baseline of the camera
Point2 pA(size_t i) {
return data.tracks[i].measurements[0].second;
}
Point2 pB(size_t i) {
return data.tracks[i].measurements[1].second;
}
// Matches Cal3Bundler K(500, 0, 0);
Cal3_S2 K(500, 500, 0, 0, 0);
//*************************************************************************
TEST (EssentialMatrixFactor2, extraTest) {
// Additional test with camera moving in positive X direction
// We start with a factor graph and add constraints to it
// Noise sigma is 1, assuming pixel measurements
NonlinearFactorGraph graph;
Model model = noiseModel::Isotropic::Sigma(2, 1);
for (size_t i = 0; i < data.number_tracks(); i++)
graph.add(EssentialMatrixFactor2(100, i, pA(i), pB(i), K, model));
// Check error at ground truth
Values truth;
EssentialMatrix trueE(aRb, aTb);
truth.insert(100, trueE);
for (size_t i = 0; i < data.number_tracks(); i++) {
Point3 P1 = data.tracks[i].p;
truth.insert(i, LieScalar(baseline / P1.z()));
}
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
// Optimize
LevenbergMarquardtParams parameters;
// parameters.setVerbosity("ERROR");
LevenbergMarquardtOptimizer optimizer(graph, truth, parameters);
Values result = optimizer.optimize();
// Check result
EssentialMatrix actual = result.at<EssentialMatrix>(100);
EXPECT(assert_equal(trueE, actual,1e-1));
for (size_t i = 0; i < data.number_tracks(); i++)
EXPECT(assert_equal(truth.at<LieScalar>(i),result.at<LieScalar>(i),1e-1));
// Check error at result
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
}
}
/* ************************************************************************* */
int main() {
TestResult tr;