update all tests to use emplace_shared

release/4.3a0
Varun Agrawal 2024-09-06 10:46:58 -04:00
parent 36c0b931a4
commit 605542bd0c
5 changed files with 94 additions and 85 deletions

View File

@ -43,12 +43,12 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
// Create Gaussian mixture z_i = x0 + noise for each measurement. // Create Gaussian mixture z_i = x0 + noise for each measurement.
for (size_t i = 0; i < num_measurements; i++) { for (size_t i = 0; i < num_measurements; i++) {
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode; const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
bayesNet.emplace_back( bayesNet.emplace_shared<GaussianMixture>(
new GaussianMixture({Z(i)}, {X(0)}, {mode_i}, KeyVector{Z(i)}, KeyVector{X(0)}, DiscreteKeys{mode_i},
{GaussianConditional::sharedMeanAndStddev( std::vector{GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0),
Z(i), I_1x1, X(0), Z_1x1, 0.5), Z_1x1, 0.5),
GaussianConditional::sharedMeanAndStddev( GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0),
Z(i), I_1x1, X(0), Z_1x1, 3)})); Z_1x1, 3)});
} }
// Create prior on X(0). // Create prior on X(0).
@ -58,7 +58,7 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
// Add prior on mode. // Add prior on mode.
const size_t nrModes = manyModes ? num_measurements : 1; const size_t nrModes = manyModes ? num_measurements : 1;
for (size_t i = 0; i < nrModes; i++) { for (size_t i = 0; i < nrModes; i++) {
bayesNet.emplace_back(new DiscreteConditional({M(i), 2}, "4/6")); bayesNet.emplace_shared<DiscreteConditional>(DiscreteKey{M(i), 2}, "4/6");
} }
return bayesNet; return bayesNet;
} }
@ -70,8 +70,7 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
* the generative Bayes net model HybridBayesNet::Example(num_measurements) * the generative Bayes net model HybridBayesNet::Example(num_measurements)
*/ */
inline HybridGaussianFactorGraph createHybridGaussianFactorGraph( inline HybridGaussianFactorGraph createHybridGaussianFactorGraph(
size_t num_measurements = 1, size_t num_measurements = 1, std::optional<VectorValues> measurements = {},
std::optional<VectorValues> measurements = {},
bool manyModes = false) { bool manyModes = false) {
auto bayesNet = createHybridBayesNet(num_measurements, manyModes); auto bayesNet = createHybridBayesNet(num_measurements, manyModes);
if (measurements) { if (measurements) {

View File

@ -227,12 +227,12 @@ static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1,
auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model0), auto c0 = make_shared<GaussianConditional>(z, Vector1(mu0), I_1x1, model0),
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1); c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
auto gm = new GaussianMixture({z}, {}, {m}, {c0, c1});
auto mixing = make_shared<DiscreteConditional>(m, "0.5/0.5");
HybridBayesNet hbn; HybridBayesNet hbn;
hbn.emplace_back(gm); hbn.emplace_shared<GaussianMixture>(KeyVector{z}, KeyVector{},
DiscreteKeys{m}, std::vector{c0, c1});
auto mixing = make_shared<DiscreteConditional>(m, "0.5/0.5");
hbn.push_back(mixing); hbn.push_back(mixing);
return hbn; return hbn;
@ -278,7 +278,7 @@ TEST(GaussianMixtureFactor, GaussianMixtureModel) {
// At the halfway point between the means, we should get P(m|z)=0.5 // At the halfway point between the means, we should get P(m|z)=0.5
HybridBayesNet expected; HybridBayesNet expected;
expected.emplace_back(new DiscreteConditional(m, "0.5/0.5")); expected.emplace_shared<DiscreteConditional>(m, "0.5/0.5");
EXPECT(assert_equal(expected, *bn)); EXPECT(assert_equal(expected, *bn));
} }
@ -350,10 +350,10 @@ TEST(GaussianMixtureFactor, GaussianMixtureModel2) {
// At the halfway point between the means // At the halfway point between the means
HybridBayesNet expected; HybridBayesNet expected;
expected.emplace_back(new DiscreteConditional( expected.emplace_shared<DiscreteConditional>(
m, {}, m, DiscreteKeys{},
vector<double>{prob_m_z(mu1, mu0, sigma1, sigma0, m1_high), vector<double>{prob_m_z(mu1, mu0, sigma1, sigma0, m1_high),
prob_m_z(mu0, mu1, sigma0, sigma1, m1_high)})); prob_m_z(mu0, mu1, sigma0, sigma1, m1_high)});
EXPECT(assert_equal(expected, *bn)); EXPECT(assert_equal(expected, *bn));
} }
@ -401,9 +401,9 @@ static HybridBayesNet CreateBayesNet(double mu0, double mu1, double sigma0,
auto measurement_model = noiseModel::Isotropic::Sigma(1, measurement_sigma); auto measurement_model = noiseModel::Isotropic::Sigma(1, measurement_sigma);
// Add measurement P(z0 | x0) // Add measurement P(z0 | x0)
auto p_z0 = new GaussianConditional(z0, Vector1(0.0), -I_1x1, x0, I_1x1, auto p_z0 = std::make_shared<GaussianConditional>(
measurement_model); z0, Vector1(0.0), -I_1x1, x0, I_1x1, measurement_model);
hbn.emplace_back(p_z0); hbn.push_back(p_z0);
// Add hybrid motion model // Add hybrid motion model
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0); auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
@ -413,19 +413,20 @@ static HybridBayesNet CreateBayesNet(double mu0, double mu1, double sigma0,
c1 = make_shared<GaussianConditional>(x1, Vector1(mu1), I_1x1, x0, c1 = make_shared<GaussianConditional>(x1, Vector1(mu1), I_1x1, x0,
-I_1x1, model1); -I_1x1, model1);
auto motion = new GaussianMixture({x1}, {x0}, {m1}, {c0, c1}); auto motion = std::make_shared<GaussianMixture>(
hbn.emplace_back(motion); KeyVector{x1}, KeyVector{x0}, DiscreteKeys{m1}, std::vector{c0, c1});
hbn.push_back(motion);
if (add_second_measurement) { if (add_second_measurement) {
// Add second measurement // Add second measurement
auto p_z1 = new GaussianConditional(z1, Vector1(0.0), -I_1x1, x1, I_1x1, auto p_z1 = std::make_shared<GaussianConditional>(
measurement_model); z1, Vector1(0.0), -I_1x1, x1, I_1x1, measurement_model);
hbn.emplace_back(p_z1); hbn.push_back(p_z1);
} }
// Discrete uniform prior. // Discrete uniform prior.
auto p_m1 = new DiscreteConditional(m1, "0.5/0.5"); auto p_m1 = std::make_shared<DiscreteConditional>(m1, "0.5/0.5");
hbn.emplace_back(p_m1); hbn.push_back(p_m1);
return hbn; return hbn;
} }

View File

@ -43,7 +43,7 @@ static const DiscreteKey Asia(asiaKey, 2);
// Test creation of a pure discrete Bayes net. // Test creation of a pure discrete Bayes net.
TEST(HybridBayesNet, Creation) { TEST(HybridBayesNet, Creation) {
HybridBayesNet bayesNet; HybridBayesNet bayesNet;
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1")); bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
DiscreteConditional expected(Asia, "99/1"); DiscreteConditional expected(Asia, "99/1");
CHECK(bayesNet.at(0)->asDiscrete()); CHECK(bayesNet.at(0)->asDiscrete());
@ -54,7 +54,7 @@ TEST(HybridBayesNet, Creation) {
// Test adding a Bayes net to another one. // Test adding a Bayes net to another one.
TEST(HybridBayesNet, Add) { TEST(HybridBayesNet, Add) {
HybridBayesNet bayesNet; HybridBayesNet bayesNet;
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1")); bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
HybridBayesNet other; HybridBayesNet other;
other.add(bayesNet); other.add(bayesNet);
@ -65,7 +65,7 @@ TEST(HybridBayesNet, Add) {
// Test evaluate for a pure discrete Bayes net P(Asia). // Test evaluate for a pure discrete Bayes net P(Asia).
TEST(HybridBayesNet, EvaluatePureDiscrete) { TEST(HybridBayesNet, EvaluatePureDiscrete) {
HybridBayesNet bayesNet; HybridBayesNet bayesNet;
bayesNet.emplace_back(new DiscreteConditional(Asia, "4/6")); bayesNet.emplace_shared<DiscreteConditional>(Asia, "4/6");
HybridValues values; HybridValues values;
values.insert(asiaKey, 0); values.insert(asiaKey, 0);
EXPECT_DOUBLES_EQUAL(0.4, bayesNet.evaluate(values), 1e-9); EXPECT_DOUBLES_EQUAL(0.4, bayesNet.evaluate(values), 1e-9);
@ -107,9 +107,10 @@ TEST(HybridBayesNet, evaluateHybrid) {
// Create hybrid Bayes net. // Create hybrid Bayes net.
HybridBayesNet bayesNet; HybridBayesNet bayesNet;
bayesNet.push_back(continuousConditional); bayesNet.push_back(continuousConditional);
bayesNet.emplace_back( bayesNet.emplace_shared<GaussianMixture>(
new GaussianMixture({X(1)}, {}, {Asia}, {conditional0, conditional1})); KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1")); std::vector{conditional0, conditional1});
bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
// Create values at which to evaluate. // Create values at which to evaluate.
HybridValues values; HybridValues values;
@ -167,13 +168,14 @@ TEST(HybridBayesNet, Error) {
conditional1 = std::make_shared<GaussianConditional>( conditional1 = std::make_shared<GaussianConditional>(
X(1), Vector1::Constant(2), I_1x1, model1); X(1), Vector1::Constant(2), I_1x1, model1);
auto gm = auto gm = std::make_shared<GaussianMixture>(
new GaussianMixture({X(1)}, {}, {Asia}, {conditional0, conditional1}); KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
std::vector{conditional0, conditional1});
// Create hybrid Bayes net. // Create hybrid Bayes net.
HybridBayesNet bayesNet; HybridBayesNet bayesNet;
bayesNet.push_back(continuousConditional); bayesNet.push_back(continuousConditional);
bayesNet.emplace_back(gm); bayesNet.push_back(gm);
bayesNet.emplace_back(new DiscreteConditional(Asia, "99/1")); bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
// Create values at which to evaluate. // Create values at which to evaluate.
HybridValues values; HybridValues values;

View File

@ -616,12 +616,12 @@ TEST(HybridEstimation, ModeSelection) {
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(0), Z_1x1, 0.1)); GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(0), Z_1x1, 0.1));
bn.push_back( bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(1), Z_1x1, 0.1)); GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(1), Z_1x1, 0.1));
bn.emplace_back(new GaussianMixture( bn.emplace_shared<GaussianMixture>(
{Z(0)}, {X(0), X(1)}, {mode}, KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
{GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), -I_1x1, X(1), std::vector{GaussianConditional::sharedMeanAndStddev(
Z_1x1, noise_loose), Z(0), I_1x1, X(0), -I_1x1, X(1), Z_1x1, noise_loose),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), -I_1x1, X(1), GaussianConditional::sharedMeanAndStddev(
Z_1x1, noise_tight)})); Z(0), I_1x1, X(0), -I_1x1, X(1), Z_1x1, noise_tight)});
VectorValues vv; VectorValues vv;
vv.insert(Z(0), Z_1x1); vv.insert(Z(0), Z_1x1);
@ -647,12 +647,12 @@ TEST(HybridEstimation, ModeSelection2) {
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(0), Z_3x1, 0.1)); GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(0), Z_3x1, 0.1));
bn.push_back( bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(1), Z_3x1, 0.1)); GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(1), Z_3x1, 0.1));
bn.emplace_back(new GaussianMixture( bn.emplace_shared<GaussianMixture>(
{Z(0)}, {X(0), X(1)}, {mode}, KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
{GaussianConditional::sharedMeanAndStddev(Z(0), I_3x3, X(0), -I_3x3, X(1), std::vector{GaussianConditional::sharedMeanAndStddev(
Z_3x1, noise_loose), Z(0), I_3x3, X(0), -I_3x3, X(1), Z_3x1, noise_loose),
GaussianConditional::sharedMeanAndStddev(Z(0), I_3x3, X(0), -I_3x3, X(1), GaussianConditional::sharedMeanAndStddev(
Z_3x1, noise_tight)})); Z(0), I_3x3, X(0), -I_3x3, X(1), Z_3x1, noise_tight)});
VectorValues vv; VectorValues vv;
vv.insert(Z(0), Z_3x1); vv.insert(Z(0), Z_3x1);

View File

@ -651,7 +651,8 @@ TEST(HybridGaussianFactorGraph, ErrorAndProbPrimeTree) {
} }
/* ****************************************************************************/ /* ****************************************************************************/
// Test hybrid gaussian factor graph errorTree when there is a HybridConditional in the graph // Test hybrid gaussian factor graph errorTree when
// there is a HybridConditional in the graph
TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) { TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
using symbol_shorthand::F; using symbol_shorthand::F;
@ -665,12 +666,11 @@ TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
auto measurement_model = noiseModel::Isotropic::Sigma(1, 2.0); auto measurement_model = noiseModel::Isotropic::Sigma(1, 2.0);
// Set a prior P(x0) at x0=0 // Set a prior P(x0) at x0=0
hbn.emplace_back( hbn.emplace_shared<GaussianConditional>(x0, Vector1(0.0), I_1x1, prior_model);
new GaussianConditional(x0, Vector1(0.0), I_1x1, prior_model));
// Add measurement P(z0 | x0) // Add measurement P(z0 | x0)
hbn.emplace_back(new GaussianConditional(z0, Vector1(0.0), -I_1x1, x0, I_1x1, hbn.emplace_shared<GaussianConditional>(z0, Vector1(0.0), -I_1x1, x0, I_1x1,
measurement_model)); measurement_model);
// Add hybrid motion model // Add hybrid motion model
double mu = 0.0; double mu = 0.0;
@ -681,10 +681,11 @@ TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
x0, -I_1x1, model0), x0, -I_1x1, model0),
c1 = make_shared<GaussianConditional>(f01, Vector1(mu), I_1x1, x1, I_1x1, c1 = make_shared<GaussianConditional>(f01, Vector1(mu), I_1x1, x1, I_1x1,
x0, -I_1x1, model1); x0, -I_1x1, model1);
hbn.emplace_back(new GaussianMixture({f01}, {x0, x1}, {m1}, {c0, c1})); hbn.emplace_shared<GaussianMixture>(KeyVector{f01}, KeyVector{x0, x1},
DiscreteKeys{m1}, std::vector{c0, c1});
// Discrete uniform prior. // Discrete uniform prior.
hbn.emplace_back(new DiscreteConditional(m1, "0.5/0.5")); hbn.emplace_shared<DiscreteConditional>(m1, "0.5/0.5");
VectorValues given; VectorValues given;
given.insert(z0, Vector1(0.0)); given.insert(z0, Vector1(0.0));
@ -804,11 +805,12 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
X(0), Vector1(14.1421), I_1x1 * 2.82843), X(0), Vector1(14.1421), I_1x1 * 2.82843),
conditional1 = std::make_shared<GaussianConditional>( conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.1379), I_1x1 * 2.02759); X(0), Vector1(10.1379), I_1x1 * 2.02759);
expectedBayesNet.emplace_back( expectedBayesNet.emplace_shared<GaussianMixture>(
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1})); KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
// Add prior on mode. // Add prior on mode.
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "74/26")); expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "74/26");
// Test elimination // Test elimination
const auto posterior = fg.eliminateSequential(); const auto posterior = fg.eliminateSequential();
@ -828,18 +830,20 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
HybridBayesNet bn; HybridBayesNet bn;
// Create Gaussian mixture z_0 = x0 + noise for each measurement. // Create Gaussian mixture z_0 = x0 + noise for each measurement.
bn.emplace_back(new GaussianMixture( auto gm = std::make_shared<GaussianMixture>(
{Z(0)}, {X(0)}, {mode}, KeyVector{Z(0)}, KeyVector{X(0)}, DiscreteKeys{mode},
{GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3), std::vector{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
0.5)})); GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1,
0.5)});
bn.push_back(gm);
// Create prior on X(0). // Create prior on X(0).
bn.push_back( bn.push_back(
GaussianConditional::sharedMeanAndStddev(X(0), Vector1(5.0), 0.5)); GaussianConditional::sharedMeanAndStddev(X(0), Vector1(5.0), 0.5));
// Add prior on mode. // Add prior on mode.
bn.emplace_back(new DiscreteConditional(mode, "1/1")); bn.emplace_shared<DiscreteConditional>(mode, "1/1");
// bn.print(); // bn.print();
auto fg = bn.toFactorGraph(measurements); auto fg = bn.toFactorGraph(measurements);
@ -858,11 +862,12 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
X(0), Vector1(10.1379), I_1x1 * 2.02759), X(0), Vector1(10.1379), I_1x1 * 2.02759),
conditional1 = std::make_shared<GaussianConditional>( conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(14.1421), I_1x1 * 2.82843); X(0), Vector1(14.1421), I_1x1 * 2.82843);
expectedBayesNet.emplace_back( expectedBayesNet.emplace_shared<GaussianMixture>(
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1})); KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
// Add prior on mode. // Add prior on mode.
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "1/1")); expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "1/1");
// Test elimination // Test elimination
const auto posterior = fg.eliminateSequential(); const auto posterior = fg.eliminateSequential();
@ -894,11 +899,12 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
X(0), Vector1(17.3205), I_1x1 * 3.4641), X(0), Vector1(17.3205), I_1x1 * 3.4641),
conditional1 = std::make_shared<GaussianConditional>( conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.274), I_1x1 * 2.0548); X(0), Vector1(10.274), I_1x1 * 2.0548);
expectedBayesNet.emplace_back( expectedBayesNet.emplace_shared<GaussianMixture>(
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1})); KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
// Add prior on mode. // Add prior on mode.
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "23/77")); expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "23/77");
// Test elimination // Test elimination
const auto posterior = fg.eliminateSequential(); const auto posterior = fg.eliminateSequential();
@ -940,30 +946,31 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {0, 1, 2}) { for (size_t t : {0, 1, 2}) {
// Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t): // Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t):
const auto noise_mode_t = DiscreteKey{N(t), 2}; const auto noise_mode_t = DiscreteKey{N(t), 2};
bn.emplace_back( bn.emplace_shared<GaussianMixture>(
new GaussianMixture({Z(t)}, {X(t)}, {noise_mode_t}, KeyVector{Z(t)}, KeyVector{X(t)}, DiscreteKeys{noise_mode_t},
{GaussianConditional::sharedMeanAndStddev( std::vector{GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t),
Z(t), I_1x1, X(t), Z_1x1, 0.5), Z_1x1, 0.5),
GaussianConditional::sharedMeanAndStddev( GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t),
Z(t), I_1x1, X(t), Z_1x1, 3.0)})); Z_1x1, 3.0)});
// Create prior on discrete mode N(t): // Create prior on discrete mode N(t):
bn.emplace_back(new DiscreteConditional(noise_mode_t, "20/80")); bn.emplace_shared<DiscreteConditional>(noise_mode_t, "20/80");
} }
// Add motion models: // Add motion models:
for (size_t t : {2, 1}) { for (size_t t : {2, 1}) {
// Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1): // Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1):
const auto motion_model_t = DiscreteKey{M(t), 2}; const auto motion_model_t = DiscreteKey{M(t), 2};
bn.emplace_back( auto gm = std::make_shared<GaussianMixture>(
new GaussianMixture({X(t)}, {X(t - 1)}, {motion_model_t}, KeyVector{X(t)}, KeyVector{X(t - 1)}, DiscreteKeys{motion_model_t},
{GaussianConditional::sharedMeanAndStddev( std::vector{GaussianConditional::sharedMeanAndStddev(
X(t), I_1x1, X(t - 1), Z_1x1, 0.2), X(t), I_1x1, X(t - 1), Z_1x1, 0.2),
GaussianConditional::sharedMeanAndStddev( GaussianConditional::sharedMeanAndStddev(
X(t), I_1x1, X(t - 1), I_1x1, 0.2)})); X(t), I_1x1, X(t - 1), I_1x1, 0.2)});
bn.push_back(gm);
// Create prior on motion model M(t): // Create prior on motion model M(t):
bn.emplace_back(new DiscreteConditional(motion_model_t, "40/60")); bn.emplace_shared<DiscreteConditional>(motion_model_t, "40/60");
} }
// Create Gaussian prior on continuous X(0) using sharedMeanAndStddev: // Create Gaussian prior on continuous X(0) using sharedMeanAndStddev: