Added marginalGaussian to get a marginal on a single variable from a GaussianFactorGraph

release/4.3a0
Richard Roberts 2010-03-04 22:03:40 +00:00
parent badc7b6ee6
commit 5f8b0e9341
2 changed files with 40 additions and 0 deletions

View File

@ -8,6 +8,7 @@
#include "FactorGraph-inl.h"
#include "BayesNet-inl.h"
#include "Key.h"
#include "GaussianFactorGraph.h"
using namespace std;
@ -84,5 +85,37 @@ namespace gtsam {
}
/* ************************************************************************* */
pair<Vector,Matrix> marginalGaussian(const GaussianFactorGraph& fg, const Symbol& key) {
// todo: this does not use colamd!
list<Symbol> ord;
BOOST_FOREACH(const Symbol& k, fg.keys()) {
if(k != key)
ord.push_back(k);
}
Ordering ordering(ord);
// Now make another factor graph where we eliminate all the other variables
GaussianFactorGraph marginal(fg);
marginal.eliminate(ordering);
GaussianFactor::shared_ptr factor;
for(size_t i=0; i<marginal.size(); i++)
if(marginal[i] != NULL) {
factor = marginal[i];
break;
}
if(factor->keys().size() != 1 || factor->keys().front() != key)
throw runtime_error("Didn't get the right marginal!");
VectorConfig mean_cfg(marginal.optimize(Ordering(key)));
Matrix A(factor->get_A(key));
return make_pair(mean_cfg[key], inverse(trans(A)*A));
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -14,6 +14,7 @@
namespace gtsam {
class Ordering;
class GaussianFactorGraph;
// ELIMINATE: FACTOR GRAPH -> BAYES NET
@ -50,4 +51,10 @@ namespace gtsam {
template<class Factor, class Conditional>
FactorGraph<Factor> marginalize(const BayesNet<Conditional>& bn, const Ordering& keys);
/**
* Hacked-together function to compute a Gaussian marginal for the given variable.
* todo: This is inefficient!
*/
std::pair<Vector,Matrix> marginalGaussian(const GaussianFactorGraph& fg, const Symbol& key);
} /// namespace gtsam