Revise according to Frank and David's comments
parent
fbebd3ed69
commit
5f50e740b7
|
|
@ -34,7 +34,7 @@ using Sparse = Eigen::SparseMatrix<double>;
|
|||
template <class Operator>
|
||||
class AcceleratedPowerMethod : public PowerMethod<Operator> {
|
||||
/**
|
||||
* \brief Compute maximum Eigenpair with power method
|
||||
* \brief Compute maximum Eigenpair with accelerated power method
|
||||
*
|
||||
* References :
|
||||
* 1) Rosen, D. and Carlone, L., 2017, September. Computational
|
||||
|
|
@ -46,8 +46,9 @@ class AcceleratedPowerMethod : public PowerMethod<Operator> {
|
|||
* stochastic power iteration,” in Proc. Mach. Learn. Res., no. 84, 2018, pp.
|
||||
* 58–67
|
||||
*
|
||||
* It performs the following iteration: \f$ x_{k+1} = A * x_k + \beta *
|
||||
* x_{k-1} \f$ where A is the certificate matrix, x is the Ritz vector
|
||||
* It performs the following iteration: \f$ x_{k+1} = A * x_k - \beta *
|
||||
* x_{k-1} \f$ where A is the aim matrix we want to get eigenpair of, x is the
|
||||
* Ritz vector
|
||||
*
|
||||
*/
|
||||
|
||||
|
|
@ -59,46 +60,52 @@ class AcceleratedPowerMethod : public PowerMethod<Operator> {
|
|||
// Constructor from aim matrix A (given as Matrix or Sparse), optional intial
|
||||
// vector as ritzVector
|
||||
explicit AcceleratedPowerMethod(
|
||||
const Operator &A, const boost::optional<Vector> initial = boost::none)
|
||||
const Operator &A, const boost::optional<Vector> initial = boost::none,
|
||||
const double initialBeta = 0.0)
|
||||
: PowerMethod<Operator>(A, initial) {
|
||||
Vector x0;
|
||||
// initialize ritz vector
|
||||
x0 = initial ? Vector::Random(this->dim_) : initial.get();
|
||||
x0 = initial ? initial.get() : Vector::Random(this->dim_);
|
||||
Vector x00 = Vector::Random(this->dim_);
|
||||
x0.normalize();
|
||||
x00.normalize();
|
||||
|
||||
// initialize Ritz eigen vector and previous vector
|
||||
previousVector_ = update(x0, x00, beta_);
|
||||
this->ritzVector_ = update(previousVector_, x0, beta_);
|
||||
this->perturb();
|
||||
previousVector_ = powerIteration(x0, x00, beta_);
|
||||
this->ritzVector_ = powerIteration(previousVector_, x0, beta_);
|
||||
|
||||
// set beta
|
||||
Vector init_resid = this->ritzVector_;
|
||||
const double up = init_resid.transpose() * this->A_ * init_resid;
|
||||
const double down = init_resid.transpose().dot(init_resid);
|
||||
const double mu = up / down;
|
||||
beta_ = mu * mu / 4;
|
||||
setBeta();
|
||||
// initialize beta_
|
||||
if (!initialBeta) {
|
||||
estimateBeta();
|
||||
} else {
|
||||
beta_ = initialBeta;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Update the ritzVector with beta and previous two ritzVector
|
||||
Vector update(const Vector &x1, const Vector &x0, const double beta) const {
|
||||
Vector powerIteration(const Vector &x1, const Vector &x0,
|
||||
const double beta) const {
|
||||
Vector y = this->A_ * x1 - beta * x0;
|
||||
y.normalize();
|
||||
return y;
|
||||
}
|
||||
|
||||
// Update the ritzVector with beta and previous two ritzVector
|
||||
Vector update() const {
|
||||
Vector y = update(this->ritzVector_, previousVector_, beta_);
|
||||
Vector powerIteration() const {
|
||||
Vector y = powerIteration(this->ritzVector_, previousVector_, beta_);
|
||||
previousVector_ = this->ritzVector_;
|
||||
return y;
|
||||
}
|
||||
|
||||
// Tuning the momentum beta using the Best Heavy Ball algorithm in Ref(3)
|
||||
void setBeta() {
|
||||
double maxBeta = beta_;
|
||||
void estimateBeta() {
|
||||
// set beta
|
||||
Vector init_resid = this->ritzVector_;
|
||||
const double up = init_resid.transpose() * this->A_ * init_resid;
|
||||
const double down = init_resid.transpose().dot(init_resid);
|
||||
const double mu = up / down;
|
||||
double maxBeta = mu * mu / 4;
|
||||
size_t maxIndex;
|
||||
std::vector<double> betas = {2 / 3 * maxBeta, 0.99 * maxBeta, maxBeta,
|
||||
1.01 * maxBeta, 1.5 * maxBeta};
|
||||
|
|
@ -110,10 +117,10 @@ class AcceleratedPowerMethod : public PowerMethod<Operator> {
|
|||
if (j < 2) {
|
||||
Vector x0 = this->ritzVector_;
|
||||
Vector x00 = previousVector_;
|
||||
R.col(0) = update(x0, x00, betas[k]);
|
||||
R.col(1) = update(R.col(0), x0, betas[k]);
|
||||
R.col(0) = powerIteration(x0, x00, betas[k]);
|
||||
R.col(1) = powerIteration(R.col(0), x0, betas[k]);
|
||||
} else {
|
||||
R.col(j) = update(R.col(j - 1), R.col(j - 2), betas[k]);
|
||||
R.col(j) = powerIteration(R.col(j - 1), R.col(j - 2), betas[k]);
|
||||
}
|
||||
}
|
||||
const Vector x = R.col(9);
|
||||
|
|
|
|||
|
|
@ -46,8 +46,8 @@ class PowerMethod {
|
|||
|
||||
size_t nrIterations_; // number of iterations
|
||||
|
||||
double ritzValue_; // all Ritz eigenvalues
|
||||
Vector ritzVector_; // all Ritz eigenvectors
|
||||
double ritzValue_; // Ritz eigenvalue
|
||||
Vector ritzVector_; // Ritz eigenvector
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
|
|
@ -55,85 +55,61 @@ class PowerMethod {
|
|||
const boost::optional<Vector> initial = boost::none)
|
||||
: A_(A), dim_(A.rows()), nrIterations_(0) {
|
||||
Vector x0;
|
||||
x0 = initial ? Vector::Random(dim_) : initial.get();
|
||||
x0 = initial ? initial.get() : Vector::Random(dim_);
|
||||
x0.normalize();
|
||||
|
||||
// initialize Ritz eigen values
|
||||
// initialize Ritz eigen value
|
||||
ritzValue_ = 0.0;
|
||||
|
||||
// initialize Ritz eigen vectors
|
||||
ritzVector_ = Vector::Zero(dim_);
|
||||
|
||||
ritzVector_.col(0) = update(x0);
|
||||
perturb();
|
||||
ritzVector_ = powerIteration(x0);
|
||||
}
|
||||
|
||||
// Update the vector by dot product with A_
|
||||
Vector update(const Vector &x) const {
|
||||
Vector powerIteration(const Vector &x) const {
|
||||
Vector y = A_ * x;
|
||||
y.normalize();
|
||||
return y;
|
||||
}
|
||||
|
||||
// Update the vector by dot product with A_
|
||||
Vector update() const { return update(ritzVector_); }
|
||||
Vector powerIteration() const { return powerIteration(ritzVector_); }
|
||||
|
||||
// Perturb the initial ritzvector
|
||||
void perturb() {
|
||||
// generate a 0.03*||x_0||_2 as stated in David's paper
|
||||
std::mt19937 rng(42);
|
||||
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
|
||||
|
||||
int n = dim_;
|
||||
// Vector disturb(n);
|
||||
// for (int i = 0; i < n; ++i) {
|
||||
// disturb(i) = uniform01(rng);
|
||||
// }
|
||||
Vector disturb = Vector::Random(n);
|
||||
disturb.normalize();
|
||||
|
||||
Vector x0 = ritzVector_;
|
||||
double magnitude = x0.norm();
|
||||
ritzVector_ = x0 + 0.03 * magnitude * disturb;
|
||||
}
|
||||
|
||||
// Perform power iteration on a single Ritz value
|
||||
// Updates ritzValue_
|
||||
bool iterateOne(double tol) {
|
||||
// After Perform power iteration on a single Ritz value, if the error is less
|
||||
// than the tol then return true else false
|
||||
bool converged(double tol) {
|
||||
const Vector x = ritzVector_;
|
||||
double theta = x.transpose() * A_ * x;
|
||||
|
||||
// store the Ritz eigen value
|
||||
ritzValue_ = theta;
|
||||
|
||||
const Vector diff = A_ * x - theta * x;
|
||||
double error = diff.norm();
|
||||
ritzValue_ = x.dot(A_ * x);
|
||||
double error = (A_ * x - ritzValue_ * x).norm();
|
||||
return error < tol;
|
||||
}
|
||||
|
||||
// Return the number of iterations
|
||||
size_t nrIterations() const { return nrIterations_; }
|
||||
|
||||
// Start the iteration until the ritz error converge
|
||||
int compute(int maxIterations, double tol) {
|
||||
// Start the power/accelerated iteration, after updated the ritz vector,
|
||||
// calculate the ritz error, repeat this operation until the ritz error converge
|
||||
int compute(size_t maxIterations, double tol) {
|
||||
// Starting
|
||||
int nrConverged = 0;
|
||||
bool isConverged = false;
|
||||
|
||||
for (int i = 0; i < maxIterations; i++) {
|
||||
nrIterations_ += 1;
|
||||
ritzVector_ = update();
|
||||
nrConverged = iterateOne(tol);
|
||||
if (nrConverged) break;
|
||||
for (size_t i = 0; i < maxIterations; i++) {
|
||||
++nrIterations_ ;
|
||||
ritzVector_ = powerIteration();
|
||||
isConverged = converged(tol);
|
||||
if (isConverged) return isConverged;
|
||||
}
|
||||
|
||||
return std::min(1, nrConverged);
|
||||
return isConverged;
|
||||
}
|
||||
|
||||
// Return the eigenvalue
|
||||
double eigenvalues() const { return ritzValue_; }
|
||||
double eigenvalue() const { return ritzValue_; }
|
||||
|
||||
// Return the eigenvector
|
||||
const Vector eigenvectors() const { return ritzVector_; }
|
||||
Vector eigenvector() const { return ritzVector_; }
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -471,14 +471,40 @@ Sparse ShonanAveraging<d>::computeA(const Values &values) const {
|
|||
return Lambda - Q_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <size_t d>
|
||||
Sparse ShonanAveraging<d>::computeA(const Matrix &S) const {
|
||||
auto Lambda = computeLambda(S);
|
||||
return Lambda - Q_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Perturb the initial initialVector by adding a spherically-uniformly
|
||||
// distributed random vector with 0.03*||initialVector||_2 magnitude to
|
||||
// initialVector
|
||||
Vector perturb(const Vector &initialVector) {
|
||||
// generate a 0.03*||x_0||_2 as stated in David's paper
|
||||
int n = initialVector.rows();
|
||||
Vector disturb = Vector::Random(n);
|
||||
disturb.normalize();
|
||||
|
||||
double magnitude = initialVector.norm();
|
||||
Vector perturbedVector = initialVector + 0.03 * magnitude * disturb;
|
||||
perturbedVector.normalize();
|
||||
return perturbedVector;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/// MINIMUM EIGENVALUE COMPUTATIONS
|
||||
// Alg.6 from paper Distributed Certifiably Correct Pose-Graph Optimization,
|
||||
// it takes in the certificate matrix A as input, the maxIterations and the
|
||||
// minEigenvalueNonnegativityTolerance is set to 1000 and 10e-4 ad default,
|
||||
// Alg.6 from paper Distributed Certifiably Correct Pose-Graph Optimization,
|
||||
// it takes in the certificate matrix A as input, the maxIterations and the
|
||||
// minEigenvalueNonnegativityTolerance is set to 1000 and 10e-4 ad default,
|
||||
// there are two parts
|
||||
// in this algorithm:
|
||||
// (1)
|
||||
// (1) compute the maximum eigenpair (\lamda_dom, \vect{v}_dom) of A by power
|
||||
// method. if \lamda_dom is less than zero, then return the eigenpair. (2)
|
||||
// compute the maximum eigenpair (\theta, \vect{v}) of C = \lamda_dom * I - A by
|
||||
// accelerated power method. Then return (\lamda_dom - \theta, \vect{v}).
|
||||
static bool PowerMinimumEigenValue(
|
||||
const Sparse &A, const Matrix &S, double *minEigenValue,
|
||||
Vector *minEigenVector = 0, size_t *numIterations = 0,
|
||||
|
|
@ -486,39 +512,39 @@ static bool PowerMinimumEigenValue(
|
|||
double minEigenvalueNonnegativityTolerance = 10e-4) {
|
||||
|
||||
// a. Compute dominant eigenpair of S using power method
|
||||
const boost::optional<Vector> initial(S.row(0));
|
||||
PowerMethod<Sparse> lmOperator(A, initial);
|
||||
PowerMethod<Sparse> lmOperator(A);
|
||||
|
||||
const int lmConverged = lmOperator.compute(
|
||||
const bool lmConverged = lmOperator.compute(
|
||||
maxIterations, 1e-5);
|
||||
|
||||
// Check convergence and bail out if necessary
|
||||
if (lmConverged != 1) return false;
|
||||
if (!lmConverged) return false;
|
||||
|
||||
const double lmEigenValue = lmOperator.eigenvalues();
|
||||
const double lmEigenValue = lmOperator.eigenvalue();
|
||||
|
||||
if (lmEigenValue < 0) {
|
||||
// The largest-magnitude eigenvalue is negative, and therefore also the
|
||||
// minimum eigenvalue, so just return this solution
|
||||
*minEigenValue = lmEigenValue;
|
||||
if (minEigenVector) {
|
||||
*minEigenVector = lmOperator.eigenvectors();
|
||||
*minEigenVector = lmOperator.eigenvector();
|
||||
minEigenVector->normalize(); // Ensure that this is a unit vector
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
const Sparse C = lmEigenValue * Matrix::Identity(A.rows(), A.cols()) - A;
|
||||
const boost::optional<Vector> initial = perturb(S.row(0));
|
||||
AcceleratedPowerMethod<Sparse> minShiftedOperator(C, initial);
|
||||
|
||||
const int minConverged = minShiftedOperator.compute(
|
||||
const bool minConverged = minShiftedOperator.compute(
|
||||
maxIterations, minEigenvalueNonnegativityTolerance / lmEigenValue);
|
||||
|
||||
if (minConverged != 1) return false;
|
||||
if (!minConverged) return false;
|
||||
|
||||
*minEigenValue = lmEigenValue - minShiftedOperator.eigenvalues();
|
||||
*minEigenValue = lmEigenValue - minShiftedOperator.eigenvalue();
|
||||
if (minEigenVector) {
|
||||
*minEigenVector = minShiftedOperator.eigenvectors();
|
||||
*minEigenVector = minShiftedOperator.eigenvector();
|
||||
minEigenVector->normalize(); // Ensure that this is a unit vector
|
||||
}
|
||||
if (numIterations) *numIterations = minShiftedOperator.nrIterations();
|
||||
|
|
@ -669,13 +695,6 @@ static bool SparseMinimumEigenValue(
|
|||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <size_t d>
|
||||
Sparse ShonanAveraging<d>::computeA(const Matrix &S) const {
|
||||
auto Lambda = computeLambda(S);
|
||||
return Lambda - Q_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <size_t d>
|
||||
double ShonanAveraging<d>::computeMinEigenValue(const Values &values,
|
||||
|
|
|
|||
Loading…
Reference in New Issue