ScenarioRunner used to sumulate noise
							parent
							
								
									8e54e00348
								
							
						
					
					
						commit
						5f491ac52f
					
				| 
						 | 
				
			
			@ -13,6 +13,17 @@ from gtsam_utils import plotPose3
 | 
			
		|||
 | 
			
		||||
class ImuFactorExample(object):
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def defaultParams(g):
 | 
			
		||||
        """Create default parameters with Z *up* and realistic noise parameters"""
 | 
			
		||||
        params = gtsam.PreintegrationParams.MakeSharedU(g)
 | 
			
		||||
        kGyroSigma = math.radians(0.5) / 60  # 0.5 degree ARW
 | 
			
		||||
        kAccelSigma = 0.1 / 60  # 10 cm VRW
 | 
			
		||||
        params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float)
 | 
			
		||||
        params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float)
 | 
			
		||||
        params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float)
 | 
			
		||||
        return params
 | 
			
		||||
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        # setup interactive plotting
 | 
			
		||||
        plt.ion()
 | 
			
		||||
| 
						 | 
				
			
			@ -21,58 +32,76 @@ class ImuFactorExample(object):
 | 
			
		|||
        # Forward velocity 2m/s
 | 
			
		||||
        # Pitch up with angular velocity 6 degree/sec (negative in FLU)
 | 
			
		||||
        v = 2
 | 
			
		||||
        w = math.radians(6)
 | 
			
		||||
        w = math.radians(30)
 | 
			
		||||
        W = np.array([0, -w, 0])
 | 
			
		||||
        V = np.array([v, 0, 0])
 | 
			
		||||
        self.scenario = gtsam.ConstantTwistScenario(W, V)
 | 
			
		||||
        self.dt = 0.5
 | 
			
		||||
        self.realTimeFactor = 10.0
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
        # Calculate time to do 1 loop
 | 
			
		||||
        self.radius = v / w
 | 
			
		||||
        self.timeForOneLoop = 2 * math.pi / w
 | 
			
		||||
        self.labels = list('xyz')
 | 
			
		||||
        self.colors = list('rgb')
 | 
			
		||||
 | 
			
		||||
    def plot(self, t, pose, omega_b, acceleration_n, acceleration_b):
 | 
			
		||||
        # Create runner
 | 
			
		||||
        dt = 0.1
 | 
			
		||||
        self.g = 10  # simple gravity constant
 | 
			
		||||
        self.params = self.defaultParams(self.g)
 | 
			
		||||
        self.runner = gtsam.ScenarioRunner(gtsam.ScenarioPointer(self.scenario), self.params, dt)
 | 
			
		||||
 | 
			
		||||
    def plot(self, t, measuredOmega, measuredAcc):
 | 
			
		||||
        # plot angular velocity    
 | 
			
		||||
        omega_b = self.scenario.omega_b(t)
 | 
			
		||||
        plt.figure(1)
 | 
			
		||||
        for i, (label, color) in enumerate(zip(self.labels, self.colors)):
 | 
			
		||||
            plt.subplot(3, 1, i + 1)
 | 
			
		||||
            plt.scatter(t, omega_b[i], color=color, marker='.')
 | 
			
		||||
            plt.scatter(t, omega_b[i], color='k', marker='.')
 | 
			
		||||
            plt.scatter(t, measuredOmega[i], color=color, marker='.')
 | 
			
		||||
            plt.xlabel(label)
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
        # plot acceleration in nav
 | 
			
		||||
        plt.figure(2)
 | 
			
		||||
        acceleration_n = self.scenario.acceleration_n(t)
 | 
			
		||||
        for i, (label, color) in enumerate(zip(self.labels, self.colors)):
 | 
			
		||||
            plt.subplot(3, 1, i + 1)
 | 
			
		||||
            plt.scatter(t, acceleration_n[i], color=color, marker='.')
 | 
			
		||||
            plt.xlabel(label)
 | 
			
		||||
            
 | 
			
		||||
 | 
			
		||||
        # plot acceleration in body
 | 
			
		||||
        plt.figure(3)
 | 
			
		||||
        acceleration_b = self.scenario.acceleration_b(t)
 | 
			
		||||
        for i, (label, color) in enumerate(zip(self.labels, self.colors)):
 | 
			
		||||
            plt.subplot(3, 1, i + 1)
 | 
			
		||||
            plt.scatter(t, acceleration_b[i], color=color, marker='.')
 | 
			
		||||
            plt.xlabel(label)
 | 
			
		||||
            
 | 
			
		||||
        # plot ground truth
 | 
			
		||||
 | 
			
		||||
        # plot ground truth pose
 | 
			
		||||
        pose = self.scenario.pose(t)
 | 
			
		||||
        plotPose3(4, pose, 1.0)
 | 
			
		||||
        ax = plt.gca()
 | 
			
		||||
        ax.set_xlim3d(-self.radius, self.radius)
 | 
			
		||||
        ax.set_ylim3d(-self.radius, self.radius)
 | 
			
		||||
        ax.set_zlim3d(0, self.radius * 2)
 | 
			
		||||
 | 
			
		||||
        # plot actual specific force, as well as corrupted
 | 
			
		||||
        plt.figure(5)
 | 
			
		||||
        actual = self.runner.actualSpecificForce(t)
 | 
			
		||||
        for i, (label, color) in enumerate(zip(self.labels, self.colors)):
 | 
			
		||||
            plt.subplot(3, 1, i + 1)
 | 
			
		||||
            plt.scatter(t, actual[i], color='k', marker='.')
 | 
			
		||||
            plt.scatter(t, measuredAcc[i], color=color, marker='.')
 | 
			
		||||
            plt.xlabel(label)
 | 
			
		||||
 | 
			
		||||
        plt.pause(self.dt / self.realTimeFactor)
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        # simulate the loop up to the top
 | 
			
		||||
        for t in np.arange(0, self.timeForOneLoop, self.dt):
 | 
			
		||||
            self.plot(t,
 | 
			
		||||
                      self.scenario.pose(t),
 | 
			
		||||
                      self.scenario.omega_b(t),
 | 
			
		||||
                      self.scenario.acceleration_n(t),
 | 
			
		||||
                      self.scenario.acceleration_b(t))
 | 
			
		||||
            measuredOmega = self.runner.measuredAngularVelocity(t)
 | 
			
		||||
            measuredAcc = self.runner.measuredSpecificForce(t)
 | 
			
		||||
            self.plot(t, measuredOmega, measuredAcc)
 | 
			
		||||
 | 
			
		||||
        plt.ioff()
 | 
			
		||||
        plt.show()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue