IntegrationMatrix and DoubleIntegrationWeights
parent
e32ccdfec7
commit
5ef8c0ae1a
|
@ -17,6 +17,9 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <gtsam/basis/Chebyshev2.h>
|
#include <gtsam/basis/Chebyshev2.h>
|
||||||
|
|
||||||
|
#include <Eigen/Dense>
|
||||||
|
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
@ -93,24 +96,20 @@ namespace {
|
||||||
// Helper function to calculate a row of the differentiation matrix, [-1,1] interval
|
// Helper function to calculate a row of the differentiation matrix, [-1,1] interval
|
||||||
Vector differentiationMatrixRow(size_t N, const Vector& points, size_t i) {
|
Vector differentiationMatrixRow(size_t N, const Vector& points, size_t i) {
|
||||||
Vector row(N);
|
Vector row(N);
|
||||||
|
const size_t K = N - 1;
|
||||||
double xi = points(i);
|
double xi = points(i);
|
||||||
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
|
|
||||||
for (size_t j = 0; j < N; j++) {
|
for (size_t j = 0; j < N; j++) {
|
||||||
if (i == 0 && j == 0) {
|
if (i == j) {
|
||||||
// we reverse the sign since we order the cheb points from -1 to 1
|
// Diagonal elements
|
||||||
row(j) = -(ci * (N - 1) * (N - 1) + 1) / 6.0;
|
if (i == 0 || i == K)
|
||||||
}
|
row(j) = (i == 0 ? -1 : 1) * (2.0 * K * K + 1) / 6.0;
|
||||||
else if (i == N - 1 && j == N - 1) {
|
else
|
||||||
// we reverse the sign since we order the cheb points from -1 to 1
|
row(j) = -xi / (2.0 * (1.0 - xi * xi));
|
||||||
row(j) = (ci * (N - 1) * (N - 1) + 1) / 6.0;
|
|
||||||
}
|
|
||||||
else if (i == j) {
|
|
||||||
double xi2 = xi * xi;
|
|
||||||
row(j) = -xi / (2 * (1 - xi2));
|
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
double xj = points(j);
|
double xj = points(j);
|
||||||
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
|
double ci = (i == 0 || i == K) ? 2. : 1.;
|
||||||
|
double cj = (j == 0 || j == K) ? 2. : 1.;
|
||||||
double t = ((i + j) % 2) == 0 ? 1 : -1;
|
double t = ((i + j) % 2) == 0 ? 1 : -1;
|
||||||
row(j) = (ci / cj) * t / (xi - xj);
|
row(j) = (ci / cj) * t / (xi - xj);
|
||||||
}
|
}
|
||||||
|
@ -225,6 +224,43 @@ Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a, dou
|
||||||
return DifferentiationMatrix(N) / ((b - a) / 2.0);
|
return DifferentiationMatrix(N) / ((b - a) / 2.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Matrix Chebyshev2::IntegrationMatrix(size_t N) {
|
||||||
|
// Obtain the differentiation matrix.
|
||||||
|
const Matrix D = DifferentiationMatrix(N);
|
||||||
|
|
||||||
|
// Compute the pseudo-inverse of the differentiation matrix.
|
||||||
|
Eigen::JacobiSVD<Matrix> svd(D, Eigen::ComputeThinU | Eigen::ComputeThinV);
|
||||||
|
const auto& S = svd.singularValues();
|
||||||
|
Matrix invS = Matrix::Zero(N, N);
|
||||||
|
for (int i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i);
|
||||||
|
Matrix P = svd.matrixV() * invS * svd.matrixU().transpose();
|
||||||
|
|
||||||
|
// Return a version of P that makes sure (P*f)(0) = 0.
|
||||||
|
const Weights row0 = P.row(0);
|
||||||
|
P.rowwise() -= row0;
|
||||||
|
return P;
|
||||||
|
}
|
||||||
|
|
||||||
|
Matrix Chebyshev2::IntegrationMatrix(size_t N, double a, double b) {
|
||||||
|
return IntegrationMatrix(N) * (b - a) / 2.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
Trefethen00book, pg 128, clencurt.m
|
||||||
|
Note that N in clencurt.m is 1 less than our N, we call it K below.
|
||||||
|
K = N-1;
|
||||||
|
theta = pi*(0:K)'/K;
|
||||||
|
w = zeros(1,N); ii = 2:K; v = ones(K-1, 1);
|
||||||
|
if mod(K,2) == 0
|
||||||
|
w(1) = 1/(K^2-1); w(N) = w(1);
|
||||||
|
for k=1:K/2-1, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||||
|
v = v - cos(K*theta(ii))/(K^2-1);
|
||||||
|
else
|
||||||
|
w(1) = 1/K^2; w(N) = w(1);
|
||||||
|
for k=1:K/2, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||||
|
end
|
||||||
|
w(ii) = 2*v/K;
|
||||||
|
*/
|
||||||
Weights Chebyshev2::IntegrationWeights(size_t N) {
|
Weights Chebyshev2::IntegrationWeights(size_t N) {
|
||||||
Weights weights(N);
|
Weights weights(N);
|
||||||
const size_t K = N - 1, // number of intervals between N points
|
const size_t K = N - 1, // number of intervals between N points
|
||||||
|
@ -254,17 +290,14 @@ Weights Chebyshev2::IntegrationWeights(size_t N, double a, double b) {
|
||||||
return IntegrationWeights(N) * (b - a) / 2.0;
|
return IntegrationWeights(N) * (b - a) / 2.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix Chebyshev2::IntegrationMatrix(size_t N) {
|
Weights Chebyshev2::DoubleIntegrationWeights(size_t N) {
|
||||||
// Obtain the differentiation matrix.
|
// we have w * P, where w are the Clenshaw-Curtis weights and P is the integration matrix
|
||||||
Matrix D = DifferentiationMatrix(N);
|
// But P does not by default return a function starting at zero.
|
||||||
|
return Chebyshev2::IntegrationWeights(N) * Chebyshev2::IntegrationMatrix(N);
|
||||||
|
}
|
||||||
|
|
||||||
// We want f = D * F, where F is the anti-derivative of f.
|
Weights Chebyshev2::DoubleIntegrationWeights(size_t N, double a, double b) {
|
||||||
// However, D is singular, so we enforce F(0) = f(0) by modifying its first row.
|
return Chebyshev2::IntegrationWeights(N, a, b) * Chebyshev2::IntegrationMatrix(N, a, b);
|
||||||
D.row(0).setZero();
|
|
||||||
D(0, 0) = 1.0;
|
|
||||||
|
|
||||||
// Now D is invertible; its inverse is the integration operator.
|
|
||||||
return D.inverse();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -102,19 +102,32 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
||||||
/// Compute D = differentiation matrix, for interval [a,b]
|
/// Compute D = differentiation matrix, for interval [a,b]
|
||||||
static DiffMatrix DifferentiationMatrix(size_t N, double a, double b);
|
static DiffMatrix DifferentiationMatrix(size_t N, double a, double b);
|
||||||
|
|
||||||
|
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P such that for any f,
|
||||||
|
/// F = P * f recovers F (the antiderivative) satisfying f = D * F and F(0)=0.
|
||||||
|
static Matrix IntegrationMatrix(size_t N);
|
||||||
|
|
||||||
|
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P for interval [a,b]
|
||||||
|
static Matrix IntegrationMatrix(size_t N, double a, double b);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Evaluate Clenshaw-Curtis integration weights.
|
* Calculate Clenshaw-Curtis integration weights.
|
||||||
* Trefethen00book, pg 128, clencurt.m
|
* Trefethen00book, pg 128, clencurt.m
|
||||||
* Note that N in clencurt.m is 1 less than our N
|
* Note that N in clencurt.m is 1 less than our N
|
||||||
*/
|
*/
|
||||||
static Weights IntegrationWeights(size_t N);
|
static Weights IntegrationWeights(size_t N);
|
||||||
|
|
||||||
/// Evaluate Clenshaw-Curtis integration weights, for interval [a,b]
|
/// Calculate Clenshaw-Curtis integration weights, for interval [a,b]
|
||||||
static Weights IntegrationWeights(size_t N, double a, double b);
|
static Weights IntegrationWeights(size_t N, double a, double b);
|
||||||
|
|
||||||
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P such that for any f,
|
/**
|
||||||
/// F = P * f recovers F (the antiderivative) satisfying f = D * F and F(0)=0.
|
* Calculate Double Clenshaw-Curtis integration weights
|
||||||
static Matrix IntegrationMatrix(size_t N);
|
* We compute them as W * P, where W are the Clenshaw-Curtis weights and P is
|
||||||
|
* the integration matrix.
|
||||||
|
*/
|
||||||
|
static Weights DoubleIntegrationWeights(size_t N);
|
||||||
|
|
||||||
|
/// Calculate Double Clenshaw-Curtis integration weights, for interval [a,b]
|
||||||
|
static Weights DoubleIntegrationWeights(size_t N, double a, double b);
|
||||||
|
|
||||||
/// Create matrix of values at Chebyshev points given vector-valued function.
|
/// Create matrix of values at Chebyshev points given vector-valued function.
|
||||||
static Vector vector(std::function<double(double)> f,
|
static Vector vector(std::function<double(double)> f,
|
||||||
|
|
|
@ -28,15 +28,8 @@
|
||||||
#include <cstddef>
|
#include <cstddef>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
namespace {
|
|
||||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
|
|
||||||
|
|
||||||
const size_t N = 32;
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
TEST(Chebyshev2, Point) {
|
TEST(Chebyshev2, Point) {
|
||||||
static const int N = 5;
|
static const int N = 5;
|
||||||
|
@ -77,7 +70,7 @@ TEST(Chebyshev2, PointInInterval) {
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
// InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, 0.5]
|
// InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, 0.5]
|
||||||
TEST(Chebyshev2, Interpolate2) {
|
TEST(Chebyshev2, Interpolate2) {
|
||||||
size_t N = 3;
|
const size_t N = 3;
|
||||||
Chebyshev2::EvaluationFunctor fx(N, 0.5);
|
Chebyshev2::EvaluationFunctor fx(N, 0.5);
|
||||||
Vector f(N);
|
Vector f(N);
|
||||||
f << 4, 2, 6;
|
f << 4, 2, 6;
|
||||||
|
@ -131,6 +124,7 @@ TEST(Chebyshev2, InterpolateVector) {
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
// Interpolating poses using the exponential map
|
// Interpolating poses using the exponential map
|
||||||
TEST(Chebyshev2, InterpolatePose2) {
|
TEST(Chebyshev2, InterpolatePose2) {
|
||||||
|
const size_t N = 32;
|
||||||
double t = 30, a = 0, b = 100;
|
double t = 30, a = 0, b = 100;
|
||||||
|
|
||||||
Matrix X(3, N);
|
Matrix X(3, N);
|
||||||
|
@ -160,6 +154,7 @@ TEST(Chebyshev2, InterpolatePose2) {
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
// Interpolating poses using the exponential map
|
// Interpolating poses using the exponential map
|
||||||
TEST(Chebyshev2, InterpolatePose3) {
|
TEST(Chebyshev2, InterpolatePose3) {
|
||||||
|
const size_t N = 32;
|
||||||
double a = 10, b = 100;
|
double a = 10, b = 100;
|
||||||
double t = Chebyshev2::Points(N, a, b)(11);
|
double t = Chebyshev2::Points(N, a, b)(11);
|
||||||
|
|
||||||
|
@ -197,7 +192,7 @@ TEST(Chebyshev2, Decomposition) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Do Chebyshev Decomposition
|
// Do Chebyshev Decomposition
|
||||||
FitBasis<Chebyshev2> actual(sequence, model, 3);
|
FitBasis<Chebyshev2> actual(sequence, nullptr, 3);
|
||||||
|
|
||||||
// Check
|
// Check
|
||||||
Vector expected(3);
|
Vector expected(3);
|
||||||
|
@ -255,6 +250,7 @@ double fprime(double x) {
|
||||||
|
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
TEST(Chebyshev2, CalculateWeights) {
|
TEST(Chebyshev2, CalculateWeights) {
|
||||||
|
const size_t N = 32;
|
||||||
Vector fvals = Chebyshev2::vector(f, N);
|
Vector fvals = Chebyshev2::vector(f, N);
|
||||||
double x1 = 0.7, x2 = -0.376;
|
double x1 = 0.7, x2 = -0.376;
|
||||||
Weights weights1 = Chebyshev2::CalculateWeights(N, x1);
|
Weights weights1 = Chebyshev2::CalculateWeights(N, x1);
|
||||||
|
@ -264,6 +260,7 @@ Vector fvals = Chebyshev2::vector(f, N);
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(Chebyshev2, CalculateWeights2) {
|
TEST(Chebyshev2, CalculateWeights2) {
|
||||||
|
const size_t N = 32;
|
||||||
double a = 0, b = 10, x1 = 7, x2 = 4.12;
|
double a = 0, b = 10, x1 = 7, x2 = 4.12;
|
||||||
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
||||||
|
|
||||||
|
@ -291,6 +288,7 @@ TEST(Chebyshev2, CalculateWeights_CoincidingPoint) {
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(Chebyshev2, DerivativeWeights) {
|
TEST(Chebyshev2, DerivativeWeights) {
|
||||||
|
const size_t N = 32;
|
||||||
Vector fvals = Chebyshev2::vector(f, N);
|
Vector fvals = Chebyshev2::vector(f, N);
|
||||||
std::vector<double> testPoints = { 0.7, -0.376, 0.0 };
|
std::vector<double> testPoints = { 0.7, -0.376, 0.0 };
|
||||||
for (double x : testPoints) {
|
for (double x : testPoints) {
|
||||||
|
@ -305,6 +303,7 @@ TEST(Chebyshev2, DerivativeWeights) {
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(Chebyshev2, DerivativeWeights2) {
|
TEST(Chebyshev2, DerivativeWeights2) {
|
||||||
|
const size_t N = 32;
|
||||||
double x1 = 5, x2 = 4.12, a = 0, b = 10;
|
double x1 = 5, x2 = 4.12, a = 0, b = 10;
|
||||||
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
||||||
|
|
||||||
|
@ -424,7 +423,7 @@ TEST(Chebyshev2, VectorDerivativeFunctor) {
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
// Test VectorDerivativeFunctor with polynomial function
|
// Test VectorDerivativeFunctor with polynomial function
|
||||||
TEST(Chebyshev2, VectorDerivativeFunctor2) {
|
TEST(Chebyshev2, VectorDerivativeFunctor2) {
|
||||||
const size_t N = 64, M = 1, T = 15;
|
const size_t N = 4, M = 1, T = 15;
|
||||||
using VecD = Chebyshev2::VectorDerivativeFunctor;
|
using VecD = Chebyshev2::VectorDerivativeFunctor;
|
||||||
|
|
||||||
const Vector points = Chebyshev2::Points(N, 0, T);
|
const Vector points = Chebyshev2::Points(N, 0, T);
|
||||||
|
@ -470,54 +469,118 @@ TEST(Chebyshev2, ComponentDerivativeFunctor) {
|
||||||
}
|
}
|
||||||
|
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
TEST(Chebyshev2, IntegralWeights) {
|
TEST(Chebyshev2, IntegrationMatrix) {
|
||||||
const size_t N7 = 7;
|
const int N = 10; // number of intervals => N+1 nodes
|
||||||
Vector actual = Chebyshev2::IntegrationWeights(N7, -1, 1);
|
const double a = 0, b = 10;
|
||||||
Vector expected = (Vector(N7) << 0.0285714285714286, 0.253968253968254,
|
|
||||||
|
// Create integration matrix
|
||||||
|
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||||
|
|
||||||
|
// Let's check that integrating a constant yields
|
||||||
|
// the sum of the lengths of the intervals:
|
||||||
|
Vector F = P * Vector::Ones(N);
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, F(0), 1e-9); // check first value is 0
|
||||||
|
Vector points = Chebyshev2::Points(N, a, b);
|
||||||
|
Vector ramp(N);
|
||||||
|
for (int i = 0; i < N; ++i) ramp(i) = points(i) - a;
|
||||||
|
EXPECT(assert_equal(ramp, F, 1e-9));
|
||||||
|
|
||||||
|
// Get values of the derivative (fprime) at the Chebyshev nodes
|
||||||
|
Vector fp = Chebyshev2::vector(fprime, N, a, b);
|
||||||
|
|
||||||
|
// Integrate to get back f, using the integration matrix.
|
||||||
|
// Since there is a constant term, we need to add it back.
|
||||||
|
Vector F_est = P * fp;
|
||||||
|
EXPECT_DOUBLES_EQUAL(0, F_est(0), 1e-9); // check first value is 0
|
||||||
|
|
||||||
|
// For comparison, get actual function values at the nodes
|
||||||
|
Vector F_true = Chebyshev2::vector(f, N, a, b);
|
||||||
|
|
||||||
|
// Verify the integration matrix worked correctly, after adding back the
|
||||||
|
// constant term
|
||||||
|
F_est.array() += f(a);
|
||||||
|
EXPECT(assert_equal(F_true, F_est, 1e-9));
|
||||||
|
|
||||||
|
// Differentiate the result to get back to our derivative function
|
||||||
|
Matrix D = Chebyshev2::DifferentiationMatrix(N, a, b);
|
||||||
|
Vector ff_est = D * F_est;
|
||||||
|
|
||||||
|
// Verify the round trip worked
|
||||||
|
EXPECT(assert_equal(fp, ff_est, 1e-9));
|
||||||
|
}
|
||||||
|
|
||||||
|
//******************************************************************************
|
||||||
|
TEST(Chebyshev2, IntegrationWeights7) {
|
||||||
|
const size_t N = 7;
|
||||||
|
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
|
||||||
|
|
||||||
|
// Expected values were calculated using chebfun:
|
||||||
|
Weights expected = (Weights(N) << 0.0285714285714286, 0.253968253968254,
|
||||||
0.457142857142857, 0.520634920634921, 0.457142857142857,
|
0.457142857142857, 0.520634920634921, 0.457142857142857,
|
||||||
0.253968253968254, 0.0285714285714286)
|
0.253968253968254, 0.0285714285714286)
|
||||||
.finished();
|
.finished();
|
||||||
EXPECT(assert_equal(expected, actual));
|
EXPECT(assert_equal(expected, actual));
|
||||||
|
|
||||||
const size_t N8 = 8;
|
// Assert that multiplying with all ones gives the correct integral (2.0)
|
||||||
Vector actual2 = Chebyshev2::IntegrationWeights(N8, -1, 1);
|
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
|
||||||
Vector expected2 = (Vector(N8) << 0.0204081632653061, 0.190141007218208,
|
|
||||||
|
// Integrating f' over [-1,1] should give f(1) - f(-1)
|
||||||
|
Vector fp = Chebyshev2::vector(fprime, N);
|
||||||
|
double expectedF = f(1) - f(-1);
|
||||||
|
double actualW = actual * fp;
|
||||||
|
EXPECT_DOUBLES_EQUAL(expectedF, actualW, 1e-9);
|
||||||
|
|
||||||
|
// We can calculate an alternate set of weights using the integration matrix:
|
||||||
|
Matrix P = Chebyshev2::IntegrationMatrix(N);
|
||||||
|
Weights p7 = P.row(N-1);
|
||||||
|
|
||||||
|
// Check that the two sets of weights give the same results
|
||||||
|
EXPECT_DOUBLES_EQUAL(expectedF, p7 * fp, 1e-9);
|
||||||
|
|
||||||
|
// And same for integrate f itself:
|
||||||
|
Vector fvals = Chebyshev2::vector(f, N);
|
||||||
|
EXPECT_DOUBLES_EQUAL(p7*fvals, actual * fvals, 1e-9);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check N=8
|
||||||
|
TEST(Chebyshev2, IntegrationWeights8) {
|
||||||
|
const size_t N = 8;
|
||||||
|
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
|
||||||
|
Weights expected = (Weights(N) << 0.0204081632653061, 0.190141007218208,
|
||||||
0.352242423718159, 0.437208405798326, 0.437208405798326,
|
0.352242423718159, 0.437208405798326, 0.437208405798326,
|
||||||
0.352242423718159, 0.190141007218208, 0.0204081632653061)
|
0.352242423718159, 0.190141007218208, 0.0204081632653061)
|
||||||
.finished();
|
.finished();
|
||||||
EXPECT(assert_equal(expected2, actual2));
|
EXPECT(assert_equal(expected, actual));
|
||||||
|
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
|
||||||
}
|
}
|
||||||
|
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
TEST(Chebyshev2, IntegrationMatrixOperator) {
|
TEST(Chebyshev2, DoubleIntegrationWeights) {
|
||||||
const int N = 10; // number of intervals => N+1 nodes
|
const size_t N = 7;
|
||||||
const double a = -1.0, b = 1.0;
|
const double a = 0, b = 10;
|
||||||
|
// Let's integrate constant twice get a test case:
|
||||||
|
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||||
|
auto ones = Vector::Ones(N);
|
||||||
|
Vector ramp = P * ones;
|
||||||
|
Vector quadratic = P * ramp;
|
||||||
|
|
||||||
// Create integration matrix
|
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
|
||||||
Matrix P = Chebyshev2::IntegrationMatrix(N);
|
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
|
||||||
|
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
|
||||||
|
}
|
||||||
|
|
||||||
// Get values of the derivative (fprime) at the Chebyshev nodes
|
TEST(Chebyshev2, DoubleIntegrationWeights2) {
|
||||||
Vector ff = Chebyshev2::vector(fprime, N, a, b);
|
const size_t N = 8;
|
||||||
|
const double a = 0, b = 3;
|
||||||
|
// Let's integrate constant twice get a test case:
|
||||||
|
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||||
|
auto ones = Vector::Ones(N);
|
||||||
|
Vector ramp = P * ones;
|
||||||
|
Vector quadratic = P * ramp;
|
||||||
|
|
||||||
// Integrate to get back f, using the integration matrix
|
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
|
||||||
Vector F_est = P * ff;
|
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
|
||||||
|
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
|
||||||
// Assert that the first value is ff(0)
|
|
||||||
EXPECT_DOUBLES_EQUAL(ff(0), F_est(0), 1e-9);
|
|
||||||
|
|
||||||
// For comparison, get actual function values at the nodes
|
|
||||||
Vector F_true = Chebyshev2::vector(f, N, a, b);
|
|
||||||
|
|
||||||
// Verify the integration matrix worked correctly
|
|
||||||
F_est.array() += F_true(0) - F_est(0);
|
|
||||||
EXPECT(assert_equal(F_true, F_est, 1e-9));
|
|
||||||
|
|
||||||
// Differentiate the result to get back to our derivative function
|
|
||||||
Matrix D = Chebyshev2::DifferentiationMatrix(N);
|
|
||||||
Vector ff_est = D * F_est;
|
|
||||||
|
|
||||||
// Verify the round trip worked
|
|
||||||
EXPECT(assert_equal(ff, ff_est, 1e-9));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
|
|
Loading…
Reference in New Issue