deleted example (that I added at some point) since it is identical to SFMExample_SMartFactor
parent
ca18fc2c0a
commit
5e9dfdd0b6
|
@ -1,132 +0,0 @@
|
||||||
/* ----------------------------------------------------------------------------
|
|
||||||
|
|
||||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
||||||
* Atlanta, Georgia 30332-0415
|
|
||||||
* All Rights Reserved
|
|
||||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
||||||
|
|
||||||
* See LICENSE for the license information
|
|
||||||
|
|
||||||
* -------------------------------------------------------------------------- */
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @file SFMExample_SmartFactor.cpp
|
|
||||||
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
|
|
||||||
* @author Luca Carlone
|
|
||||||
* @author Frank Dellaert
|
|
||||||
*/
|
|
||||||
|
|
||||||
// In GTSAM, measurement functions are represented as 'factors'.
|
|
||||||
// The factor we used here is SmartProjectionPoseFactor.
|
|
||||||
// Every smart factor represent a single landmark, seen from multiple cameras.
|
|
||||||
// The SmartProjectionPoseFactor only optimizes for the poses of a camera,
|
|
||||||
// not the calibration, which is assumed known.
|
|
||||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
|
||||||
|
|
||||||
// For an explanation of these headers, see SFMExample.cpp
|
|
||||||
#include "SFMdata.h"
|
|
||||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
||||||
|
|
||||||
using namespace std;
|
|
||||||
using namespace gtsam;
|
|
||||||
|
|
||||||
// Make the typename short so it looks much cleaner
|
|
||||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
|
||||||
|
|
||||||
// create a typedef to the camera type
|
|
||||||
typedef PinholePose<Cal3_S2> Camera;
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
int main(int argc, char* argv[]) {
|
|
||||||
|
|
||||||
// Define the camera calibration parameters
|
|
||||||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
|
||||||
|
|
||||||
// Define the camera observation noise model
|
|
||||||
noiseModel::Isotropic::shared_ptr measurementNoise =
|
|
||||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
|
||||||
|
|
||||||
// Create the set of ground-truth landmarks and poses
|
|
||||||
vector<Point3> points = createPoints();
|
|
||||||
vector<Pose3> poses = createPoses();
|
|
||||||
|
|
||||||
// Create a factor graph
|
|
||||||
NonlinearFactorGraph graph;
|
|
||||||
|
|
||||||
// Simulated measurements from each camera pose, adding them to the factor graph
|
|
||||||
for (size_t j = 0; j < points.size(); ++j) {
|
|
||||||
|
|
||||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
|
||||||
SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
|
|
||||||
|
|
||||||
// for each measurement of landmark j
|
|
||||||
for (size_t i = 0; i < poses.size(); ++i) {
|
|
||||||
|
|
||||||
// generate the 2D measurement
|
|
||||||
Camera camera(poses[i], K);
|
|
||||||
Point2 measurement = camera.project(points[j]);
|
|
||||||
|
|
||||||
// call add() function to add measurement into a single factor, here we need to add:
|
|
||||||
// 1. the 2D measurement
|
|
||||||
// 2. the corresponding camera's key
|
|
||||||
// 3. camera noise model
|
|
||||||
// 4. camera calibration
|
|
||||||
smartfactor->add(measurement, i);
|
|
||||||
}
|
|
||||||
|
|
||||||
// insert the smart factor in the graph
|
|
||||||
graph.push_back(smartfactor);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
|
||||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
|
||||||
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
|
||||||
(Vector(6) << Vector3::Constant(0.3)).finished());
|
|
||||||
graph.push_back(PriorFactor<Pose3>(0, poses[0], noise));
|
|
||||||
|
|
||||||
// Because the structure-from-motion problem has a scale ambiguity, the problem is
|
|
||||||
// still under-constrained. Here we add a prior on the second pose x1, so this will
|
|
||||||
// fix the scale by indicating the distance between x0 and x1.
|
|
||||||
// Because these two are fixed, the rest of the poses will be also be fixed.
|
|
||||||
graph.push_back(PriorFactor<Pose3>(1, poses[1], noise)); // add directly to graph
|
|
||||||
|
|
||||||
graph.print("Factor Graph:\n");
|
|
||||||
|
|
||||||
// Create the initial estimate to the solution
|
|
||||||
// Intentionally initialize the variables off from the ground truth
|
|
||||||
Values initialEstimate;
|
|
||||||
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
|
||||||
for (size_t i = 0; i < poses.size(); ++i)
|
|
||||||
initialEstimate.insert(i, poses[i].compose(delta));
|
|
||||||
initialEstimate.print("Initial Estimates:\n");
|
|
||||||
|
|
||||||
// Optimize the graph and print results
|
|
||||||
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
|
|
||||||
Values result = optimizer.optimize();
|
|
||||||
result.print("Final results:\n");
|
|
||||||
|
|
||||||
// A smart factor represent the 3D point inside the factor, not as a variable.
|
|
||||||
// The 3D position of the landmark is not explicitly calculated by the optimizer.
|
|
||||||
// To obtain the landmark's 3D position, we use the "point" method of the smart factor.
|
|
||||||
Values landmark_result;
|
|
||||||
for (size_t j = 0; j < points.size(); ++j) {
|
|
||||||
|
|
||||||
// The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first
|
|
||||||
SmartFactor::shared_ptr smart = boost::dynamic_pointer_cast<SmartFactor>(graph[j]);
|
|
||||||
if (smart) {
|
|
||||||
// The output of point() is in boost::optional<Point3>, as sometimes
|
|
||||||
// the triangulation operation inside smart factor will encounter degeneracy.
|
|
||||||
boost::optional<Point3> point = smart->point(result);
|
|
||||||
if (point) // ignore if boost::optional return NULL
|
|
||||||
landmark_result.insert(j, *point);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
landmark_result.print("Landmark results:\n");
|
|
||||||
cout << "final error: " << graph.error(result) << endl;
|
|
||||||
cout << "number of iterations: " << optimizer.iterations() << endl;
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
/* ************************************************************************* */
|
|
||||||
|
|
Loading…
Reference in New Issue