Faster linearize now in class
parent
171793aad3
commit
5dc149fe23
|
@ -116,7 +116,6 @@ namespace gtsam {
|
|||
/** h(x)-z */
|
||||
Vector evaluateError(const CAMERA& camera, const LANDMARK& point,
|
||||
boost::optional<Matrix&> H1=boost::none, boost::optional<Matrix&> H2=boost::none) const {
|
||||
|
||||
try {
|
||||
Point2 reprojError(camera.project2(point,H1,H2) - measured_);
|
||||
return reprojError.vector();
|
||||
|
@ -124,12 +123,50 @@ namespace gtsam {
|
|||
catch( CheiralityException& e) {
|
||||
if (H1) *H1 = zeros(2, DimC);
|
||||
if (H2) *H2 = zeros(2, DimL);
|
||||
std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->key2())
|
||||
<< " behind Camera " << DefaultKeyFormatter(this->key1()) << std::endl;
|
||||
// TODO warn if verbose output asked for
|
||||
return zero(2);
|
||||
}
|
||||
}
|
||||
|
||||
/// Linearize using fixed-size matrices
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& values) {
|
||||
// Only linearize if the factor is active
|
||||
if (!this->active(values)) return boost::shared_ptr<JacobianFactor>();
|
||||
|
||||
const Key key1 = this->key1(), key2 = this->key2();
|
||||
Eigen::Matrix<double, 2, DimC> H1;
|
||||
Eigen::Matrix<double, 2, DimL> H2;
|
||||
Vector2 b;
|
||||
try {
|
||||
const CAMERA& camera = values.at<CAMERA>(key1);
|
||||
const LANDMARK& point = values.at<LANDMARK>(key2);
|
||||
Point2 reprojError(camera.project2(point, H1, H2) - measured());
|
||||
b = -reprojError.vector();
|
||||
} catch (CheiralityException& e) {
|
||||
// TODO warn if verbose output asked for
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
|
||||
// Whiten the system if needed
|
||||
const SharedNoiseModel& noiseModel = this->get_noiseModel();
|
||||
if (noiseModel && !noiseModel->isUnit()) {
|
||||
// TODO: implement WhitenSystem for fixed size matrices and include
|
||||
// above
|
||||
H1 = noiseModel->Whiten(H1);
|
||||
H2 = noiseModel->Whiten(H2);
|
||||
b = noiseModel->Whiten(b);
|
||||
}
|
||||
|
||||
if (noiseModel && noiseModel->isConstrained()) {
|
||||
using noiseModel::Constrained;
|
||||
return boost::make_shared<JacobianFactor>(
|
||||
key1, H1, key2, H2, b,
|
||||
boost::static_pointer_cast<Constrained>(noiseModel)->unit());
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>(key1, H1, key2, H2, b);
|
||||
}
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
inline const Point2 measured() const {
|
||||
return measured_;
|
||||
|
|
|
@ -430,49 +430,6 @@ TEST(GeneralSFMFactor, CalibratedCameraPoseRange) {
|
|||
EXPECT(assert_equal(expected, actual, 1e-4));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
static const int DimC = 11, DimL = 3;
|
||||
|
||||
/// Linearize using fixed-size matrices
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Projection& factor,
|
||||
const Values& values) {
|
||||
// Only linearize if the factor is active
|
||||
if (!factor.active(values)) return boost::shared_ptr<JacobianFactor>();
|
||||
|
||||
const Key key1 = factor.key1(), key2 = factor.key2();
|
||||
Eigen::Matrix<double, 2, DimC> H1;
|
||||
Eigen::Matrix<double, 2, DimL> H2;
|
||||
Vector2 b;
|
||||
try {
|
||||
const GeneralCamera& camera = values.at<GeneralCamera>(key1);
|
||||
const Point3& point = values.at<Point3>(key2);
|
||||
Point2 reprojError(camera.project2(point, H1, H2) - factor.measured());
|
||||
b = -reprojError.vector();
|
||||
} catch (CheiralityException& e) {
|
||||
// TODO warn if verbose output asked for
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
|
||||
// Whiten the system if needed
|
||||
const SharedNoiseModel& noiseModel = factor.get_noiseModel();
|
||||
if (noiseModel && !noiseModel->isUnit()) {
|
||||
// TODO: implement WhitenSystem for fixed size matrices and include above
|
||||
H1 = noiseModel->Whiten(H1);
|
||||
H2 = noiseModel->Whiten(H2);
|
||||
b = noiseModel->Whiten(b);
|
||||
}
|
||||
|
||||
if (noiseModel && noiseModel->isConstrained()) {
|
||||
using noiseModel::Constrained;
|
||||
return boost::make_shared<JacobianFactor>(
|
||||
key1, H1, key2, H2, b,
|
||||
boost::static_pointer_cast<Constrained>(noiseModel)->unit());
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>(key1, H1, key2, H2, b);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GeneralSFMFactor, Linearize) {
|
||||
Point2 z(3.,0.);
|
||||
|
@ -490,31 +447,31 @@ TEST(GeneralSFMFactor, Linearize) {
|
|||
const SharedNoiseModel model;
|
||||
Projection factor(z, model, X(1), L(1));
|
||||
GaussianFactor::shared_ptr expected = factor.NoiseModelFactor::linearize(values);
|
||||
GaussianFactor::shared_ptr actual = linearize(factor, values);
|
||||
GaussianFactor::shared_ptr actual = factor.linearize(values);
|
||||
EXPECT(assert_equal(*expected,*actual,1e-9));
|
||||
}
|
||||
// Test with Unit Model
|
||||
{
|
||||
const SharedNoiseModel model(noiseModel::Unit::Create(2));
|
||||
Projection factor(z, model, X(1), L(1));
|
||||
GaussianFactor::shared_ptr expected = factor.linearize(values);
|
||||
GaussianFactor::shared_ptr actual = linearize(factor, values);
|
||||
GaussianFactor::shared_ptr expected = factor.NoiseModelFactor::linearize(values);
|
||||
GaussianFactor::shared_ptr actual = factor.linearize(values);
|
||||
EXPECT(assert_equal(*expected,*actual,1e-9));
|
||||
}
|
||||
// Test with Isotropic noise
|
||||
{
|
||||
const SharedNoiseModel model(noiseModel::Isotropic::Sigma(2,0.5));
|
||||
Projection factor(z, model, X(1), L(1));
|
||||
GaussianFactor::shared_ptr expected = factor.linearize(values);
|
||||
GaussianFactor::shared_ptr actual = linearize(factor, values);
|
||||
GaussianFactor::shared_ptr expected = factor.NoiseModelFactor::linearize(values);
|
||||
GaussianFactor::shared_ptr actual = factor.linearize(values);
|
||||
EXPECT(assert_equal(*expected,*actual,1e-9));
|
||||
}
|
||||
// Test with Constrained Model
|
||||
{
|
||||
const SharedNoiseModel model(noiseModel::Constrained::All(2));
|
||||
Projection factor(z, model, X(1), L(1));
|
||||
GaussianFactor::shared_ptr expected = factor.linearize(values);
|
||||
GaussianFactor::shared_ptr actual = linearize(factor, values);
|
||||
GaussianFactor::shared_ptr expected = factor.NoiseModelFactor::linearize(values);
|
||||
GaussianFactor::shared_ptr actual = factor.linearize(values);
|
||||
EXPECT(assert_equal(*expected,*actual,1e-9));
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue