Merge branch 'develop' into imu-examples

release/4.3a0
Varun Agrawal 2020-07-27 20:37:29 -05:00
commit 5da2108cd4
251 changed files with 5219 additions and 2326 deletions

View File

@ -34,7 +34,7 @@ cmake $CURRDIR -DCMAKE_BUILD_TYPE=Release \
make -j$(nproc) install
cd $CURRDIR/../gtsam_install/cython
cd cython
sudo $PYTHON setup.py install

View File

@ -1,6 +1,5 @@
language: cpp
cache: ccache
sudo: required
dist: xenial
addons:
@ -33,7 +32,7 @@ stages:
env:
global:
- MAKEFLAGS="-j2"
- MAKEFLAGS="-j3"
- CCACHE_SLOPPINESS=pch_defines,time_macros
# Compile stage without building examples/tests to populate the caches.

View File

@ -10,7 +10,7 @@ endif()
# Set the version number for the library
set (GTSAM_VERSION_MAJOR 4)
set (GTSAM_VERSION_MINOR 0)
set (GTSAM_VERSION_PATCH 2)
set (GTSAM_VERSION_PATCH 3)
math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}")
set (GTSAM_VERSION_STRING "${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}.${GTSAM_VERSION_PATCH}")
@ -68,8 +68,8 @@ if(GTSAM_UNSTABLE_AVAILABLE)
endif()
option(BUILD_SHARED_LIBS "Build shared gtsam library, instead of static" ON)
option(GTSAM_USE_QUATERNIONS "Enable/Disable using an internal Quaternion representation for rotations instead of rotation matrices. If enable, Rot3::EXPMAP is enforced by default." OFF)
option(GTSAM_POSE3_EXPMAP "Enable/Disable using Pose3::EXPMAP as the default mode. If disabled, Pose3::FIRST_ORDER will be used." OFF)
option(GTSAM_ROT3_EXPMAP "Ignore if GTSAM_USE_QUATERNIONS is OFF (Rot3::EXPMAP by default). Otherwise, enable Rot3::EXPMAP, or if disabled, use Rot3::CAYLEY." OFF)
option(GTSAM_POSE3_EXPMAP "Enable/Disable using Pose3::EXPMAP as the default mode. If disabled, Pose3::FIRST_ORDER will be used." ON)
option(GTSAM_ROT3_EXPMAP "Ignore if GTSAM_USE_QUATERNIONS is OFF (Rot3::EXPMAP by default). Otherwise, enable Rot3::EXPMAP, or if disabled, use Rot3::CAYLEY." ON)
option(GTSAM_ENABLE_CONSISTENCY_CHECKS "Enable/Disable expensive consistency checks" OFF)
option(GTSAM_WITH_TBB "Use Intel Threaded Building Blocks (TBB) if available" ON)
option(GTSAM_WITH_EIGEN_MKL "Eigen will use Intel MKL if available" OFF)
@ -454,12 +454,11 @@ endif()
if (GTSAM_INSTALL_CYTHON_TOOLBOX)
set(GTSAM_INSTALL_CYTHON_TOOLBOX 1)
# Set up cache options
set(GTSAM_CYTHON_INSTALL_PATH "" CACHE PATH "Cython toolbox destination, blank defaults to CMAKE_INSTALL_PREFIX/cython")
if(NOT GTSAM_CYTHON_INSTALL_PATH)
set(GTSAM_CYTHON_INSTALL_PATH "${CMAKE_INSTALL_PREFIX}/cython")
endif()
# Cython install path appended with Build type (e.g. cython, cythonDebug, etc).
# This does not override custom values set from the command line
set(GTSAM_CYTHON_INSTALL_PATH "${PROJECT_BINARY_DIR}/cython${GTSAM_BUILD_TAG}" CACHE PATH "Cython toolbox destination, blank defaults to PROJECT_BINARY_DIR/cython<GTSAM_BUILD_TAG>")
set(GTSAM_EIGENCY_INSTALL_PATH ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)
add_subdirectory(cython)
add_subdirectory(cython ${GTSAM_CYTHON_INSTALL_PATH})
else()
set(GTSAM_INSTALL_CYTHON_TOOLBOX 0) # This will go into config.h
endif()
@ -537,54 +536,54 @@ endif()
print_build_options_for_target(gtsam)
message(STATUS " Use System Eigen : ${GTSAM_USE_SYSTEM_EIGEN} (Using version: ${GTSAM_EIGEN_VERSION})")
message(STATUS " Use System Eigen : ${GTSAM_USE_SYSTEM_EIGEN} (Using version: ${GTSAM_EIGEN_VERSION})")
if(GTSAM_USE_TBB)
message(STATUS " Use Intel TBB : Yes")
message(STATUS " Use Intel TBB : Yes")
elseif(TBB_FOUND)
message(STATUS " Use Intel TBB : TBB found but GTSAM_WITH_TBB is disabled")
message(STATUS " Use Intel TBB : TBB found but GTSAM_WITH_TBB is disabled")
else()
message(STATUS " Use Intel TBB : TBB not found")
message(STATUS " Use Intel TBB : TBB not found")
endif()
if(GTSAM_USE_EIGEN_MKL)
message(STATUS " Eigen will use MKL : Yes")
message(STATUS " Eigen will use MKL : Yes")
elseif(MKL_FOUND)
message(STATUS " Eigen will use MKL : MKL found but GTSAM_WITH_EIGEN_MKL is disabled")
message(STATUS " Eigen will use MKL : MKL found but GTSAM_WITH_EIGEN_MKL is disabled")
else()
message(STATUS " Eigen will use MKL : MKL not found")
message(STATUS " Eigen will use MKL : MKL not found")
endif()
if(GTSAM_USE_EIGEN_MKL_OPENMP)
message(STATUS " Eigen will use MKL and OpenMP : Yes")
message(STATUS " Eigen will use MKL and OpenMP : Yes")
elseif(OPENMP_FOUND AND NOT GTSAM_WITH_EIGEN_MKL)
message(STATUS " Eigen will use MKL and OpenMP : OpenMP found but GTSAM_WITH_EIGEN_MKL is disabled")
message(STATUS " Eigen will use MKL and OpenMP : OpenMP found but GTSAM_WITH_EIGEN_MKL is disabled")
elseif(OPENMP_FOUND AND NOT MKL_FOUND)
message(STATUS " Eigen will use MKL and OpenMP : OpenMP found but MKL not found")
message(STATUS " Eigen will use MKL and OpenMP : OpenMP found but MKL not found")
elseif(OPENMP_FOUND)
message(STATUS " Eigen will use MKL and OpenMP : OpenMP found but GTSAM_WITH_EIGEN_MKL_OPENMP is disabled")
message(STATUS " Eigen will use MKL and OpenMP : OpenMP found but GTSAM_WITH_EIGEN_MKL_OPENMP is disabled")
else()
message(STATUS " Eigen will use MKL and OpenMP : OpenMP not found")
message(STATUS " Eigen will use MKL and OpenMP : OpenMP not found")
endif()
message(STATUS " Default allocator : ${GTSAM_DEFAULT_ALLOCATOR}")
message(STATUS " Default allocator : ${GTSAM_DEFAULT_ALLOCATOR}")
if(GTSAM_THROW_CHEIRALITY_EXCEPTION)
message(STATUS " Cheirality exceptions enabled : YES")
message(STATUS " Cheirality exceptions enabled : YES")
else()
message(STATUS " Cheirality exceptions enabled : NO")
message(STATUS " Cheirality exceptions enabled : NO")
endif()
if(NOT MSVC AND NOT XCODE_VERSION)
if(CCACHE_FOUND AND GTSAM_BUILD_WITH_CCACHE)
message(STATUS " Build with ccache : Yes")
message(STATUS " Build with ccache : Yes")
elseif(CCACHE_FOUND)
message(STATUS " Build with ccache : ccache found but GTSAM_BUILD_WITH_CCACHE is disabled")
message(STATUS " Build with ccache : ccache found but GTSAM_BUILD_WITH_CCACHE is disabled")
else()
message(STATUS " Build with ccache : No")
message(STATUS " Build with ccache : No")
endif()
endif()
message(STATUS "Packaging flags ")
message(STATUS " CPack Source Generator : ${CPACK_SOURCE_GENERATOR}")
message(STATUS " CPack Generator : ${CPACK_GENERATOR}")
message(STATUS " CPack Source Generator : ${CPACK_SOURCE_GENERATOR}")
message(STATUS " CPack Generator : ${CPACK_GENERATOR}")
message(STATUS "GTSAM flags ")
print_config_flag(${GTSAM_USE_QUATERNIONS} "Quaternions as default Rot3 ")
@ -595,15 +594,19 @@ print_config_flag(${GTSAM_ALLOW_DEPRECATED_SINCE_V4} "Deprecated in GTSAM 4 al
print_config_flag(${GTSAM_TYPEDEF_POINTS_TO_VECTORS} "Point3 is typedef to Vector3 ")
print_config_flag(${GTSAM_SUPPORT_NESTED_DISSECTION} "Metis-based Nested Dissection ")
print_config_flag(${GTSAM_TANGENT_PREINTEGRATION} "Use tangent-space preintegration")
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
message(STATUS "MATLAB toolbox flags ")
print_config_flag(${GTSAM_INSTALL_MATLAB_TOOLBOX} "Install matlab toolbox ")
print_config_flag(${GTSAM_INSTALL_MATLAB_TOOLBOX} "Install MATLAB toolbox ")
if (${GTSAM_INSTALL_MATLAB_TOOLBOX})
message(STATUS " MATLAB root : ${MATLAB_ROOT}")
message(STATUS " MEX binary : ${MEX_COMMAND}")
endif()
message(STATUS "Cython toolbox flags ")
print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ")
print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ")
if(GTSAM_INSTALL_CYTHON_TOOLBOX)
message(STATUS " Python version : ${GTSAM_PYTHON_VERSION}")
message(STATUS " Python version : ${GTSAM_PYTHON_VERSION}")
endif()
message(STATUS "===============================================================")

View File

@ -64,7 +64,7 @@ protected:
class testGroup##testName##Test : public Test \
{ public: testGroup##testName##Test () : Test (#testName "Test", __FILE__, __LINE__, true) {} \
virtual ~testGroup##testName##Test () {};\
void run (TestResult& result_);} \
void run (TestResult& result_) override;} \
testGroup##testName##Instance; \
void testGroup##testName##Test::run (TestResult& result_)
@ -82,7 +82,7 @@ protected:
class testGroup##testName##Test : public Test \
{ public: testGroup##testName##Test () : Test (#testName "Test", __FILE__, __LINE__, false) {} \
virtual ~testGroup##testName##Test () {};\
void run (TestResult& result_);} \
void run (TestResult& result_) override;} \
testGroup##testName##Instance; \
void testGroup##testName##Test::run (TestResult& result_)

View File

@ -72,9 +72,9 @@ A Lie group is both a manifold *and* a group. Hence, a LIE_GROUP type should imp
However, we now also need to be able to evaluate the derivatives of compose and inverse.
Hence, we have the following extra valid static functions defined in the struct `gtsam::traits<T>`:
* `r = traits<T>::Compose(p,q,Hq,Hp)`
* `r = traits<T>::Compose(p,q,Hp,Hq)`
* `q = traits<T>::Inverse(p,Hp)`
* `r = traits<T>::Between(p,q,Hq,H2p)`
* `r = traits<T>::Between(p,q,Hp,Hq)`
where above the *H* arguments stand for optional Jacobian arguments.
That makes it possible to create factors implementing priors (PriorFactor) or relations between two instances of a Lie group type (BetweenFactor).

View File

@ -1,5 +1,5 @@
# version format
version: 4.0.2-{branch}-build{build}
version: 4.0.3-{branch}-build{build}
os: Visual Studio 2019

View File

@ -1,3 +1,8 @@
# Set cmake policy to recognize the AppleClang compiler
# independently from the Clang compiler.
if(POLICY CMP0025)
cmake_policy(SET CMP0025 NEW)
endif()
# function: list_append_cache(var [new_values ...])
# Like "list(APPEND ...)" but working for CACHE variables.
@ -99,8 +104,24 @@ if(MSVC)
set(GTSAM_COMPILE_OPTIONS_PRIVATE_TIMING /MD /O2 CACHE STRING "(User editable) Private compiler flags for Timing configuration.")
else()
# Common to all configurations, next for each configuration:
# "-fPIC" is to ensure proper code generation for shared libraries
set(GTSAM_COMPILE_OPTIONS_PRIVATE_COMMON -Wall -fPIC CACHE STRING "(User editable) Private compiler flags for all configurations.")
if (
((CMAKE_CXX_COMPILER_ID MATCHES "Clang") AND (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 12.0.0)) OR
(CMAKE_CXX_COMPILER_ID MATCHES "GNU")
)
set(flag_override_ -Wsuggest-override) # -Werror=suggest-override: Add again someday
endif()
set(GTSAM_COMPILE_OPTIONS_PRIVATE_COMMON
-Wall # Enable common warnings
-fPIC # ensure proper code generation for shared libraries
$<$<CXX_COMPILER_ID:GNU>:-Wreturn-local-addr -Werror=return-local-addr> # Error: return local address
$<$<CXX_COMPILER_ID:Clang>:-Wreturn-stack-address -Werror=return-stack-address> # Error: return local address
-Wreturn-type -Werror=return-type # Error on missing return()
-Wformat -Werror=format-security # Error on wrong printf() arguments
$<$<COMPILE_LANGUAGE:CXX>:${flag_override_}> # Enforce the use of the override keyword
#
CACHE STRING "(User editable) Private compiler flags for all configurations.")
set(GTSAM_COMPILE_OPTIONS_PRIVATE_DEBUG -g -fno-inline CACHE STRING "(User editable) Private compiler flags for Debug configuration.")
set(GTSAM_COMPILE_OPTIONS_PRIVATE_RELWITHDEBINFO -g -O3 CACHE STRING "(User editable) Private compiler flags for RelWithDebInfo configuration.")
set(GTSAM_COMPILE_OPTIONS_PRIVATE_RELEASE -O3 CACHE STRING "(User editable) Private compiler flags for Release configuration.")

View File

@ -41,9 +41,8 @@ execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
function(wrap_and_install_library_cython interface_header extra_imports install_path libs dependencies)
# Paths for generated files
get_filename_component(module_name "${interface_header}" NAME_WE)
set(generated_files_path "${PROJECT_BINARY_DIR}/cython/${module_name}")
set(generated_files_path "${install_path}")
wrap_library_cython("${interface_header}" "${generated_files_path}" "${extra_imports}" "${libs}" "${dependencies}")
install_cython_wrapped_library("${interface_header}" "${generated_files_path}" "${install_path}")
endfunction()
function(set_up_required_cython_packages)
@ -138,6 +137,10 @@ function(cythonize target pyx_file output_lib_we output_dir include_dirs libs in
target_link_libraries(${target} "${libs}")
endif()
add_dependencies(${target} ${target}_pyx2cpp)
if(TARGET ${python_install_target})
add_dependencies(${python_install_target} ${target})
endif()
endfunction()
# Internal function that wraps a library and compiles the wrapper
@ -150,9 +153,12 @@ function(wrap_library_cython interface_header generated_files_path extra_imports
get_filename_component(module_name "${interface_header}" NAME_WE)
# Wrap module to Cython pyx
message(STATUS "Cython wrapper generating ${module_name}.pyx")
message(STATUS "Cython wrapper generating ${generated_files_path}/${module_name}.pyx")
set(generated_pyx "${generated_files_path}/${module_name}.pyx")
file(MAKE_DIRECTORY "${generated_files_path}")
if(NOT EXISTS ${generated_files_path})
file(MAKE_DIRECTORY "${generated_files_path}")
endif()
add_custom_command(
OUTPUT ${generated_pyx}
DEPENDS ${interface_header} wrap
@ -175,46 +181,6 @@ function(wrap_library_cython interface_header generated_files_path extra_imports
COMMAND cmake -E remove_directory ${generated_files_path})
endfunction()
# Internal function that installs a wrap toolbox
function(install_cython_wrapped_library interface_header generated_files_path install_path)
get_filename_component(module_name "${interface_header}" NAME_WE)
# NOTE: only installs .pxd and .pyx and binary files (not .cpp) - the trailing slash on the directory name
# here prevents creating the top-level module name directory in the destination.
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH/subdirectory if there is one
get_filename_component(location "${install_path}" PATH)
get_filename_component(name "${install_path}" NAME)
message(STATUS "Installing Cython Toolbox to ${location}${GTSAM_BUILD_TAG}/${name}") #${GTSAM_CYTHON_INSTALL_PATH}"
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
if(${build_type_upper} STREQUAL "RELEASE")
set(build_type_tag "") # Don't create release mode tag on installed directory
else()
set(build_type_tag "${build_type}")
endif()
install(DIRECTORY "${generated_files_path}/" DESTINATION "${location}${build_type_tag}/${name}"
CONFIGURATIONS "${build_type}"
PATTERN "build" EXCLUDE
PATTERN "CMakeFiles" EXCLUDE
PATTERN "Makefile" EXCLUDE
PATTERN "*.cmake" EXCLUDE
PATTERN "*.cpp" EXCLUDE
PATTERN "*.py" EXCLUDE)
endforeach()
else()
install(DIRECTORY "${generated_files_path}/" DESTINATION ${install_path}
PATTERN "build" EXCLUDE
PATTERN "CMakeFiles" EXCLUDE
PATTERN "Makefile" EXCLUDE
PATTERN "*.cmake" EXCLUDE
PATTERN "*.cpp" EXCLUDE
PATTERN "*.py" EXCLUDE)
endif()
endfunction()
# Helper function to install Cython scripts and handle multiple build types where the scripts
# should be installed to all build type toolboxes
#
@ -232,50 +198,7 @@ function(install_cython_scripts source_directory dest_directory patterns)
foreach(pattern ${patterns})
list(APPEND patterns_args PATTERN "${pattern}")
endforeach()
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
if(${build_type_upper} STREQUAL "RELEASE")
set(build_type_tag "") # Don't create release mode tag on installed directory
else()
set(build_type_tag "${build_type}")
endif()
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
get_filename_component(location "${dest_directory}" PATH)
get_filename_component(name "${dest_directory}" NAME)
install(DIRECTORY "${source_directory}" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}"
file(COPY "${source_directory}" DESTINATION "${dest_directory}"
FILES_MATCHING ${patterns_args} PATTERN "${exclude_patterns}" EXCLUDE)
endforeach()
else()
install(DIRECTORY "${source_directory}" DESTINATION "${dest_directory}" FILES_MATCHING ${patterns_args} PATTERN "${exclude_patterns}" EXCLUDE)
endif()
endfunction()
# Helper function to install specific files and handle multiple build types where the scripts
# should be installed to all build type toolboxes
#
# Arguments:
# source_files: The source files to be installed.
# dest_directory: The destination directory to install to.
function(install_cython_files source_files dest_directory)
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
if(${build_type_upper} STREQUAL "RELEASE")
set(build_type_tag "") # Don't create release mode tag on installed directory
else()
set(build_type_tag "${build_type}")
endif()
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
get_filename_component(location "${dest_directory}" PATH)
get_filename_component(name "${dest_directory}" NAME)
install(FILES "${source_files}" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}")
endforeach()
else()
install(FILES "${source_files}" DESTINATION "${dest_directory}")
endif()
endfunction()

View File

@ -3,16 +3,32 @@ include(GtsamCythonWrap)
# Create the cython toolbox for the gtsam library
if (GTSAM_INSTALL_CYTHON_TOOLBOX)
# Add the new make target command
set(python_install_target python-install)
add_custom_target(${python_install_target}
COMMAND ${PYTHON_EXECUTABLE} ${GTSAM_CYTHON_INSTALL_PATH}/setup.py install
WORKING_DIRECTORY ${GTSAM_CYTHON_INSTALL_PATH})
# build and include the eigency version of eigency
add_subdirectory(gtsam_eigency)
include_directories(${PROJECT_BINARY_DIR}/cython/gtsam_eigency)
include_directories(${GTSAM_EIGENCY_INSTALL_PATH})
# Fix for error "C1128: number of sections exceeded object file format limit"
if(MSVC)
add_compile_options(/bigobj)
endif()
# wrap gtsam
# First set up all the package related files.
# This also ensures the below wrap operations work correctly.
set(CYTHON_INSTALL_REQUIREMENTS_FILE "${PROJECT_SOURCE_DIR}/cython/requirements.txt")
# Install the custom-generated __init__.py
# This makes the cython (sub-)directories into python packages, so gtsam can be found while wrapping gtsam_unstable
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam/__init__.py ${GTSAM_CYTHON_INSTALL_PATH}/gtsam/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam_unstable/__init__.py ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_unstable/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/setup.py.in ${GTSAM_CYTHON_INSTALL_PATH}/setup.py)
# Wrap gtsam
add_custom_target(gtsam_header DEPENDS "../gtsam.h")
wrap_and_install_library_cython("../gtsam.h" # interface_header
"" # extra imports
@ -20,8 +36,9 @@ if (GTSAM_INSTALL_CYTHON_TOOLBOX)
gtsam # library to link with
"wrap;cythonize_eigency;gtsam;gtsam_header" # dependencies which need to be built before wrapping
)
add_dependencies(${python_install_target} gtsam gtsam_header)
# wrap gtsam_unstable
# Wrap gtsam_unstable
if(GTSAM_BUILD_UNSTABLE)
add_custom_target(gtsam_unstable_header DEPENDS "../gtsam_unstable/gtsam_unstable.h")
wrap_and_install_library_cython("../gtsam_unstable/gtsam_unstable.h" # interface_header
@ -30,17 +47,9 @@ if (GTSAM_INSTALL_CYTHON_TOOLBOX)
gtsam_unstable # library to link with
"gtsam_unstable;gtsam_unstable_header;cythonize_gtsam" # dependencies to be built before wrapping
)
add_dependencies(${python_install_target} gtsam_unstable gtsam_unstable_header)
endif()
file(READ "${PROJECT_SOURCE_DIR}/cython/requirements.txt" CYTHON_INSTALL_REQUIREMENTS)
file(READ "${PROJECT_SOURCE_DIR}/README.md" README_CONTENTS)
# Install the custom-generated __init__.py
# This is to make the build/cython/gtsam folder a python package, so gtsam can be found while wrapping gtsam_unstable
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam/__init__.py ${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam_unstable/__init__.py ${PROJECT_BINARY_DIR}/cython/gtsam_unstable/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/setup.py.in ${PROJECT_BINARY_DIR}/cython/setup.py)
install_cython_files("${PROJECT_BINARY_DIR}/cython/setup.py" "${GTSAM_CYTHON_INSTALL_PATH}")
# install scripts and tests
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam_unstable" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")

View File

@ -1,43 +1,51 @@
# Python Wrapper
This is the Cython/Python wrapper around the GTSAM C++ library.
This is the Python wrapper around the GTSAM C++ library. We use Cython to generate the bindings to the underlying C++ code.
## Requirements
- If you want to build the GTSAM python library for a specific python version (eg 3.6),
use the `-DGTSAM_PYTHON_VERSION=3.6` option when running `cmake` otherwise the default interpreter will be used.
- If the interpreter is inside an environment (such as an anaconda environment or virtualenv environment),
then the environment should be active while building GTSAM.
- This wrapper needs `Cython(>=0.25.2)`, `backports_abc(>=0.5)`, and `numpy(>=1.11.0)`. These can be installed as follows:
```bash
pip install -r <gtsam_folder>/cython/requirements.txt
```
- For compatibility with GTSAM's Eigen version, it contains its own cloned version of [Eigency](https://github.com/wouterboomsma/eigency.git),
named `gtsam_eigency`, to interface between C++'s Eigen and Python's numpy.
## Install
- if you want to build the gtsam python library for a specific python version (eg 2.7), use the `-DGTSAM_PYTHON_VERSION=2.7` option when running `cmake` otherwise the default interpreter will be used.
- If the interpreter is inside an environment (such as an anaconda environment or virtualenv environment) then the environment should be active while building gtsam.
- This wrapper needs Cython(>=0.25.2), backports_abc>=0.5, and numpy. These can be installed as follows:
- Run cmake with the `GTSAM_INSTALL_CYTHON_TOOLBOX` cmake flag enabled to configure building the wrapper. The wrapped module will be built and copied to the directory defined by `GTSAM_CYTHON_INSTALL_PATH`, which is by default `<PROJECT_BINARY_DIR>/cython` in Release mode and `<PROJECT_BINARY_DIR>/cython<CMAKE_BUILD_TYPE>` for other modes.
```bash
pip install -r <gtsam_folder>/cython/requirements.txt
```
- Build GTSAM and the wrapper with `make`.
- For compatibility with gtsam's Eigen version, it contains its own cloned version of [Eigency](https://github.com/wouterboomsma/eigency.git),
named **gtsam_eigency**, to interface between C++'s Eigen and Python's numpy.
- To install, simply run `make python-install`.
- The same command can be used to install into a virtual environment if it is active.
- **NOTE**: if you don't want GTSAM to install to a system directory such as `/usr/local`, pass `-DCMAKE_INSTALL_PREFIX="./install"` to cmake to install GTSAM to a subdirectory of the build directory.
- Build and install gtsam using cmake with `GTSAM_INSTALL_CYTHON_TOOLBOX` enabled.
The wrapped module will be installed to `GTSAM_CYTHON_INSTALL_PATH`, which is
by default: `<your CMAKE_INSTALL_PREFIX>/cython`
- To use the library without installing system-wide: modify your `PYTHONPATH` to include the `GTSAM_CYTHON_INSTALL_PATH`:
```bash
export PYTHONPATH=$PYTHONPATH:<GTSAM_CYTHON_INSTALL_PATH>
```
- To install system-wide: run `make install` then navigate to `GTSAM_CYTHON_INSTALL_PATH` and run `python setup.py install`
- (the same command can be used to install into a virtual environment if it is active)
- note: if you don't want gtsam to install to a system directory such as `/usr/local`, pass `-DCMAKE_INSTALL_PREFIX="./install"` to cmake to install gtsam to a subdirectory of the build directory.
- if you run `setup.py` from the build directory rather than the installation directory, the script will warn you with the message: `setup.py is being run from an unexpected location`.
Before `make install` is run, not all the components of the package have been copied across, so running `setup.py` from the build directory would result in an incomplete package.
- You can also directly run `make python-install` without running `make`, and it will compile all the dependencies accordingly.
## Unit Tests
The Cython toolbox also has a small set of unit tests located in the
test directory. To run them:
```bash
cd <your GTSAM_CYTHON_INSTALL_PATH>
python -m unittest discover
```
```bash
cd <GTSAM_CYTHON_INSTALL_PATH>
python -m unittest discover
```
## Utils
TODO
## Examples
TODO
## Writing Your Own Scripts
@ -46,79 +54,63 @@ See the tests for examples.
### Some Important Notes:
- Vector/Matrix:
+ GTSAM expects double-precision floating point vectors and matrices.
Hence, you should pass numpy matrices with dtype=float, or 'float64'.
+ Also, GTSAM expects *column-major* matrices, unlike the default storage
scheme in numpy. Hence, you should pass column-major matrices to gtsam using
- GTSAM expects double-precision floating point vectors and matrices.
Hence, you should pass numpy matrices with `dtype=float`, or `float64`.
- Also, GTSAM expects _column-major_ matrices, unlike the default storage
scheme in numpy. Hence, you should pass column-major matrices to GTSAM using
the flag order='F'. And you always get column-major matrices back.
For more details, see: https://github.com/wouterboomsma/eigency#storage-layout---why-arrays-are-sometimes-transposed
+ Passing row-major matrices of different dtype, e.g. 'int', will also work
For more details, see [this link](https://github.com/wouterboomsma/eigency#storage-layout---why-arrays-are-sometimes-transposed).
- Passing row-major matrices of different dtype, e.g. `int`, will also work
as the wrapper converts them to column-major and dtype float for you,
using numpy.array.astype(float, order='F', copy=False).
However, this will result a copy if your matrix is not in the expected type
and storage order.
- Inner namespace: Classes in inner namespace will be prefixed by <innerNamespace>_ in Python.
Examples: noiseModel_Gaussian, noiseModel_mEstimator_Tukey
- Inner namespace: Classes in inner namespace will be prefixed by <innerNamespace>\_ in Python.
Examples: `noiseModel_Gaussian`, `noiseModel_mEstimator_Tukey`
- Casting from a base class to a derive class must be done explicitly.
Examples:
```Python
noiseBase = factor.noiseModel()
noiseGaussian = dynamic_cast_noiseModel_Gaussian_noiseModel_Base(noiseBase)
```
## Wrapping Your Own Project That Uses GTSAM
Examples:
- Set PYTHONPATH to include ${GTSAM_CYTHON_INSTALL_PATH}
+ so that it can find gtsam Cython header: gtsam/gtsam.pxd
```python
noiseBase = factor.noiseModel()
noiseGaussian = dynamic_cast_noiseModel_Gaussian_noiseModel_Base(noiseBase)
```
- In your CMakeList.txt
```cmake
find_package(GTSAM REQUIRED) # Make sure gtsam's install folder is in your PATH
set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" "${GTSAM_DIR}/../GTSAMCMakeTools")
## Wrapping Custom GTSAM-based Project
# Wrap
include(GtsamCythonWrap)
include_directories(${GTSAM_EIGENCY_INSTALL_PATH})
wrap_and_install_library_cython("your_project_interface.h"
"from gtsam.gtsam cimport *" # extra import of gtsam/gtsam.pxd Cython header
"your_install_path"
"libraries_to_link_with_the_cython_module"
"dependencies_which_need_to_be_built_before_the_wrapper"
)
#Optional: install_cython_scripts and install_cython_files. See GtsamCythonWrap.cmake.
```
Please refer to the template project and the corresponding tutorial available [here](https://github.com/borglab/GTSAM-project-python).
## KNOWN ISSUES
- Doesn't work with python3 installed from homebrew
- size-related issue: can only wrap up to a certain number of classes: up to mEstimator!
- Guess: 64 vs 32b? disutils Compiler flags?
- Bug with Cython 0.24: instantiated factor classes return FastVector<size_t> for keys(), which can't be casted to FastVector<Key>
- Upgrading to 0.25 solves the problem
- Need default constructor and default copy constructor for almost every classes... :(
- support these constructors by default and declare "delete" for special classes?
- Doesn't work with python3 installed from homebrew
- size-related issue: can only wrap up to a certain number of classes: up to mEstimator!
- Guess: 64 vs 32b? disutils Compiler flags?
- Bug with Cython 0.24: instantiated factor classes return FastVector<size_t> for keys(), which can't be casted to FastVector<Key>
- Upgrading to 0.25 solves the problem
- Need default constructor and default copy constructor for almost every classes... :(
- support these constructors by default and declare "delete" for special classes?
### TODO
- [ ] allow duplication of parent' functions in child classes. Not allowed for now due to conflicts in Cython.
- [ ] a common header for boost shared_ptr? (Or wait until everything is switched to std::shared_ptr in gtsam?)
- [ ] a common header for boost shared_ptr? (Or wait until everything is switched to std::shared_ptr in GTSAM?)
- [ ] inner namespaces ==> inner packages?
- [ ] Wrap fixed-size Matrices/Vectors?
### Completed/Cancelled:
- [x] Fix Python tests: don't use " import <package> * ": Bad style!!! (18-03-17 19:50)
- [x] Fix Python tests: don't use " import <package> \* ": Bad style!!! (18-03-17 19:50)
- [x] Unit tests for cython wrappers @done (18-03-17 18:45) -- simply compare generated files
- [x] Wrap unstable @done (18-03-17 15:30)
- [x] Unify cython/gtsam.h and the original gtsam.h @done (18-03-17 15:30)
- [x] Unify cython/GTSAM.h and the original GTSAM.h @done (18-03-17 15:30)
- [x] 18-03-17: manage to unify the two versions by removing std container stubs from the matlab version,and keeping KeyList/KeyVector/KeySet as in the matlab version. Probably Cython 0.25 fixes the casting problem.
- [x] 06-03-17: manage to remove the requirements for default and copy constructors
- [ ] 25-11-16: Try to unify but failed. Main reasons are: Key/size_t, std containers, KeyVector/KeyList/KeySet. Matlab doesn't need to know about Key, but I can't make Cython to ignore Key as it couldn't cast KeyVector, i.e. FastVector<Key>, to FastVector<size_t>.
- [ ] Marginal and JointMarginal: revert changes @failed (17-03-17 11:00) -- Cython does need a default constructor! It produces cpp code like this: ```gtsam::JointMarginal __pyx_t_1;``` Users don't have to wrap this constructor, however.
- [ ] Marginal and JointMarginal: revert changes @failed (17-03-17 11:00) -- Cython does need a default constructor! It produces cpp code like this: `GTSAM::JointMarginal __pyx_t_1;` Users don't have to wrap this constructor, however.
- [x] Convert input numpy Matrix/Vector to float dtype and storage order 'F' automatically, cannot crash! @done (15-03-17 13:00)
- [x] Remove requirements.txt - Frank: don't bother with only 2 packages and a special case for eigency! @done (08-03-17 10:30)
- [x] CMake install script @done (25-11-16 02:30)
@ -132,7 +124,7 @@ wrap_and_install_library_cython("your_project_interface.h"
- [x] Casting from parent and grandparents @done (16-11-16 17:00)
- [x] Allow overloading constructors. The current solution is annoying!!! @done (16-11-16 17:00)
- [x] Support "print obj" @done (16-11-16 17:00)
- [x] methods for FastVector: at, [], ... @done (16-11-16 17:00)
- [x] methods for FastVector: at, [], ... @done (16-11-16 17:00)
- [x] Cython: Key and size_t: traits<size_t> doesn't exist @done (16-09-12 18:34)
- [x] KeyVector, KeyList, KeySet... @done (16-09-13 17:19)
- [x] [Nice to have] parse typedef @done (16-09-13 17:19)

View File

@ -0,0 +1,56 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
FrobeniusFactor unit tests.
Author: Frank Dellaert
"""
# pylint: disable=no-name-in-module, import-error, invalid-name
import unittest
import numpy as np
from gtsam import (Rot3, SO3, SO4, FrobeniusBetweenFactorSO4, FrobeniusFactorSO4,
FrobeniusWormholeFactor, SOn)
id = SO4()
v1 = np.array([0, 0, 0, 0.1, 0, 0])
Q1 = SO4.Expmap(v1)
v2 = np.array([0, 0, 0, 0.01, 0.02, 0.03])
Q2 = SO4.Expmap(v2)
class TestFrobeniusFactorSO4(unittest.TestCase):
"""Test FrobeniusFactor factors."""
def test_frobenius_factor(self):
"""Test creation of a factor that calculates the Frobenius norm."""
factor = FrobeniusFactorSO4(1, 2)
actual = factor.evaluateError(Q1, Q2)
expected = (Q2.matrix()-Q1.matrix()).transpose().reshape((16,))
np.testing.assert_array_equal(actual, expected)
def test_frobenius_between_factor(self):
"""Test creation of a Frobenius BetweenFactor."""
factor = FrobeniusBetweenFactorSO4(1, 2, Q1.between(Q2))
actual = factor.evaluateError(Q1, Q2)
expected = np.zeros((16,))
np.testing.assert_array_almost_equal(actual, expected)
def test_frobenius_wormhole_factor(self):
"""Test creation of a factor that calculates Shonan error."""
R1 = SO3.Expmap(v1[3:])
R2 = SO3.Expmap(v2[3:])
factor = FrobeniusWormholeFactor(1, 2, Rot3(R1.between(R2).matrix()), p=4)
I4 = SOn(4)
Q1 = I4.retract(v1)
Q2 = I4.retract(v2)
actual = factor.evaluateError(Q1, Q2)
expected = np.zeros((12,))
np.testing.assert_array_almost_equal(actual, expected, decimal=4)
if __name__ == "__main__":
unittest.main()

View File

@ -17,7 +17,8 @@ import unittest
import gtsam
from gtsam import (DoglegOptimizer, DoglegParams, GaussNewtonOptimizer,
GaussNewtonParams, LevenbergMarquardtOptimizer,
LevenbergMarquardtParams, NonlinearFactorGraph, Ordering,
LevenbergMarquardtParams, PCGSolverParameters,
DummyPreconditionerParameters, NonlinearFactorGraph, Ordering,
Point2, PriorFactorPoint2, Values)
from gtsam.utils.test_case import GtsamTestCase
@ -61,6 +62,16 @@ class TestScenario(GtsamTestCase):
fg, initial_values, lmParams).optimize()
self.assertAlmostEqual(0, fg.error(actual2))
# Levenberg-Marquardt
lmParams = LevenbergMarquardtParams.CeresDefaults()
lmParams.setLinearSolverType("ITERATIVE")
cgParams = PCGSolverParameters()
cgParams.setPreconditionerParams(DummyPreconditionerParameters())
lmParams.setIterativeParams(cgParams)
actual2 = LevenbergMarquardtOptimizer(
fg, initial_values, lmParams).optimize()
self.assertAlmostEqual(0, fg.error(actual2))
# Dogleg
dlParams = DoglegParams()
dlParams.setOrdering(ordering)

View File

@ -4,6 +4,12 @@ Author: Jing Wu and Frank Dellaert
"""
# pylint: disable=invalid-name
import sys
if sys.version_info.major >= 3:
from io import StringIO
else:
from cStringIO import StringIO
import unittest
from datetime import datetime
@ -37,11 +43,24 @@ class TestOptimizeComet(GtsamTestCase):
self.optimizer = gtsam.GaussNewtonOptimizer(
graph, initial, self.params)
self.lmparams = gtsam.LevenbergMarquardtParams()
self.lmoptimizer = gtsam.LevenbergMarquardtOptimizer(
graph, initial, self.lmparams
)
# setup output capture
self.capturedOutput = StringIO()
sys.stdout = self.capturedOutput
def tearDown(self):
"""Reset print capture."""
sys.stdout = sys.__stdout__
def test_simple_printing(self):
"""Test with a simple hook."""
# Provide a hook that just prints
def hook(_, error: float):
def hook(_, error):
print(error)
# Only thing we require from optimizer is an iterate method
@ -51,6 +70,16 @@ class TestOptimizeComet(GtsamTestCase):
actual = self.optimizer.values()
self.gtsamAssertEquals(actual.atRot3(KEY), self.expected, tol=1e-6)
def test_lm_simple_printing(self):
"""Make sure we are properly terminating LM"""
def hook(_, error):
print(error)
gtsam_optimize(self.lmoptimizer, self.lmparams, hook)
actual = self.lmoptimizer.values()
self.gtsamAssertEquals(actual.atRot3(KEY), self.expected, tol=1e-6)
@unittest.skip("Not a test we want run every time, as needs comet.ml account")
def test_comet(self):
"""Test with a comet hook."""
@ -65,7 +94,7 @@ class TestOptimizeComet(GtsamTestCase):
+ str(time.hour)+":"+str(time.minute)+":"+str(time.second))
# I want to do some comet thing here
def hook(optimizer, error: float):
def hook(optimizer, error):
comet.log_metric("Karcher error",
error, optimizer.iterations())
@ -76,4 +105,4 @@ class TestOptimizeComet(GtsamTestCase):
self.gtsamAssertEquals(actual.atRot3(KEY), self.expected)
if __name__ == "__main__":
unittest.main()
unittest.main()

View File

@ -4,15 +4,11 @@ Author: Jing Wu and Frank Dellaert
"""
# pylint: disable=invalid-name
from typing import TypeVar
from gtsam import NonlinearOptimizer, NonlinearOptimizerParams
import gtsam
T = TypeVar('T')
def optimize(optimizer: T, check_convergence, hook):
def optimize(optimizer, check_convergence, hook):
""" Given an optimizer and a convergence check, iterate until convergence.
After each iteration, hook(optimizer, error) is called.
After the function, use values and errors to get the result.
@ -36,8 +32,8 @@ def optimize(optimizer: T, check_convergence, hook):
current_error = new_error
def gtsam_optimize(optimizer: NonlinearOptimizer,
params: NonlinearOptimizerParams,
def gtsam_optimize(optimizer,
params,
hook):
""" Given an optimizer and params, iterate until convergence.
After each iteration, hook(optimizer) is called.
@ -50,5 +46,7 @@ def gtsam_optimize(optimizer: NonlinearOptimizer,
def check_convergence(optimizer, current_error, new_error):
return (optimizer.iterations() >= params.getMaxIterations()) or (
gtsam.checkConvergence(params.getRelativeErrorTol(), params.getAbsoluteErrorTol(), params.getErrorTol(),
current_error, new_error))
current_error, new_error)) or (
isinstance(optimizer, gtsam.LevenbergMarquardtOptimizer) and optimizer.lambda_() > params.getlambdaUpperBound())
optimize(optimizer, check_convergence, hook)
return optimizer.values()

View File

@ -135,7 +135,8 @@ def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
axes.add_patch(e1)
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None,
axis_labels=('X axis', 'Y axis', 'Z axis')):
"""
Plot a 2D pose on given figure with given `axis_length`.
@ -144,6 +145,7 @@ def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
pose (gtsam.Pose2): The pose to be plotted.
axis_length (float): The length of the camera axes.
covariance (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels (iterable[string]): List of axis labels to set.
"""
# get figure object
fig = plt.figure(fignum)
@ -151,6 +153,12 @@ def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
plot_pose2_on_axes(axes, pose, axis_length=axis_length,
covariance=covariance)
axes.set_xlabel(axis_labels[0])
axes.set_ylabel(axis_labels[1])
axes.set_zlabel(axis_labels[2])
return fig
def plot_point3_on_axes(axes, point, linespec, P=None):
"""
@ -167,7 +175,8 @@ def plot_point3_on_axes(axes, point, linespec, P=None):
plot_covariance_ellipse_3d(axes, point.vector(), P)
def plot_point3(fignum, point, linespec, P=None):
def plot_point3(fignum, point, linespec, P=None,
axis_labels=('X axis', 'Y axis', 'Z axis')):
"""
Plot a 3D point on given figure with given `linespec`.
@ -176,13 +185,25 @@ def plot_point3(fignum, point, linespec, P=None):
point (gtsam.Point3): The point to be plotted.
linespec (string): String representing formatting options for Matplotlib.
P (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels (iterable[string]): List of axis labels to set.
Returns:
fig: The matplotlib figure.
"""
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_point3_on_axes(axes, point, linespec, P)
axes.set_xlabel(axis_labels[0])
axes.set_ylabel(axis_labels[1])
axes.set_zlabel(axis_labels[2])
def plot_3d_points(fignum, values, linespec="g*", marginals=None):
return fig
def plot_3d_points(fignum, values, linespec="g*", marginals=None,
title="3D Points", axis_labels=('X axis', 'Y axis', 'Z axis')):
"""
Plots the Point3s in `values`, with optional covariances.
Finds all the Point3 objects in the given Values object and plots them.
@ -193,7 +214,9 @@ def plot_3d_points(fignum, values, linespec="g*", marginals=None):
fignum (int): Integer representing the figure number to use for plotting.
values (gtsam.Values): Values dictionary consisting of points to be plotted.
linespec (string): String representing formatting options for Matplotlib.
covariance (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
marginals (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
title (string): The title of the plot.
axis_labels (iterable[string]): List of axis labels to set.
"""
keys = values.keys()
@ -208,12 +231,16 @@ def plot_3d_points(fignum, values, linespec="g*", marginals=None):
else:
covariance = None
plot_point3(fignum, point, linespec, covariance)
fig = plot_point3(fignum, point, linespec, covariance,
axis_labels=axis_labels)
except RuntimeError:
continue
# I guess it's not a Point3
fig.suptitle(title)
fig.canvas.set_window_title(title.lower())
def plot_pose3_on_axes(axes, pose, axis_length=0.1, P=None, scale=1):
"""
@ -251,7 +278,8 @@ def plot_pose3_on_axes(axes, pose, axis_length=0.1, P=None, scale=1):
plot_covariance_ellipse_3d(axes, origin, gPp)
def plot_pose3(fignum, pose, axis_length=0.1, P=None):
def plot_pose3(fignum, pose, axis_length=0.1, P=None,
axis_labels=('X axis', 'Y axis', 'Z axis')):
"""
Plot a 3D pose on given figure with given `axis_length`.
@ -260,6 +288,10 @@ def plot_pose3(fignum, pose, axis_length=0.1, P=None):
pose (gtsam.Pose3): 3D pose to be plotted.
linespec (string): String representing formatting options for Matplotlib.
P (numpy.ndarray): Marginal covariance matrix to plot the uncertainty of the estimation.
axis_labels (iterable[string]): List of axis labels to set.
Returns:
fig: The matplotlib figure.
"""
# get figure object
fig = plt.figure(fignum)
@ -267,9 +299,15 @@ def plot_pose3(fignum, pose, axis_length=0.1, P=None):
plot_pose3_on_axes(axes, pose, P=P,
axis_length=axis_length)
axes.set_xlabel(axis_labels[0])
axes.set_ylabel(axis_labels[1])
axes.set_zlabel(axis_labels[2])
return fig
def plot_trajectory(fignum, values, scale=1, marginals=None,
animation_interval=0.0):
title="Plot Trajectory", axis_labels=('X axis', 'Y axis', 'Z axis')):
"""
Plot a complete 3D trajectory using poses in `values`.
@ -279,6 +317,8 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
scale (float): Value to scale the poses by.
marginals (gtsam.Marginals): Marginalized probability values of the estimation.
Used to plot uncertainty bounds.
title (string): The title of the plot.
axis_labels (iterable[string]): List of axis labels to set.
"""
pose3Values = gtsam.utilities_allPose3s(values)
keys = gtsam.KeyVector(pose3Values.keys())
@ -304,8 +344,8 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
else:
covariance = None
plot_pose3(fignum, lastPose, P=covariance,
axis_length=scale)
fig = plot_pose3(fignum, lastPose, P=covariance,
axis_length=scale, axis_labels=axis_labels)
lastIndex = i
@ -319,12 +359,15 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
else:
covariance = None
plot_pose3(fignum, lastPose, P=covariance,
axis_length=scale)
fig = plot_pose3(fignum, lastPose, P=covariance,
axis_length=scale, axis_labels=axis_labels)
except:
pass
fig.suptitle(title)
fig.canvas.set_window_title(title.lower())
def plot_incremental_trajectory(fignum, values, start=0,
scale=1, marginals=None,

View File

@ -4,11 +4,11 @@ include(GtsamCythonWrap)
# so that the cython-generated header "conversions_api.h" can be found when cythonizing eigency's core
# and eigency's cython pxd headers can be found when cythonizing gtsam
file(COPY "." DESTINATION ".")
set(OUTPUT_DIR "${PROJECT_BINARY_DIR}/cython/gtsam_eigency")
set(OUTPUT_DIR "${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency")
set(EIGENCY_INCLUDE_DIR ${OUTPUT_DIR})
# This is to make the build/cython/gtsam_eigency folder a python package
configure_file(__init__.py.in ${PROJECT_BINARY_DIR}/cython/gtsam_eigency/__init__.py)
configure_file(__init__.py.in ${OUTPUT_DIR}/__init__.py)
# include eigency headers
include_directories(${EIGENCY_INCLUDE_DIR})
@ -16,8 +16,8 @@ include_directories(${EIGENCY_INCLUDE_DIR})
# Cythonize and build eigency
message(STATUS "Cythonize and build eigency")
# Important trick: use "../gtsam_eigency/conversions.pyx" to let cython know that the conversions module is
# a part of the gtsam_eigency package and generate the function call import_gtsam_igency__conversions()
# in conversions_api.h correctly!!!
# a part of the gtsam_eigency package and generate the function call import_gtsam_eigency__conversions()
# in conversions_api.h correctly!
cythonize(cythonize_eigency_conversions "../gtsam_eigency/conversions.pyx" "conversions"
"${OUTPUT_DIR}" "${EIGENCY_INCLUDE_DIR}" "" "" "")
cythonize(cythonize_eigency_core "../gtsam_eigency/core.pyx" "core"
@ -37,13 +37,6 @@ add_dependencies(cythonize_eigency_core cythonize_eigency_conversions)
add_custom_target(cythonize_eigency)
add_dependencies(cythonize_eigency cythonize_eigency_conversions cythonize_eigency_core)
# install
install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
DESTINATION "${GTSAM_CYTHON_INSTALL_PATH}${GTSAM_BUILD_TAG}"
PATTERN "CMakeLists.txt" EXCLUDE
PATTERN "__init__.py.in" EXCLUDE)
install(TARGETS cythonize_eigency_core cythonize_eigency_conversions
DESTINATION "${GTSAM_CYTHON_INSTALL_PATH}${GTSAM_BUILD_TAG}/gtsam_eigency")
install(FILES ${OUTPUT_DIR}/conversions_api.h DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}${GTSAM_BUILD_TAG}/gtsam_eigency)
configure_file(__init__.py.in ${OUTPUT_DIR}/__init__.py)
install(FILES ${OUTPUT_DIR}/__init__.py DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}${GTSAM_BUILD_TAG}/gtsam_eigency)
if(TARGET ${python_install_target})
add_dependencies(${python_install_target} cythonize_eigency)
endif()

View File

@ -7,6 +7,22 @@ except ImportError:
packages = find_packages()
package_data = {
package:
[f for f in os.listdir(package.replace('.', os.path.sep)) if os.path.splitext(f)[1] in ('.so', '.pyd')]
for package in packages
}
cython_install_requirements = open("${CYTHON_INSTALL_REQUIREMENTS_FILE}").readlines()
install_requires = [line.strip() \
for line in cython_install_requirements \
if len(line.strip()) > 0 and not line.strip().startswith('#')
]
# Cleaner to read in the contents rather than copy them over.
readme_contents = open("${PROJECT_SOURCE_DIR}/README.md").read()
setup(
name='gtsam',
description='Georgia Tech Smoothing And Mapping library',
@ -16,7 +32,7 @@ setup(
author_email='frank.dellaert@gtsam.org',
license='Simplified BSD license',
keywords='slam sam robotics localization mapping optimization',
long_description='''${README_CONTENTS}''',
long_description=readme_contents,
long_description_content_type='text/markdown',
python_requires='>=2.7',
# https://pypi.org/pypi?%3Aaction=list_classifiers
@ -34,11 +50,6 @@ setup(
],
packages=packages,
package_data={package:
[f for f in os.listdir(package.replace('.', os.path.sep)) if os.path.splitext(f)[1] in ('.so', '.pyd')]
for package in packages
},
install_requires=[line.strip() for line in '''
${CYTHON_INSTALL_REQUIREMENTS}
'''.splitlines() if len(line.strip()) > 0 and not line.strip().startswith('#')]
package_data=package_data,
install_requires=install_requires
)

BIN
doc/robust.pdf Normal file

Binary file not shown.

21
docker/README.md Normal file
View File

@ -0,0 +1,21 @@
# Instructions
Build all docker images, in order:
```bash
(cd ubuntu-boost-tbb && ./build.sh)
(cd ubuntu-gtsam && ./build.sh)
(cd ubuntu-gtsam-python && ./build.sh)
(cd ubuntu-gtsam-python-vnc && ./build.sh)
```
Then launch with:
docker run -p 5900:5900 dellaert/ubuntu-gtsam-python-vnc:bionic
Then open a remote VNC X client, for example:
sudo apt-get install tigervnc-viewer
xtigervncviewer :5900

View File

@ -1,18 +0,0 @@
# Get the base Ubuntu image from Docker Hub
FROM ubuntu:bionic
# Update apps on the base image
RUN apt-get -y update && apt-get install -y
# Install C++
RUN apt-get -y install build-essential
# Install boost and cmake
RUN apt-get -y install libboost-all-dev cmake
# Install TBB
RUN apt-get -y install libtbb-dev
# Install latest Eigen
RUN apt-get install -y libeigen3-dev

View File

@ -0,0 +1,19 @@
# Basic Ubuntu 18.04 image with Boost and TBB installed. To be used for building further downstream packages.
# Get the base Ubuntu image from Docker Hub
FROM ubuntu:bionic
# Disable GUI prompts
ENV DEBIAN_FRONTEND noninteractive
# Update apps on the base image
RUN apt-get -y update && apt-get -y install
# Install C++
RUN apt-get -y install build-essential apt-utils
# Install boost and cmake
RUN apt-get -y install libboost-all-dev cmake
# Install TBB
RUN apt-get -y install libtbb-dev

View File

@ -0,0 +1,3 @@
# Build command for Docker image
# TODO(dellaert): use docker compose and/or cmake
docker build --no-cache -t dellaert/ubuntu-boost-tbb:bionic .

View File

@ -0,0 +1,20 @@
# This GTSAM image connects to the host X-server via VNC to provide a Graphical User Interface for interaction.
# Get the base Ubuntu/GTSAM image from Docker Hub
FROM dellaert/ubuntu-gtsam-python:bionic
# Things needed to get a python GUI
ENV DEBIAN_FRONTEND noninteractive
RUN apt install -y python-tk
RUN python3 -m pip install matplotlib
# Install a VNC X-server, Frame buffer, and windows manager
RUN apt install -y x11vnc xvfb fluxbox
# Finally, install wmctrl needed for bootstrap script
RUN apt install -y wmctrl
# Copy bootstrap script and make sure it runs
COPY bootstrap.sh /
CMD '/bootstrap.sh'

View File

@ -0,0 +1,111 @@
#!/bin/bash
# Based on: http://www.richud.com/wiki/Ubuntu_Fluxbox_GUI_with_x11vnc_and_Xvfb
main() {
log_i "Starting xvfb virtual display..."
launch_xvfb
log_i "Starting window manager..."
launch_window_manager
log_i "Starting VNC server..."
run_vnc_server
}
launch_xvfb() {
local xvfbLockFilePath="/tmp/.X1-lock"
if [ -f "${xvfbLockFilePath}" ]
then
log_i "Removing xvfb lock file '${xvfbLockFilePath}'..."
if ! rm -v "${xvfbLockFilePath}"
then
log_e "Failed to remove xvfb lock file"
exit 1
fi
fi
# Set defaults if the user did not specify envs.
export DISPLAY=${XVFB_DISPLAY:-:1}
local screen=${XVFB_SCREEN:-0}
local resolution=${XVFB_RESOLUTION:-1280x960x24}
local timeout=${XVFB_TIMEOUT:-5}
# Start and wait for either Xvfb to be fully up or we hit the timeout.
Xvfb ${DISPLAY} -screen ${screen} ${resolution} &
local loopCount=0
until xdpyinfo -display ${DISPLAY} > /dev/null 2>&1
do
loopCount=$((loopCount+1))
sleep 1
if [ ${loopCount} -gt ${timeout} ]
then
log_e "xvfb failed to start"
exit 1
fi
done
}
launch_window_manager() {
local timeout=${XVFB_TIMEOUT:-5}
# Start and wait for either fluxbox to be fully up or we hit the timeout.
fluxbox &
local loopCount=0
until wmctrl -m > /dev/null 2>&1
do
loopCount=$((loopCount+1))
sleep 1
if [ ${loopCount} -gt ${timeout} ]
then
log_e "fluxbox failed to start"
exit 1
fi
done
}
run_vnc_server() {
local passwordArgument='-nopw'
if [ -n "${VNC_SERVER_PASSWORD}" ]
then
local passwordFilePath="${HOME}/.x11vnc.pass"
if ! x11vnc -storepasswd "${VNC_SERVER_PASSWORD}" "${passwordFilePath}"
then
log_e "Failed to store x11vnc password"
exit 1
fi
passwordArgument=-"-rfbauth ${passwordFilePath}"
log_i "The VNC server will ask for a password"
else
log_w "The VNC server will NOT ask for a password"
fi
x11vnc -ncache 10 -ncache_cr -display ${DISPLAY} -forever ${passwordArgument} &
wait $!
}
log_i() {
log "[INFO] ${@}"
}
log_w() {
log "[WARN] ${@}"
}
log_e() {
log "[ERROR] ${@}"
}
log() {
echo "[$(date '+%Y-%m-%d %H:%M:%S')] ${@}"
}
control_c() {
echo ""
exit
}
trap control_c SIGINT SIGTERM SIGHUP
main
exit

View File

@ -0,0 +1,4 @@
# Build command for Docker image
# TODO(dellaert): use docker compose and/or cmake
# Needs to be run in docker/ubuntu-gtsam-python-vnc directory
docker build -t dellaert/ubuntu-gtsam-python-vnc:bionic .

View File

@ -0,0 +1,5 @@
# After running this script, connect VNC client to 0.0.0.0:5900
docker run -it \
--workdir="/usr/src/gtsam" \
-p 5900:5900 \
dellaert/ubuntu-gtsam-python-vnc:bionic

View File

@ -0,0 +1,31 @@
# GTSAM Ubuntu image with Python wrapper support.
# Get the base Ubuntu/GTSAM image from Docker Hub
FROM dellaert/ubuntu-gtsam:bionic
# Install pip
RUN apt-get install -y python3-pip python3-dev
# Install python wrapper requirements
RUN python3 -m pip install -U -r /usr/src/gtsam/cython/requirements.txt
# Run cmake again, now with cython toolbox on
WORKDIR /usr/src/gtsam/build
RUN cmake \
-DCMAKE_BUILD_TYPE=Release \
-DGTSAM_WITH_EIGEN_MKL=OFF \
-DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF \
-DGTSAM_BUILD_TIMING_ALWAYS=OFF \
-DGTSAM_BUILD_TESTS=OFF \
-DGTSAM_INSTALL_CYTHON_TOOLBOX=ON \
-DGTSAM_PYTHON_VERSION=3\
..
# Build again, as ubuntu-gtsam image cleaned
RUN make -j4 install && make clean
# Needed to run python wrapper:
RUN echo 'export PYTHONPATH=/usr/local/cython/:$PYTHONPATH' >> /root/.bashrc
# Run bash
CMD ["bash"]

View File

@ -0,0 +1,3 @@
# Build command for Docker image
# TODO(dellaert): use docker compose and/or cmake
docker build --no-cache -t dellaert/ubuntu-gtsam-python:bionic .

View File

@ -0,0 +1,36 @@
# Ubuntu image with GTSAM installed. Configured with Boost and TBB support.
# Get the base Ubuntu image from Docker Hub
FROM dellaert/ubuntu-boost-tbb:bionic
# Install git
RUN apt-get update && \
apt-get install -y git
# Install compiler
RUN apt-get install -y build-essential
# Clone GTSAM (develop branch)
WORKDIR /usr/src/
RUN git clone --single-branch --branch develop https://github.com/borglab/gtsam.git
# Change to build directory. Will be created automatically.
WORKDIR /usr/src/gtsam/build
# Run cmake
RUN cmake \
-DCMAKE_BUILD_TYPE=Release \
-DGTSAM_WITH_EIGEN_MKL=OFF \
-DGTSAM_BUILD_EXAMPLES_ALWAYS=OFF \
-DGTSAM_BUILD_TIMING_ALWAYS=OFF \
-DGTSAM_BUILD_TESTS=OFF \
-DGTSAM_INSTALL_CYTHON_TOOLBOX=OFF \
..
# Build
RUN make -j4 install && make clean
# Needed to link with GTSAM
RUN echo 'export LD_LIBRARY_PATH=/usr/local/lib:LD_LIBRARY_PATH' >> /root/.bashrc
# Run bash
CMD ["bash"]

3
docker/ubuntu-gtsam/build.sh Executable file
View File

@ -0,0 +1,3 @@
# Build command for Docker image
# TODO(dellaert): use docker compose and/or cmake
docker build --no-cache -t dellaert/ubuntu-gtsam:bionic .

View File

@ -1,7 +1,4 @@
set (excluded_examples
DiscreteBayesNet_FG.cpp
UGM_chain.cpp
UGM_small.cpp
elaboratePoint2KalmanFilter.cpp
)

View File

@ -46,8 +46,8 @@ public:
}
/// evaluate the error
virtual Vector evaluateError(const Pose3& pose, boost::optional<Matrix&> H =
boost::none) const {
Vector evaluateError(const Pose3& pose, boost::optional<Matrix&> H =
boost::none) const override {
PinholeCamera<Cal3_S2> camera(pose, *K_);
return camera.project(P_, H, boost::none, boost::none) - p_;
}

6
examples/Data/Klaus3.g2o Normal file
View File

@ -0,0 +1,6 @@
VERTEX_SE3:QUAT 0 -3.865747774038187 0.06639337702667497 -0.16064874691945374 0.024595211709139555 0.49179523413089893 -0.06279232989379242 0.8680954132776109
VERTEX_SE3:QUAT 1 -3.614793159814815 0.04774490041587656 -0.2837650367985949 0.00991721787943912 0.4854918961891193 -0.042343290945895576 0.8731588132957809
VERTEX_SE3:QUAT 2 -3.255096913553434 0.013296754286114112 -0.5339792269680574 -0.027851108010665374 0.585478168397957 -0.05088341463532465 0.8086102325762403
EDGE_SE3:QUAT 0 1 0.2509546142233723 -0.01864847661079841 -0.12311628987914114 -0.022048798853273946 -0.01796327847857683 0.010210006313668573 0.9995433591728293 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 25.0 0.0 0.0 25.0 0.0 25.0
EDGE_SE3:QUAT 0 2 0.6106508604847534 -0.05309662274056086 -0.3733304800486037 -0.054972994022992064 0.10432547598981769 -0.02221474884651081 0.9927742290779572 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 25.0 0.0 0.0 25.0 0.0 25.0
EDGE_SE3:QUAT 1 2 0.3596962462613811 -0.03444814612976245 -0.25021419016946256 -0.03174661848656213 0.11646825423134777 -0.02951742735854383 0.9922479626852876 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 25.0 0.0 0.0 25.0 0.0 25.0

View File

@ -0,0 +1,16 @@
VERTEX_SE3:QUAT 8646911284551352320 40 -1.15443e-13 10 0.557345 0.557345 -0.435162 -0.435162
VERTEX_SE3:QUAT 8646911284551352321 28.2843 28.2843 10 0.301633 0.728207 -0.568567 -0.235508
VERTEX_SE3:QUAT 8646911284551352322 -1.6986e-08 40 10 -3.89609e-10 0.788205 -0.615412 -2.07622e-10
VERTEX_SE3:QUAT 8646911284551352323 -28.2843 28.2843 10 -0.301633 0.728207 -0.568567 0.235508
VERTEX_SE3:QUAT 8646911284551352324 -40 -2.32554e-10 10 -0.557345 0.557345 -0.435162 0.435162
VERTEX_SE3:QUAT 8646911284551352325 -28.2843 -28.2843 10 -0.728207 0.301633 -0.235508 0.568567
VERTEX_SE3:QUAT 8646911284551352326 -2.53531e-09 -40 10 -0.788205 -1.25891e-11 -3.82742e-13 0.615412
VERTEX_SE3:QUAT 8646911284551352327 28.2843 -28.2843 10 -0.728207 -0.301633 0.235508 0.568567
VERTEX_TRACKXYZ 7782220156096217088 10 10 10
VERTEX_TRACKXYZ 7782220156096217089 -10 10 10
VERTEX_TRACKXYZ 7782220156096217090 -10 -10 10
VERTEX_TRACKXYZ 7782220156096217091 10 -10 10
VERTEX_TRACKXYZ 7782220156096217092 10 10 -10
VERTEX_TRACKXYZ 7782220156096217093 -10 10 -10
VERTEX_TRACKXYZ 7782220156096217094 -10 -10 -10
VERTEX_TRACKXYZ 7782220156096217095 10 -10 -10

11
examples/Data/toyExample.g2o Executable file
View File

@ -0,0 +1,11 @@
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
VERTEX_SE3:QUAT 1 0 0 0 0 0 0 1
VERTEX_SE3:QUAT 2 0 0 0 0.00499994 0.00499994 0.00499994 0.999963
VERTEX_SE3:QUAT 3 0 0 0 -0.00499994 -0.00499994 -0.00499994 0.999963
VERTEX_SE3:QUAT 4 0 0 0 0.00499994 0.00499994 0.00499994 0.999963
EDGE_SE3:QUAT 1 2 1 2 0 0 0 0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 2 3 -3.26795e-07 1 0 0 0 0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 3 4 1 1 0 0 0 0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 3 1 6.9282e-07 2 0 0 0 1 1.73205e-07 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 1 4 -1 1 0 0 0 -0.707107 0.707107 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100
EDGE_SE3:QUAT 0 1 0 0 0 0 0 0 1 100 0 0 0 0 0 100 0 0 0 0 100 0 0 0 100 0 0 100 0 100

View File

@ -0,0 +1,83 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNetExample.cpp
* @brief Discrete Bayes Net example with famous Asia Bayes Network
* @author Frank Dellaert
* @date JULY 10, 2020
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/inference/BayesNet.h>
#include <iomanip>
using namespace std;
using namespace gtsam;
int main(int argc, char **argv) {
DiscreteBayesNet asia;
DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2), LungCancer(6, 2),
Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
asia.add(Asia % "99/1");
asia.add(Smoking % "50/50");
asia.add(Tuberculosis | Asia = "99/1 95/5");
asia.add(LungCancer | Smoking = "99/1 90/10");
asia.add(Bronchitis | Smoking = "70/30 40/60");
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
asia.add(XRay | Either = "95/5 2/98");
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
// print
vector<string> pretty = {"Asia", "Dyspnea", "XRay", "Tuberculosis",
"Smoking", "Either", "LungCancer", "Bronchitis"};
auto formatter = [pretty](Key key) { return pretty[key]; };
asia.print("Asia", formatter);
// Convert to factor graph
DiscreteFactorGraph fg(asia);
// Create solver and eliminate
Ordering ordering;
ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7);
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
// solve
DiscreteFactor::sharedValues mpe = chordal->optimize();
GTSAM_PRINT(*mpe);
// We can also build a Bayes tree (directed junction tree).
// The elimination order above will do fine:
auto bayesTree = fg.eliminateMultifrontal(ordering);
bayesTree->print("bayesTree", formatter);
// add evidence, we were in Asia and we have dyspnea
fg.add(Asia, "0 1");
fg.add(Dyspnea, "0 1");
// solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
DiscreteFactor::sharedValues mpe2 = chordal2->optimize();
GTSAM_PRINT(*mpe2);
// We can also sample from it
cout << "\n10 samples:" << endl;
for (size_t i = 0; i < 10; i++) {
DiscreteFactor::sharedValues sample = chordal2->sample();
GTSAM_PRINT(*sample);
}
return 0;
}

View File

@ -15,105 +15,106 @@
* @author Abhijit
* @date Jun 4, 2012
*
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529]
* You may be familiar with other graphical model packages like BNT (available
* at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an
* example. The following demo is same as that in the above link, except that
* everything is using GTSAM.
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009,
* p529] You may be familiar with other graphical model packages like BNT
* (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
* is used as an example. The following demo is same as that in the above link,
* except that everything is using GTSAM.
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteSequentialSolver.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <iomanip>
using namespace std;
using namespace gtsam;
int main(int argc, char **argv) {
// Define keys and a print function
Key C(1), S(2), R(3), W(4);
auto print = [=](DiscreteFactor::sharedValues values) {
cout << boolalpha << "Cloudy = " << static_cast<bool>((*values)[C])
<< " Sprinkler = " << static_cast<bool>((*values)[S])
<< " Rain = " << boolalpha << static_cast<bool>((*values)[R])
<< " WetGrass = " << static_cast<bool>((*values)[W]) << endl;
};
// We assume binary state variables
// we have 0 == "False" and 1 == "True"
const size_t nrStates = 2;
// define variables
DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates),
WetGrass(4, nrStates);
DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates),
WetGrass(W, nrStates);
// create Factor Graph of the bayes net
DiscreteFactorGraph graph;
// add factors
graph.add(Cloudy, "0.5 0.5"); //P(Cloudy)
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); //P(Sprinkler | Cloudy)
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); //P(Rain | Cloudy)
graph.add(Cloudy, "0.5 0.5"); // P(Cloudy)
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); // P(Sprinkler | Cloudy)
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); // P(Rain | Cloudy)
graph.add(Sprinkler & Rain & WetGrass,
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); //P(WetGrass | Sprinkler, Rain)
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain)
// Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional
// factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp)
// Alternatively we can also create a DiscreteBayesNet, add
// DiscreteConditional factors and create a FactorGraph from it. (See
// testDiscreteBayesNet.cpp)
// Since this is a relatively small distribution, we can as well print
// the whole distribution..
cout << "Distribution of Example: " << endl;
cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
<< endl;
<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
<< endl;
for (size_t a = 0; a < nrStates; a++)
for (size_t m = 0; m < nrStates; m++)
for (size_t h = 0; h < nrStates; h++)
for (size_t c = 0; c < nrStates; c++) {
DiscreteFactor::Values values;
values[Cloudy.first] = c;
values[Sprinkler.first] = h;
values[Rain.first] = m;
values[WetGrass.first] = a;
values[C] = c;
values[S] = h;
values[R] = m;
values[W] = a;
double prodPot = graph(values);
cout << boolalpha << setw(8) << (bool) c << setw(14)
<< (bool) h << setw(12) << (bool) m << setw(13)
<< (bool) a << setw(16) << prodPot << endl;
cout << setw(8) << static_cast<bool>(c) << setw(14)
<< static_cast<bool>(h) << setw(12) << static_cast<bool>(m)
<< setw(13) << static_cast<bool>(a) << setw(16) << prodPot
<< endl;
}
// "Most Probable Explanation", i.e., configuration with largest value
DiscreteSequentialSolver solver(graph);
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
cout <<"\nMost Probable Explanation (MPE):" << endl;
cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first]
<< " Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first]
<< " Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first]
<< " WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl;
DiscreteFactor::sharedValues mpe = graph.eliminateSequential()->optimize();
cout << "\nMost Probable Explanation (MPE):" << endl;
print(mpe);
// "Inference" We show an inference query like: probability that the Sprinkler
// was on; given that the grass is wet i.e. P( S | C=0) = ?
// "Inference" We show an inference query like: probability that the Sprinkler was on;
// given that the grass is wet i.e. P( S | W=1) =?
cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl;
// add evidence that it is not Cloudy
graph.add(Cloudy, "1 0");
// Method 1: we can compute the joint marginal P(S,W) and from that we can compute
// P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps..
// solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues mpe_with_evidence = chordal->optimize();
//Step1: Compute P(S,W)
DiscreteFactorGraph jointFG;
jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices());
DecisionTreeFactor probSW = jointFG.product();
cout << "\nMPE given C=0:" << endl;
print(mpe_with_evidence);
//Step2: Compute P(W)
DiscreteFactor::shared_ptr probW = solver.marginalFactor(WetGrass.first);
//Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1)
DiscreteFactor::Values values;
values[WetGrass.first] = 1;
//print P(S=0|W=1)
values[Sprinkler.first] = 0;
cout << "P(S=0|W=1) = " << probSW(values)/(*probW)(values) << endl;
//print P(S=1|W=1)
values[Sprinkler.first] = 1;
cout << "P(S=1|W=1) = " << probSW(values)/(*probW)(values) << endl;
// TODO: Method 2 : One way is to modify the factor graph to
// incorporate the evidence node and compute the marginal
// TODO: graph.addEvidence(Cloudy,0);
// we can also calculate arbitrary marginals:
DiscreteMarginals marginals(graph);
cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1]
<< endl;
cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl;
cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1]
<< endl;
// We can also sample from it
cout << "\n10 samples:" << endl;
for (size_t i = 0; i < 10; i++) {
DiscreteFactor::sharedValues sample = chordal->sample();
print(sample);
}
return 0;
}

94
examples/HMMExample.cpp Normal file
View File

@ -0,0 +1,94 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNetExample.cpp
* @brief Hidden Markov Model example, discrete.
* @author Frank Dellaert
* @date July 12, 2020
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/inference/BayesNet.h>
#include <iomanip>
#include <sstream>
using namespace std;
using namespace gtsam;
int main(int argc, char **argv) {
const int nrNodes = 4;
const size_t nrStates = 3;
// Define variables as well as ordering
Ordering ordering;
vector<DiscreteKey> keys;
for (int k = 0; k < nrNodes; k++) {
DiscreteKey key_i(k, nrStates);
keys.push_back(key_i);
ordering.emplace_back(k);
}
// Create HMM as a DiscreteBayesNet
DiscreteBayesNet hmm;
// Define backbone
const string transition = "8/1/1 1/8/1 1/1/8";
for (int k = 1; k < nrNodes; k++) {
hmm.add(keys[k] | keys[k - 1] = transition);
}
// Add some measurements, not needed for all time steps!
hmm.add(keys[0] % "7/2/1");
hmm.add(keys[1] % "1/9/0");
hmm.add(keys.back() % "5/4/1");
// print
hmm.print("HMM");
// Convert to factor graph
DiscreteFactorGraph factorGraph(hmm);
// Create solver and eliminate
// This will create a DAG ordered with arrow of time reversed
DiscreteBayesNet::shared_ptr chordal =
factorGraph.eliminateSequential(ordering);
chordal->print("Eliminated");
// solve
DiscreteFactor::sharedValues mpe = chordal->optimize();
GTSAM_PRINT(*mpe);
// We can also sample from it
cout << "\n10 samples:" << endl;
for (size_t k = 0; k < 10; k++) {
DiscreteFactor::sharedValues sample = chordal->sample();
GTSAM_PRINT(*sample);
}
// Or compute the marginals. This re-eliminates the FG into a Bayes tree
cout << "\nComputing Node Marginals .." << endl;
DiscreteMarginals marginals(factorGraph);
for (int k = 0; k < nrNodes; k++) {
Vector margProbs = marginals.marginalProbabilities(keys[k]);
stringstream ss;
ss << "marginal " << k;
print(margProbs, ss.str());
}
// TODO(frank): put in the glue to have DiscreteMarginals produce *arbitrary*
// joints efficiently, by the Bayes tree shortcut magic. All the code is there
// but it's not yet connected.
return 0;
}

View File

@ -0,0 +1,359 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file IMUKittiExampleGPS
* @brief Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
* @author Ported by Thomas Jespersen (thomasj@tkjelectronics.dk), TKJ Electronics
*/
// GTSAM related includes.
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/ISAM2Params.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <cstring>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
struct KittiCalibration {
double body_ptx;
double body_pty;
double body_ptz;
double body_prx;
double body_pry;
double body_prz;
double accelerometer_sigma;
double gyroscope_sigma;
double integration_sigma;
double accelerometer_bias_sigma;
double gyroscope_bias_sigma;
double average_delta_t;
};
struct ImuMeasurement {
double time;
double dt;
Vector3 accelerometer;
Vector3 gyroscope; // omega
};
struct GpsMeasurement {
double time;
Vector3 position; // x,y,z
};
const string output_filename = "IMUKittiExampleGPSResults.csv";
void loadKittiData(KittiCalibration& kitti_calibration,
vector<ImuMeasurement>& imu_measurements,
vector<GpsMeasurement>& gps_measurements) {
string line;
// Read IMU metadata and compute relative sensor pose transforms
// BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma GyroscopeSigma IntegrationSigma
// AccelerometerBiasSigma GyroscopeBiasSigma AverageDeltaT
string imu_metadata_file = findExampleDataFile("KittiEquivBiasedImu_metadata.txt");
ifstream imu_metadata(imu_metadata_file.c_str());
printf("-- Reading sensor metadata\n");
getline(imu_metadata, line, '\n'); // ignore the first line
// Load Kitti calibration
getline(imu_metadata, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&kitti_calibration.body_ptx,
&kitti_calibration.body_pty,
&kitti_calibration.body_ptz,
&kitti_calibration.body_prx,
&kitti_calibration.body_pry,
&kitti_calibration.body_prz,
&kitti_calibration.accelerometer_sigma,
&kitti_calibration.gyroscope_sigma,
&kitti_calibration.integration_sigma,
&kitti_calibration.accelerometer_bias_sigma,
&kitti_calibration.gyroscope_bias_sigma,
&kitti_calibration.average_delta_t);
printf("IMU metadata: %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n",
kitti_calibration.body_ptx,
kitti_calibration.body_pty,
kitti_calibration.body_ptz,
kitti_calibration.body_prx,
kitti_calibration.body_pry,
kitti_calibration.body_prz,
kitti_calibration.accelerometer_sigma,
kitti_calibration.gyroscope_sigma,
kitti_calibration.integration_sigma,
kitti_calibration.accelerometer_bias_sigma,
kitti_calibration.gyroscope_bias_sigma,
kitti_calibration.average_delta_t);
// Read IMU data
// Time dt accelX accelY accelZ omegaX omegaY omegaZ
string imu_data_file = findExampleDataFile("KittiEquivBiasedImu.txt");
printf("-- Reading IMU measurements from file\n");
{
ifstream imu_data(imu_data_file.c_str());
getline(imu_data, line, '\n'); // ignore the first line
double time = 0, dt = 0, acc_x = 0, acc_y = 0, acc_z = 0, gyro_x = 0, gyro_y = 0, gyro_z = 0;
while (!imu_data.eof()) {
getline(imu_data, line, '\n');
sscanf(line.c_str(), "%lf %lf %lf %lf %lf %lf %lf %lf",
&time, &dt,
&acc_x, &acc_y, &acc_z,
&gyro_x, &gyro_y, &gyro_z);
ImuMeasurement measurement;
measurement.time = time;
measurement.dt = dt;
measurement.accelerometer = Vector3(acc_x, acc_y, acc_z);
measurement.gyroscope = Vector3(gyro_x, gyro_y, gyro_z);
imu_measurements.push_back(measurement);
}
}
// Read GPS data
// Time,X,Y,Z
string gps_data_file = findExampleDataFile("KittiGps_converted.txt");
printf("-- Reading GPS measurements from file\n");
{
ifstream gps_data(gps_data_file.c_str());
getline(gps_data, line, '\n'); // ignore the first line
double time = 0, gps_x = 0, gps_y = 0, gps_z = 0;
while (!gps_data.eof()) {
getline(gps_data, line, '\n');
sscanf(line.c_str(), "%lf,%lf,%lf,%lf", &time, &gps_x, &gps_y, &gps_z);
GpsMeasurement measurement;
measurement.time = time;
measurement.position = Vector3(gps_x, gps_y, gps_z);
gps_measurements.push_back(measurement);
}
}
}
int main(int argc, char* argv[]) {
KittiCalibration kitti_calibration;
vector<ImuMeasurement> imu_measurements;
vector<GpsMeasurement> gps_measurements;
loadKittiData(kitti_calibration, imu_measurements, gps_measurements);
Vector6 BodyP = (Vector6() << kitti_calibration.body_ptx, kitti_calibration.body_pty, kitti_calibration.body_ptz,
kitti_calibration.body_prx, kitti_calibration.body_pry, kitti_calibration.body_prz)
.finished();
auto body_T_imu = Pose3::Expmap(BodyP);
if (!body_T_imu.equals(Pose3(), 1e-5)) {
printf("Currently only support IMUinBody is identity, i.e. IMU and body frame are the same");
exit(-1);
}
// Configure different variables
// double t_offset = gps_measurements[0].time;
size_t first_gps_pose = 1;
size_t gps_skip = 10; // Skip this many GPS measurements each time
double g = 9.8;
auto w_coriolis = Vector3::Zero(); // zero vector
// Configure noise models
auto noise_model_gps = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
Vector3::Constant(1.0/0.07))
.finished());
// Set initial conditions for the estimated trajectory
// initial pose is the reference frame (navigation frame)
auto current_pose_global = Pose3(Rot3(), gps_measurements[first_gps_pose].position);
// the vehicle is stationary at the beginning at position 0,0,0
Vector3 current_velocity_global = Vector3::Zero();
auto current_bias = imuBias::ConstantBias(); // init with zero bias
auto sigma_init_x = noiseModel::Diagonal::Precisions((Vector6() << Vector3::Constant(0),
Vector3::Constant(1.0))
.finished());
auto sigma_init_v = noiseModel::Diagonal::Sigmas(Vector3::Constant(1000.0));
auto sigma_init_b = noiseModel::Diagonal::Sigmas((Vector6() << Vector3::Constant(0.100),
Vector3::Constant(5.00e-05))
.finished());
// Set IMU preintegration parameters
Matrix33 measured_acc_cov = I_3x3 * pow(kitti_calibration.accelerometer_sigma, 2);
Matrix33 measured_omega_cov = I_3x3 * pow(kitti_calibration.gyroscope_sigma, 2);
// error committed in integrating position from velocities
Matrix33 integration_error_cov = I_3x3 * pow(kitti_calibration.integration_sigma, 2);
auto imu_params = PreintegratedImuMeasurements::Params::MakeSharedU(g);
imu_params->accelerometerCovariance = measured_acc_cov; // acc white noise in continuous
imu_params->integrationCovariance = integration_error_cov; // integration uncertainty continuous
imu_params->gyroscopeCovariance = measured_omega_cov; // gyro white noise in continuous
imu_params->omegaCoriolis = w_coriolis;
std::shared_ptr<PreintegratedImuMeasurements> current_summarized_measurement = nullptr;
// Set ISAM2 parameters and create ISAM2 solver object
ISAM2Params isam_params;
isam_params.factorization = ISAM2Params::CHOLESKY;
isam_params.relinearizeSkip = 10;
ISAM2 isam(isam_params);
// Create the factor graph and values object that will store new factors and values to add to the incremental graph
NonlinearFactorGraph new_factors;
Values new_values; // values storing the initial estimates of new nodes in the factor graph
/// Main loop:
/// (1) we read the measurements
/// (2) we create the corresponding factors in the graph
/// (3) we solve the graph to obtain and optimal estimate of robot trajectory
printf("-- Starting main loop: inference is performed at each time step, but we plot trajectory every 10 steps\n");
size_t j = 0;
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
// At each non=IMU measurement we initialize a new node in the graph
auto current_pose_key = X(i);
auto current_vel_key = V(i);
auto current_bias_key = B(i);
double t = gps_measurements[i].time;
if (i == first_gps_pose) {
// Create initial estimate and prior on initial pose, velocity, and biases
new_values.insert(current_pose_key, current_pose_global);
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, current_pose_global, sigma_init_x);
new_factors.emplace_shared<PriorFactor<Vector3>>(current_vel_key, current_velocity_global, sigma_init_v);
new_factors.emplace_shared<PriorFactor<imuBias::ConstantBias>>(current_bias_key, current_bias, sigma_init_b);
} else {
double t_previous = gps_measurements[i-1].time;
// Summarize IMU data between the previous GPS measurement and now
current_summarized_measurement = std::make_shared<PreintegratedImuMeasurements>(imu_params, current_bias);
static size_t included_imu_measurement_count = 0;
while (j < imu_measurements.size() && imu_measurements[j].time <= t) {
if (imu_measurements[j].time >= t_previous) {
current_summarized_measurement->integrateMeasurement(imu_measurements[j].accelerometer,
imu_measurements[j].gyroscope,
imu_measurements[j].dt);
included_imu_measurement_count++;
}
j++;
}
// Create IMU factor
auto previous_pose_key = X(i-1);
auto previous_vel_key = V(i-1);
auto previous_bias_key = B(i-1);
new_factors.emplace_shared<ImuFactor>(previous_pose_key, previous_vel_key,
current_pose_key, current_vel_key,
previous_bias_key, *current_summarized_measurement);
// Bias evolution as given in the IMU metadata
auto sigma_between_b = noiseModel::Diagonal::Sigmas((Vector6() <<
Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.accelerometer_bias_sigma),
Vector3::Constant(sqrt(included_imu_measurement_count) * kitti_calibration.gyroscope_bias_sigma))
.finished());
new_factors.emplace_shared<BetweenFactor<imuBias::ConstantBias>>(previous_bias_key,
current_bias_key,
imuBias::ConstantBias(),
sigma_between_b);
// Create GPS factor
auto gps_pose = Pose3(current_pose_global.rotation(), gps_measurements[i].position);
if ((i % gps_skip) == 0) {
new_factors.emplace_shared<PriorFactor<Pose3>>(current_pose_key, gps_pose, noise_model_gps);
new_values.insert(current_pose_key, gps_pose);
printf("################ POSE INCLUDED AT TIME %lf ################\n", t);
gps_pose.translation().print();
printf("\n\n");
} else {
new_values.insert(current_pose_key, current_pose_global);
}
// Add initial values for velocity and bias based on the previous estimates
new_values.insert(current_vel_key, current_velocity_global);
new_values.insert(current_bias_key, current_bias);
// Update solver
// =======================================================================
// We accumulate 2*GPSskip GPS measurements before updating the solver at
// first so that the heading becomes observable.
if (i > (first_gps_pose + 2*gps_skip)) {
printf("################ NEW FACTORS AT TIME %lf ################\n", t);
new_factors.print();
isam.update(new_factors, new_values);
// Reset the newFactors and newValues list
new_factors.resize(0);
new_values.clear();
// Extract the result/current estimates
Values result = isam.calculateEstimate();
current_pose_global = result.at<Pose3>(current_pose_key);
current_velocity_global = result.at<Vector3>(current_vel_key);
current_bias = result.at<imuBias::ConstantBias>(current_bias_key);
printf("\n################ POSE AT TIME %lf ################\n", t);
current_pose_global.print();
printf("\n\n");
}
}
}
// Save results to file
printf("\nWriting results to file...\n");
FILE* fp_out = fopen(output_filename.c_str(), "w+");
fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n");
Values result = isam.calculateEstimate();
for (size_t i = first_gps_pose; i < gps_measurements.size() - 1; i++) {
auto pose_key = X(i);
auto vel_key = V(i);
auto bias_key = B(i);
auto pose = result.at<Pose3>(pose_key);
auto velocity = result.at<Vector3>(vel_key);
auto bias = result.at<imuBias::ConstantBias>(bias_key);
auto pose_quat = pose.rotation().toQuaternion();
auto gps = gps_measurements[i].position;
cout << "State at #" << i << endl;
cout << "Pose:" << endl << pose << endl;
cout << "Velocity:" << endl << velocity << endl;
cout << "Bias:" << endl << bias << endl;
fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n",
gps_measurements[i].time,
pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
gps(0), gps(1), gps(2));
}
fclose(fp_out);
}

View File

@ -35,22 +35,28 @@
* optional arguments:
* data_csv_path path to the CSV file with the IMU data.
* -c use CombinedImuFactor
* Note: Define USE_LM to use Levenberg Marquardt Optimizer
* By default ISAM2 is used
*/
// GTSAM related includes.
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/inference/Symbol.h>
#include <cstring>
#include <fstream>
#include <iostream>
// Uncomment the following to use Levenberg Marquardt Optimizer
// #define USE_LM
using namespace gtsam;
using namespace std;
@ -64,6 +70,17 @@ static const char use_combined_imu_flag[3] = "-c";
int main(int argc, char* argv[]) {
string data_filename;
bool use_combined_imu = false;
#ifndef USE_LM
printf("Using ISAM2\n");
ISAM2Params parameters;
parameters.relinearizeThreshold = 0.01;
parameters.relinearizeSkip = 1;
ISAM2 isam2(parameters);
#else
printf("Using Levenberg Marquardt Optimizer\n");
#endif
if (argc < 2) {
printf("using default CSV file\n");
data_filename = findExampleDataFile("imuAndGPSdata.csv");
@ -252,9 +269,19 @@ int main(int argc, char* argv[]) {
initial_values.insert(V(correction_count), prop_state.v());
initial_values.insert(B(correction_count), prev_bias);
Values result;
#ifdef USE_LM
LevenbergMarquardtOptimizer optimizer(*graph, initial_values);
Values result = optimizer.optimize();
result = optimizer.optimize();
#else
isam2.update(*graph, initial_values);
isam2.update();
result = isam2.calculateEstimate();
// reset the graph
graph->resize(0);
initial_values.clear();
#endif
// Overwrite the beginning of the preintegration for the next step.
prev_state = NavState(result.at<Pose3>(X(correction_count)),
result.at<Vector3>(V(correction_count)));

View File

@ -85,7 +85,7 @@ class UnaryFactor: public NoiseModelFactor1<Pose2> {
// function, returning a vector of errors when evaluated at the provided variable value. It
// must also calculate the Jacobians for this measurement function, if requested.
Vector evaluateError(const Pose2& q,
boost::optional<Matrix&> H = boost::none) const {
boost::optional<Matrix&> H = boost::none) const override {
// The measurement function for a GPS-like measurement is simple:
// error_x = pose.x - measurement.x
// error_y = pose.y - measurement.y
@ -99,7 +99,7 @@ class UnaryFactor: public NoiseModelFactor1<Pose2> {
// The second is a 'clone' function that allows the factor to be copied. Under most
// circumstances, the following code that employs the default copy constructor should
// work fine.
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
gtsam::NonlinearFactor::shared_ptr clone() const override {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new UnaryFactor(*this))); }

View File

@ -109,7 +109,7 @@ int main(int argc, char* argv[]) {
Symbol('x', i), corrupted_pose);
}
for (size_t j = 0; j < points.size(); ++j) {
auto corrupted_point = points[j] + Point3(-0.25, 0.20, 0.15);
Point3 corrupted_point = points[j] + Point3(-0.25, 0.20, 0.15);
initialEstimate.insert<Point3>(Symbol('l', j), corrupted_point);
}
initialEstimate.print("Initial Estimates:\n");

View File

@ -50,11 +50,11 @@
#include <boost/program_options.hpp>
#include <boost/range/algorithm/set_algorithm.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/random.hpp>
#include <boost/serialization/export.hpp>
#include <fstream>
#include <iostream>
#include <random>
#ifdef GTSAM_USE_TBB
#include <tbb/task_arena.h> // tbb::task_arena
@ -554,8 +554,8 @@ void runCompare()
void runPerturb()
{
// Set up random number generator
boost::mt19937 rng;
boost::normal_distribution<double> normal(0.0, perturbationNoise);
std::mt19937 rng;
std::normal_distribution<double> normal(0.0, perturbationNoise);
// Perturb values
VectorValues noise;

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file small.cpp
* @file UGM_chain.cpp
* @brief UGM (undirected graphical model) examples: chain
* @author Frank Dellaert
* @author Abhijit Kundu
@ -19,10 +19,9 @@
* for more explanation. This code demos the same example using GTSAM.
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteSequentialSolver.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/base/timing.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <iomanip>
@ -30,9 +29,8 @@ using namespace std;
using namespace gtsam;
int main(int argc, char** argv) {
// Set Number of Nodes in the Graph
const int nrNodes = 60;
// Set Number of Nodes in the Graph
const int nrNodes = 60;
// Each node takes 1 of 7 possible states denoted by 0-6 in following order:
// ["VideoGames" "Industry" "GradSchool" "VideoGames(with PhD)"
@ -40,70 +38,55 @@ int main(int argc, char** argv) {
const size_t nrStates = 7;
// define variables
vector<DiscreteKey> nodes;
for (int i = 0; i < nrNodes; i++){
DiscreteKey dk(i, nrStates);
nodes.push_back(dk);
}
vector<DiscreteKey> nodes;
for (int i = 0; i < nrNodes; i++) {
DiscreteKey dk(i, nrStates);
nodes.push_back(dk);
}
// create graph
DiscreteFactorGraph graph;
// add node potentials
graph.add(nodes[0], ".3 .6 .1 0 0 0 0");
for (int i = 1; i < nrNodes; i++)
graph.add(nodes[i], "1 1 1 1 1 1 1");
for (int i = 1; i < nrNodes; i++) graph.add(nodes[i], "1 1 1 1 1 1 1");
const std::string edgePotential = ".08 .9 .01 0 0 0 .01 "
".03 .95 .01 0 0 0 .01 "
".06 .06 .75 .05 .05 .02 .01 "
"0 0 0 .3 .6 .09 .01 "
"0 0 0 .02 .95 .02 .01 "
"0 0 0 .01 .01 .97 .01 "
"0 0 0 0 0 0 1";
const std::string edgePotential =
".08 .9 .01 0 0 0 .01 "
".03 .95 .01 0 0 0 .01 "
".06 .06 .75 .05 .05 .02 .01 "
"0 0 0 .3 .6 .09 .01 "
"0 0 0 .02 .95 .02 .01 "
"0 0 0 .01 .01 .97 .01 "
"0 0 0 0 0 0 1";
// add edge potentials
for (int i = 0; i < nrNodes - 1; i++)
graph.add(nodes[i] & nodes[i + 1], edgePotential);
cout << "Created Factor Graph with " << nrNodes << " variable nodes and "
<< graph.size() << " factors (Unary+Edge).";
<< graph.size() << " factors (Unary+Edge).";
// "Decoding", i.e., configuration with largest value
// We use sequential variable elimination
DiscreteSequentialSolver solver(graph);
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
optimalDecoding->print("\nMost Probable Explanation (optimalDecoding)\n");
// "Inference" Computing marginals for each node
cout << "\nComputing Node Marginals ..(Sequential Elimination)" << endl;
gttic_(Sequential);
for (vector<DiscreteKey>::iterator itr = nodes.begin(); itr != nodes.end();
++itr) {
//Compute the marginal
Vector margProbs = solver.marginalProbabilities(*itr);
//Print the marginals
cout << "Node#" << setw(4) << itr->first << " : ";
print(margProbs);
}
gttoc_(Sequential);
// Here we'll make use of DiscreteMarginals class, which makes use of
// bayes-tree based shortcut evaluation of marginals
DiscreteMarginals marginals(graph);
cout << "\nComputing Node Marginals ..(BayesTree based)" << endl;
gttic_(Multifrontal);
for (vector<DiscreteKey>::iterator itr = nodes.begin(); itr != nodes.end();
++itr) {
//Compute the marginal
Vector margProbs = marginals.marginalProbabilities(*itr);
for (vector<DiscreteKey>::iterator it = nodes.begin(); it != nodes.end();
++it) {
// Compute the marginal
Vector margProbs = marginals.marginalProbabilities(*it);
//Print the marginals
cout << "Node#" << setw(4) << itr->first << " : ";
// Print the marginals
cout << "Node#" << setw(4) << it->first << " : ";
print(margProbs);
}
gttoc_(Multifrontal);
@ -111,4 +94,3 @@ int main(int argc, char** argv) {
tictoc_print_();
return 0;
}

View File

@ -10,15 +10,16 @@
* -------------------------------------------------------------------------- */
/**
* @file small.cpp
* @file UGM_small.cpp
* @brief UGM (undirected graphical model) examples: small
* @author Frank Dellaert
*
* See http://www.di.ens.fr/~mschmidt/Software/UGM/small.html
*/
#include <gtsam/base/Vector.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteSequentialSolver.h>
#include <gtsam/discrete/DiscreteMarginals.h>
using namespace std;
using namespace gtsam;
@ -61,24 +62,24 @@ int main(int argc, char** argv) {
// "Decoding", i.e., configuration with largest value (MPE)
// We use sequential variable elimination
DiscreteSequentialSolver solver(graph);
DiscreteFactor::sharedValues optimalDecoding = solver.optimize();
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
DiscreteFactor::sharedValues optimalDecoding = chordal->optimize();
optimalDecoding->print("\noptimalDecoding");
// "Inference" Computing marginals
cout << "\nComputing Node Marginals .." << endl;
Vector margProbs;
DiscreteMarginals marginals(graph);
margProbs = solver.marginalProbabilities(Cathy);
Vector margProbs = marginals.marginalProbabilities(Cathy);
print(margProbs, "Cathy's Node Marginal:");
margProbs = solver.marginalProbabilities(Heather);
margProbs = marginals.marginalProbabilities(Heather);
print(margProbs, "Heather's Node Marginal");
margProbs = solver.marginalProbabilities(Mark);
margProbs = marginals.marginalProbabilities(Mark);
print(margProbs, "Mark's Node Marginal");
margProbs = solver.marginalProbabilities(Allison);
margProbs = marginals.marginalProbabilities(Allison);
print(margProbs, "Allison's Node Marginal");
return 0;

63
gtsam.h
View File

@ -598,6 +598,7 @@ class SOn {
// Standard Constructors
SOn(size_t n);
static gtsam::SOn FromMatrix(Matrix R);
static gtsam::SOn Lift(size_t n, Matrix R);
// Testable
void print(string s) const;
@ -1458,7 +1459,7 @@ virtual class Null: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class Fair: gtsam::noiseModel::mEstimator::Base {
@ -1469,7 +1470,7 @@ virtual class Fair: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class Huber: gtsam::noiseModel::mEstimator::Base {
@ -1480,7 +1481,7 @@ virtual class Huber: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class Cauchy: gtsam::noiseModel::mEstimator::Base {
@ -1491,7 +1492,7 @@ virtual class Cauchy: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
@ -1502,7 +1503,7 @@ virtual class Tukey: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class Welsch: gtsam::noiseModel::mEstimator::Base {
@ -1513,7 +1514,7 @@ virtual class Welsch: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class GemanMcClure: gtsam::noiseModel::mEstimator::Base {
@ -1524,7 +1525,7 @@ virtual class GemanMcClure: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class DCS: gtsam::noiseModel::mEstimator::Base {
@ -1535,7 +1536,7 @@ virtual class DCS: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
virtual class L2WithDeadZone: gtsam::noiseModel::mEstimator::Base {
@ -1546,7 +1547,7 @@ virtual class L2WithDeadZone: gtsam::noiseModel::mEstimator::Base {
void serializable() const;
double weight(double error) const;
double residual(double error) const;
double loss(double error) const;
};
}///\namespace mEstimator
@ -1937,6 +1938,22 @@ virtual class ConjugateGradientParameters : gtsam::IterativeOptimizationParamete
void print() const;
};
#include <gtsam/linear/Preconditioner.h>
virtual class PreconditionerParameters {
PreconditionerParameters();
};
virtual class DummyPreconditionerParameters : gtsam::PreconditionerParameters {
DummyPreconditionerParameters();
};
#include <gtsam/linear/PCGSolver.h>
virtual class PCGSolverParameters : gtsam::ConjugateGradientParameters {
PCGSolverParameters();
void print(string s);
void setPreconditionerParams(gtsam::PreconditionerParameters* preconditioner);
};
#include <gtsam/linear/SubgraphSolver.h>
virtual class SubgraphSolverParameters : gtsam::ConjugateGradientParameters {
SubgraphSolverParameters();
@ -2835,6 +2852,34 @@ virtual class KarcherMeanFactor : gtsam::NonlinearFactor {
KarcherMeanFactor(const gtsam::KeyVector& keys);
};
#include <gtsam/slam/FrobeniusFactor.h>
gtsam::noiseModel::Isotropic* ConvertPose3NoiseModel(
gtsam::noiseModel::Base* model, size_t d);
template<T = {gtsam::SO3, gtsam::SO4}>
virtual class FrobeniusFactor : gtsam::NoiseModelFactor {
FrobeniusFactor(size_t key1, size_t key2);
FrobeniusFactor(size_t key1, size_t key2, gtsam::noiseModel::Base* model);
Vector evaluateError(const T& R1, const T& R2);
};
template<T = {gtsam::SO3, gtsam::SO4}>
virtual class FrobeniusBetweenFactor : gtsam::NoiseModelFactor {
FrobeniusBetweenFactor(size_t key1, size_t key2, const T& R12);
FrobeniusBetweenFactor(size_t key1, size_t key2, const T& R12, gtsam::noiseModel::Base* model);
Vector evaluateError(const T& R1, const T& R2);
};
virtual class FrobeniusWormholeFactor : gtsam::NoiseModelFactor {
FrobeniusWormholeFactor(size_t key1, size_t key2, const gtsam::Rot3& R12,
size_t p);
FrobeniusWormholeFactor(size_t key1, size_t key2, const gtsam::Rot3& R12,
size_t p, gtsam::noiseModel::Base* model);
Vector evaluateError(const gtsam::SOn& Q1, const gtsam::SOn& Q2);
};
//*************************************************************************
// Navigation
//*************************************************************************

View File

@ -15,7 +15,7 @@ set (gtsam_subdirs
sfm
slam
smart
navigation
navigation
)
set(gtsam_srcs)
@ -186,11 +186,17 @@ install(
list(APPEND GTSAM_EXPORTED_TARGETS gtsam)
set(GTSAM_EXPORTED_TARGETS "${GTSAM_EXPORTED_TARGETS}" PARENT_SCOPE)
# make sure that ccolamd compiles even in face of warnings
# Make sure that ccolamd compiles even in face of warnings
# and suppress all warnings from 3rd party code if Release build
if(WIN32)
set_source_files_properties(${3rdparty_srcs} PROPERTIES COMPILE_FLAGS "-w")
set_source_files_properties(${3rdparty_srcs} PROPERTIES COMPILE_FLAGS "/w")
else()
if("${CMAKE_BUILD_TYPE}" STREQUAL "Release")
# Suppress all warnings from 3rd party sources.
set_source_files_properties(${3rdparty_srcs} PROPERTIES COMPILE_FLAGS "-w")
else()
set_source_files_properties(${3rdparty_srcs} PROPERTIES COMPILE_FLAGS "-Wno-error")
endif()
endif()
# Create the matlab toolbox for the gtsam library

View File

@ -70,7 +70,7 @@ public:
}
/// equals implementing generic Value interface
virtual bool equals_(const Value& p, double tol = 1e-9) const {
bool equals_(const Value& p, double tol = 1e-9) const override {
// Cast the base class Value pointer to a templated generic class pointer
const GenericValue& genericValue2 = static_cast<const GenericValue&>(p);
// Return the result of using the equals traits for the derived class
@ -83,7 +83,7 @@ public:
}
/// Virtual print function, uses traits
virtual void print(const std::string& str) const {
void print(const std::string& str) const override {
std::cout << "(" << demangle(typeid(T).name()) << ") ";
traits<T>::Print(value_, str);
}
@ -91,7 +91,7 @@ public:
/**
* Create a duplicate object returned as a pointer to the generic Value interface.
*/
virtual Value* clone_() const {
Value* clone_() const override {
GenericValue* ptr = new GenericValue(*this); // calls copy constructor to fill in
return ptr;
}
@ -99,19 +99,19 @@ public:
/**
* Destroy and deallocate this object, only if it was originally allocated using clone_().
*/
virtual void deallocate_() const {
void deallocate_() const override {
delete this;
}
/**
* Clone this value (normal clone on the heap, delete with 'delete' operator)
*/
virtual boost::shared_ptr<Value> clone() const {
boost::shared_ptr<Value> clone() const override {
return boost::allocate_shared<GenericValue>(Eigen::aligned_allocator<GenericValue>(), *this);
}
/// Generic Value interface version of retract
virtual Value* retract_(const Vector& delta) const {
Value* retract_(const Vector& delta) const override {
// Call retract on the derived class using the retract trait function
const T retractResult = traits<T>::Retract(GenericValue<T>::value(), delta);
@ -122,7 +122,7 @@ public:
}
/// Generic Value interface version of localCoordinates
virtual Vector localCoordinates_(const Value& value2) const {
Vector localCoordinates_(const Value& value2) const override {
// Cast the base class Value pointer to a templated generic class pointer
const GenericValue<T>& genericValue2 =
static_cast<const GenericValue<T>&>(value2);
@ -142,12 +142,12 @@ public:
}
/// Return run-time dimensionality
virtual size_t dim() const {
size_t dim() const override {
return traits<T>::GetDimension(value_);
}
/// Assignment operator
virtual Value& operator=(const Value& rhs) {
Value& operator=(const Value& rhs) override {
// Cast the base class Value pointer to a derived class pointer
const GenericValue& derivedRhs = static_cast<const GenericValue&>(rhs);

View File

@ -548,17 +548,47 @@ GTSAM_EXPORT Vector columnNormSquare(const Matrix &A);
namespace boost {
namespace serialization {
/**
* Ref. https://stackoverflow.com/questions/18382457/eigen-and-boostserialize/22903063#22903063
*
* Eigen supports calling resize() on both static and dynamic matrices.
* This allows for a uniform API, with resize having no effect if the static matrix
* is already the correct size.
* https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html#TutorialMatrixSizesResizing
*
* We use all the Matrix template parameters to ensure wide compatibility.
*
* eigen_typekit in ROS uses the same code
* http://docs.ros.org/lunar/api/eigen_typekit/html/eigen__mqueue_8cpp_source.html
*/
// split version - sends sizes ahead
template<class Archive>
void save(Archive & ar, const gtsam::Matrix & m, unsigned int /*version*/) {
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void save(Archive & ar,
const Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int /*version*/) {
const size_t rows = m.rows(), cols = m.cols();
ar << BOOST_SERIALIZATION_NVP(rows);
ar << BOOST_SERIALIZATION_NVP(cols);
ar << make_nvp("data", make_array(m.data(), m.size()));
}
template<class Archive>
void load(Archive & ar, gtsam::Matrix & m, unsigned int /*version*/) {
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void load(Archive & ar,
Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int /*version*/) {
size_t rows, cols;
ar >> BOOST_SERIALIZATION_NVP(rows);
ar >> BOOST_SERIALIZATION_NVP(cols);
@ -566,8 +596,25 @@ namespace boost {
ar >> make_nvp("data", make_array(m.data(), m.size()));
}
// templated version of BOOST_SERIALIZATION_SPLIT_FREE(Eigen::Matrix);
template<class Archive,
typename Scalar_,
int Rows_,
int Cols_,
int Ops_,
int MaxRows_,
int MaxCols_>
void serialize(Archive & ar,
Eigen::Matrix<Scalar_, Rows_, Cols_, Ops_, MaxRows_, MaxCols_> & m,
const unsigned int version) {
split_free(ar, m, version);
}
// specialized to Matrix for MATLAB wrapper
template <class Archive>
void serialize(Archive& ar, gtsam::Matrix& m, const unsigned int version) {
split_free(ar, m, version);
}
} // namespace serialization
} // namespace boost
BOOST_SERIALIZATION_SPLIT_FREE(gtsam::Matrix);

View File

@ -71,12 +71,12 @@ protected:
String(description.begin(), description.end())) {
}
/// Default destructor doesn't have the throw()
virtual ~ThreadsafeException() throw () {
/// Default destructor doesn't have the noexcept
virtual ~ThreadsafeException() noexcept {
}
public:
virtual const char* what() const throw () {
const char* what() const noexcept override {
return description_ ? description_->c_str() : "";
}
};
@ -113,8 +113,8 @@ public:
class CholeskyFailed : public gtsam::ThreadsafeException<CholeskyFailed>
{
public:
CholeskyFailed() throw() {}
virtual ~CholeskyFailed() throw() {}
CholeskyFailed() noexcept {}
virtual ~CholeskyFailed() noexcept {}
};
} // namespace gtsam

View File

@ -89,7 +89,7 @@ void TimingOutline::print(const std::string& outline) const {
childOrder[child.second->myOrder_] = child.second;
}
// Print children
for(const ChildOrder::value_type order_child: childOrder) {
for(const ChildOrder::value_type& order_child: childOrder) {
std::string childOutline(outline);
childOutline += "| ";
order_child.second->print(childOutline);

View File

@ -57,7 +57,7 @@ namespace gtsam {
makeNewTasks(makeNewTasks),
isPostOrderPhase(false) {}
tbb::task* execute()
tbb::task* execute() override
{
if(isPostOrderPhase)
{
@ -144,7 +144,7 @@ namespace gtsam {
roots(roots), myData(myData), visitorPre(visitorPre), visitorPost(visitorPost),
problemSizeThreshold(problemSizeThreshold) {}
tbb::task* execute()
tbb::task* execute() override
{
typedef PreOrderTask<NODE, DATA, VISITOR_PRE, VISITOR_POST> PreOrderTask;
// Create data and tasks for our children

View File

@ -28,6 +28,7 @@
#include <cstdint>
#include <exception>
#include <string>
#ifdef GTSAM_USE_TBB
#include <tbb/scalable_allocator.h>
@ -54,7 +55,7 @@
namespace gtsam {
/// Function to demangle type name of variable, e.g. demangle(typeid(x).name())
std::string demangle(const char* name);
std::string GTSAM_EXPORT demangle(const char* name);
/// Integer nonlinear key type
typedef std::uint64_t Key;

View File

@ -66,42 +66,42 @@ namespace gtsam {
}
/// Leaf-Leaf equality
bool sameLeaf(const Leaf& q) const {
bool sameLeaf(const Leaf& q) const override {
return constant_ == q.constant_;
}
/// polymorphic equality: is q is a leaf, could be
bool sameLeaf(const Node& q) const {
bool sameLeaf(const Node& q) const override {
return (q.isLeaf() && q.sameLeaf(*this));
}
/** equality up to tolerance */
bool equals(const Node& q, double tol) const {
bool equals(const Node& q, double tol) const override {
const Leaf* other = dynamic_cast<const Leaf*> (&q);
if (!other) return false;
return std::abs(double(this->constant_ - other->constant_)) < tol;
}
/** print */
void print(const std::string& s) const {
void print(const std::string& s) const override {
bool showZero = true;
if (showZero || constant_) std::cout << s << " Leaf " << constant_ << std::endl;
}
/** to graphviz file */
void dot(std::ostream& os, bool showZero) const {
void dot(std::ostream& os, bool showZero) const override {
if (showZero || constant_) os << "\"" << this->id() << "\" [label=\""
<< boost::format("%4.2g") % constant_
<< "\", shape=box, rank=sink, height=0.35, fixedsize=true]\n"; // width=0.55,
}
/** evaluate */
const Y& operator()(const Assignment<L>& x) const {
const Y& operator()(const Assignment<L>& x) const override {
return constant_;
}
/** apply unary operator */
NodePtr apply(const Unary& op) const {
NodePtr apply(const Unary& op) const override {
NodePtr f(new Leaf(op(constant_)));
return f;
}
@ -111,27 +111,27 @@ namespace gtsam {
// Simply calls apply on argument to call correct virtual method:
// fL.apply_f_op_g(gL) -> gL.apply_g_op_fL(fL) (below)
// fL.apply_f_op_g(gC) -> gC.apply_g_op_fL(fL) (Choice)
NodePtr apply_f_op_g(const Node& g, const Binary& op) const {
NodePtr apply_f_op_g(const Node& g, const Binary& op) const override {
return g.apply_g_op_fL(*this, op);
}
// Applying binary operator to two leaves results in a leaf
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const {
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const override {
NodePtr h(new Leaf(op(fL.constant_, constant_))); // fL op gL
return h;
}
// If second argument is a Choice node, call it's apply with leaf as second
NodePtr apply_g_op_fC(const Choice& fC, const Binary& op) const {
NodePtr apply_g_op_fC(const Choice& fC, const Binary& op) const override {
return fC.apply_fC_op_gL(*this, op); // operand order back to normal
}
/** choose a branch, create new memory ! */
NodePtr choose(const L& label, size_t index) const {
NodePtr choose(const L& label, size_t index) const override {
return NodePtr(new Leaf(constant()));
}
bool isLeaf() const { return true; }
bool isLeaf() const override { return true; }
}; // Leaf
@ -175,7 +175,7 @@ namespace gtsam {
return f;
}
bool isLeaf() const { return false; }
bool isLeaf() const override { return false; }
/** Constructor, given choice label and mandatory expected branch count */
Choice(const L& label, size_t count) :
@ -236,7 +236,7 @@ namespace gtsam {
}
/** print (as a tree) */
void print(const std::string& s) const {
void print(const std::string& s) const override {
std::cout << s << " Choice(";
// std::cout << this << ",";
std::cout << label_ << ") " << std::endl;
@ -245,7 +245,7 @@ namespace gtsam {
}
/** output to graphviz (as a a graph) */
void dot(std::ostream& os, bool showZero) const {
void dot(std::ostream& os, bool showZero) const override {
os << "\"" << this->id() << "\" [shape=circle, label=\"" << label_
<< "\"]\n";
for (size_t i = 0; i < branches_.size(); i++) {
@ -266,17 +266,17 @@ namespace gtsam {
}
/// Choice-Leaf equality: always false
bool sameLeaf(const Leaf& q) const {
bool sameLeaf(const Leaf& q) const override {
return false;
}
/// polymorphic equality: if q is a leaf, could be...
bool sameLeaf(const Node& q) const {
bool sameLeaf(const Node& q) const override {
return (q.isLeaf() && q.sameLeaf(*this));
}
/** equality up to tolerance */
bool equals(const Node& q, double tol) const {
bool equals(const Node& q, double tol) const override {
const Choice* other = dynamic_cast<const Choice*> (&q);
if (!other) return false;
if (this->label_ != other->label_) return false;
@ -288,7 +288,7 @@ namespace gtsam {
}
/** evaluate */
const Y& operator()(const Assignment<L>& x) const {
const Y& operator()(const Assignment<L>& x) const override {
#ifndef NDEBUG
typename Assignment<L>::const_iterator it = x.find(label_);
if (it == x.end()) {
@ -314,7 +314,7 @@ namespace gtsam {
}
/** apply unary operator */
NodePtr apply(const Unary& op) const {
NodePtr apply(const Unary& op) const override {
boost::shared_ptr<Choice> r(new Choice(label_, *this, op));
return Unique(r);
}
@ -324,12 +324,12 @@ namespace gtsam {
// Simply calls apply on argument to call correct virtual method:
// fC.apply_f_op_g(gL) -> gL.apply_g_op_fC(fC) -> (Leaf)
// fC.apply_f_op_g(gC) -> gC.apply_g_op_fC(fC) -> (below)
NodePtr apply_f_op_g(const Node& g, const Binary& op) const {
NodePtr apply_f_op_g(const Node& g, const Binary& op) const override {
return g.apply_g_op_fC(*this, op);
}
// If second argument of binary op is Leaf node, recurse on branches
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const {
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const override {
boost::shared_ptr<Choice> h(new Choice(label(), nrChoices()));
for(NodePtr branch: branches_)
h->push_back(fL.apply_f_op_g(*branch, op));
@ -337,7 +337,7 @@ namespace gtsam {
}
// If second argument of binary op is Choice, call constructor
NodePtr apply_g_op_fC(const Choice& fC, const Binary& op) const {
NodePtr apply_g_op_fC(const Choice& fC, const Binary& op) const override {
boost::shared_ptr<Choice> h(new Choice(fC, *this, op));
return Unique(h);
}
@ -352,7 +352,7 @@ namespace gtsam {
}
/** choose a branch, recursively */
NodePtr choose(const L& label, size_t index) const {
NodePtr choose(const L& label, size_t index) const override {
if (label_ == label)
return branches_[index]; // choose branch

View File

@ -69,7 +69,7 @@ namespace gtsam {
for(Key j: f.keys()) cs[j] = f.cardinality(j);
// Convert map into keys
DiscreteKeys keys;
for(const DiscreteKey& key: cs)
for(const std::pair<const Key,size_t>& key: cs)
keys.push_back(key);
// apply operand
ADT result = ADT::apply(f, op);

View File

@ -69,23 +69,23 @@ namespace gtsam {
/// @{
/// equality
bool equals(const DiscreteFactor& other, double tol = 1e-9) const;
bool equals(const DiscreteFactor& other, double tol = 1e-9) const override;
// print
virtual void print(const std::string& s = "DecisionTreeFactor:\n",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
void print(const std::string& s = "DecisionTreeFactor:\n",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// @}
/// @name Standard Interface
/// @{
/// Value is just look up in AlgebraicDecisonTree
virtual double operator()(const Values& values) const {
double operator()(const Values& values) const override {
return Potentials::operator()(values);
}
/// multiply two factors
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const {
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override {
return apply(f, ADT::Ring::mul);
}
@ -95,7 +95,7 @@ namespace gtsam {
}
/// Convert into a decisiontree
virtual DecisionTreeFactor toDecisionTreeFactor() const {
DecisionTreeFactor toDecisionTreeFactor() const override {
return *this;
}

View File

@ -20,13 +20,14 @@
#include <vector>
#include <map>
#include <boost/shared_ptr.hpp>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/discrete/DiscreteConditional.h>
namespace gtsam {
/** A Bayes net made from linear-Discrete densities */
class GTSAM_EXPORT DiscreteBayesNet: public FactorGraph<DiscreteConditional>
class GTSAM_EXPORT DiscreteBayesNet: public BayesNet<DiscreteConditional>
{
public:

View File

@ -29,13 +29,32 @@ namespace gtsam {
template class BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph>;
template class BayesTree<DiscreteBayesTreeClique>;
/* ************************************************************************* */
double DiscreteBayesTreeClique::evaluate(
const DiscreteConditional::Values& values) const {
// evaluate all conditionals and multiply
double result = (*conditional_)(values);
for (const auto& child : children) {
result *= child->evaluate(values);
}
return result;
}
/* ************************************************************************* */
bool DiscreteBayesTree::equals(const This& other, double tol) const
{
bool DiscreteBayesTree::equals(const This& other, double tol) const {
return Base::equals(other, tol);
}
/* ************************************************************************* */
double DiscreteBayesTree::evaluate(
const DiscreteConditional::Values& values) const {
double result = 1.0;
for (const auto& root : roots_) {
result *= root->evaluate(values);
}
return result;
}
} // \namespace gtsam

View File

@ -11,7 +11,8 @@
/**
* @file DiscreteBayesTree.h
* @brief Discrete Bayes Tree, the result of eliminating a DiscreteJunctionTree
* @brief Discrete Bayes Tree, the result of eliminating a
* DiscreteJunctionTree
* @brief DiscreteBayesTree
* @author Frank Dellaert
* @author Richard Roberts
@ -22,45 +23,63 @@
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/inference/BayesTree.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/BayesTreeCliqueBase.h>
#include <string>
namespace gtsam {
// Forward declarations
class DiscreteConditional;
class VectorValues;
// Forward declarations
class DiscreteConditional;
class VectorValues;
/* ************************************************************************* */
/** A clique in a DiscreteBayesTree */
class GTSAM_EXPORT DiscreteBayesTreeClique :
public BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph>
{
public:
typedef DiscreteBayesTreeClique This;
typedef BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph> Base;
typedef boost::shared_ptr<This> shared_ptr;
typedef boost::weak_ptr<This> weak_ptr;
DiscreteBayesTreeClique() {}
DiscreteBayesTreeClique(const boost::shared_ptr<DiscreteConditional>& conditional) : Base(conditional) {}
};
/* ************************************************************************* */
/** A clique in a DiscreteBayesTree */
class GTSAM_EXPORT DiscreteBayesTreeClique
: public BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph> {
public:
typedef DiscreteBayesTreeClique This;
typedef BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph>
Base;
typedef boost::shared_ptr<This> shared_ptr;
typedef boost::weak_ptr<This> weak_ptr;
DiscreteBayesTreeClique() {}
virtual ~DiscreteBayesTreeClique() {}
DiscreteBayesTreeClique(
const boost::shared_ptr<DiscreteConditional>& conditional)
: Base(conditional) {}
/* ************************************************************************* */
/** A Bayes tree representing a Discrete density */
class GTSAM_EXPORT DiscreteBayesTree :
public BayesTree<DiscreteBayesTreeClique>
{
private:
typedef BayesTree<DiscreteBayesTreeClique> Base;
/// print index signature only
void printSignature(
const std::string& s = "Clique: ",
const KeyFormatter& formatter = DefaultKeyFormatter) const {
conditional_->printSignature(s, formatter);
}
public:
typedef DiscreteBayesTree This;
typedef boost::shared_ptr<This> shared_ptr;
//** evaluate conditional probability of subtree for given Values */
double evaluate(const DiscreteConditional::Values& values) const;
};
/** Default constructor, creates an empty Bayes tree */
DiscreteBayesTree() {}
/* ************************************************************************* */
/** A Bayes tree representing a Discrete density */
class GTSAM_EXPORT DiscreteBayesTree
: public BayesTree<DiscreteBayesTreeClique> {
private:
typedef BayesTree<DiscreteBayesTreeClique> Base;
/** Check equality */
bool equals(const This& other, double tol = 1e-9) const;
};
public:
typedef DiscreteBayesTree This;
typedef boost::shared_ptr<This> shared_ptr;
}
/** Default constructor, creates an empty Bayes tree */
DiscreteBayesTree() {}
/** Check equality */
bool equals(const This& other, double tol = 1e-9) const;
//** evaluate probability for given Values */
double evaluate(const DiscreteConditional::Values& values) const;
};
} // namespace gtsam

View File

@ -27,6 +27,7 @@
#include <algorithm>
#include <random>
#include <stdexcept>
#include <string>
#include <vector>
using namespace std;
@ -61,16 +62,26 @@ DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint,
}
/* ******************************************************************************** */
DiscreteConditional::DiscreteConditional(const Signature& signature) :
BaseFactor(signature.discreteKeysParentsFirst(), signature.cpt()), BaseConditional(
1) {
}
DiscreteConditional::DiscreteConditional(const Signature& signature)
: BaseFactor(signature.discreteKeys(), signature.cpt()),
BaseConditional(1) {}
/* ******************************************************************************** */
void DiscreteConditional::print(const std::string& s,
const KeyFormatter& formatter) const {
std::cout << s << std::endl;
Potentials::print(s);
void DiscreteConditional::print(const string& s,
const KeyFormatter& formatter) const {
cout << s << " P( ";
for (const_iterator it = beginFrontals(); it != endFrontals(); ++it) {
cout << formatter(*it) << " ";
}
if (nrParents()) {
cout << "| ";
for (const_iterator it = beginParents(); it != endParents(); ++it) {
cout << formatter(*it) << " ";
}
}
cout << ")";
Potentials::print("");
cout << endl;
}
/* ******************************************************************************** */
@ -173,55 +184,28 @@ size_t DiscreteConditional::solve(const Values& parentsValues) const {
/* ******************************************************************************** */
size_t DiscreteConditional::sample(const Values& parentsValues) const {
static mt19937 rng(2); // random number generator
bool debug = ISDEBUG("DiscreteConditional::sample");
static mt19937 rng(2); // random number generator
// Get the correct conditional density
ADT pFS = choose(parentsValues); // P(F|S=parentsValues)
if (debug)
GTSAM_PRINT(pFS);
ADT pFS = choose(parentsValues); // P(F|S=parentsValues)
// get cumulative distribution function (cdf)
// TODO, only works for one key now, seems horribly slow this way
// TODO(Duy): only works for one key now, seems horribly slow this way
assert(nrFrontals() == 1);
Key j = (firstFrontalKey());
size_t nj = cardinality(j);
vector<double> cdf(nj);
Key key = firstFrontalKey();
size_t nj = cardinality(key);
vector<double> p(nj);
Values frontals;
double sum = 0;
for (size_t value = 0; value < nj; value++) {
frontals[j] = value;
double pValueS = pFS(frontals); // P(F=value|S=parentsValues)
sum += pValueS; // accumulate
if (debug)
cout << sum << " ";
if (pValueS == 1) {
if (debug)
cout << "--> " << value << endl;
return value; // shortcut exit
frontals[key] = value;
p[value] = pFS(frontals); // P(F=value|S=parentsValues)
if (p[value] == 1.0) {
return value; // shortcut exit
}
cdf[value] = sum;
}
// inspired by http://www.boost.org/doc/libs/1_46_1/doc/html/boost_random/tutorial.html
uniform_real_distribution<double> dist(0, cdf.back());
size_t sampled = lower_bound(cdf.begin(), cdf.end(), dist(rng)) - cdf.begin();
if (debug)
cout << "-> " << sampled << endl;
return sampled;
return 0;
std::discrete_distribution<size_t> distribution(p.begin(), p.end());
return distribution(rng);
}
/* ******************************************************************************** */
//void DiscreteConditional::permuteWithInverse(
// const Permutation& inversePermutation) {
// IndexConditionalOrdered::permuteWithInverse(inversePermutation);
// Potentials::permuteWithInverse(inversePermutation);
//}
/* ******************************************************************************** */
}// namespace

View File

@ -24,6 +24,8 @@
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
#include <string>
namespace gtsam {
/**
@ -83,17 +85,24 @@ public:
/// GTSAM-style print
void print(const std::string& s = "Discrete Conditional: ",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// GTSAM-style equals
bool equals(const DiscreteFactor& other, double tol = 1e-9) const;
bool equals(const DiscreteFactor& other, double tol = 1e-9) const override;
/// @}
/// @name Standard Interface
/// @{
/// print index signature only
void printSignature(
const std::string& s = "Discrete Conditional: ",
const KeyFormatter& formatter = DefaultKeyFormatter) const {
static_cast<const BaseConditional*>(this)->print(s, formatter);
}
/// Evaluate, just look up in AlgebraicDecisonTree
virtual double operator()(const Values& values) const {
double operator()(const Values& values) const override {
return Potentials::operator()(values);
}

View File

@ -15,50 +15,52 @@
* @author Frank Dellaert
*/
#include <gtsam/discrete/Potentials.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/Potentials.h>
#include <boost/format.hpp>
#include <string>
using namespace std;
namespace gtsam {
// explicit instantiation
template class DecisionTree<Key, double> ;
template class AlgebraicDecisionTree<Key> ;
// explicit instantiation
template class DecisionTree<Key, double>;
template class AlgebraicDecisionTree<Key>;
/* ************************************************************************* */
double Potentials::safe_div(const double& a, const double& b) {
// cout << boost::format("%g / %g = %g\n") % a % b % ((a == 0) ? 0 : (a / b));
// The use for safe_div is when we divide the product factor by the sum factor.
// If the product or sum is zero, we accord zero probability to the event.
return (a == 0 || b == 0) ? 0 : (a / b);
}
/* ************************************************************************* */
double Potentials::safe_div(const double& a, const double& b) {
// cout << boost::format("%g / %g = %g\n") % a % b % ((a == 0) ? 0 : (a / b));
// The use for safe_div is when we divide the product factor by the sum
// factor. If the product or sum is zero, we accord zero probability to the
// event.
return (a == 0 || b == 0) ? 0 : (a / b);
}
/* ******************************************************************************** */
Potentials::Potentials() :
ADT(1.0) {
}
/* ********************************************************************************
*/
Potentials::Potentials() : ADT(1.0) {}
/* ******************************************************************************** */
Potentials::Potentials(const DiscreteKeys& keys, const ADT& decisionTree) :
ADT(decisionTree), cardinalities_(keys.cardinalities()) {
}
/* ********************************************************************************
*/
Potentials::Potentials(const DiscreteKeys& keys, const ADT& decisionTree)
: ADT(decisionTree), cardinalities_(keys.cardinalities()) {}
/* ************************************************************************* */
bool Potentials::equals(const Potentials& other, double tol) const {
return ADT::equals(other, tol);
}
/* ************************************************************************* */
bool Potentials::equals(const Potentials& other, double tol) const {
return ADT::equals(other, tol);
}
/* ************************************************************************* */
void Potentials::print(const string& s,
const KeyFormatter& formatter) const {
cout << s << "\n Cardinalities: ";
for(const DiscreteKey& key: cardinalities_)
cout << formatter(key.first) << "=" << formatter(key.second) << " ";
cout << endl;
ADT::print(" ");
}
/* ************************************************************************* */
void Potentials::print(const string& s, const KeyFormatter& formatter) const {
cout << s << "\n Cardinalities: {";
for (const std::pair<const Key,size_t>& key : cardinalities_)
cout << formatter(key.first) << ":" << key.second << ", ";
cout << "}" << endl;
ADT::print(" ");
}
//
// /* ************************************************************************* */
// template<class P>
@ -95,4 +97,4 @@ namespace gtsam {
/* ************************************************************************* */
} // namespace gtsam
} // namespace gtsam

View File

@ -122,28 +122,30 @@ namespace gtsam {
key_(key) {
}
DiscreteKeys Signature::discreteKeysParentsFirst() const {
DiscreteKeys Signature::discreteKeys() const {
DiscreteKeys keys;
for(const DiscreteKey& key: parents_)
keys.push_back(key);
keys.push_back(key_);
for (const DiscreteKey& key : parents_) keys.push_back(key);
return keys;
}
KeyVector Signature::indices() const {
KeyVector js;
js.push_back(key_.first);
for(const DiscreteKey& key: parents_)
js.push_back(key.first);
for (const DiscreteKey& key : parents_) js.push_back(key.first);
return js;
}
vector<double> Signature::cpt() const {
vector<double> cpt;
if (table_) {
for(const Row& row: *table_)
for(const double& x: row)
cpt.push_back(x);
const size_t nrStates = table_->at(0).size();
for (size_t j = 0; j < nrStates; j++) {
for (const Row& row : *table_) {
assert(row.size() == nrStates);
cpt.push_back(row[j]);
}
}
}
return cpt;
}

View File

@ -86,8 +86,8 @@ namespace gtsam {
return parents_;
}
/** All keys, with variable key last */
DiscreteKeys discreteKeysParentsFirst() const;
/** All keys, with variable key first */
DiscreteKeys discreteKeys() const;
/** All key indices, with variable key first */
KeyVector indices() const;

View File

@ -132,7 +132,7 @@ TEST(ADT, example3)
/** Convert Signature into CPT */
ADT create(const Signature& signature) {
ADT p(signature.discreteKeysParentsFirst(), signature.cpt());
ADT p(signature.discreteKeys(), signature.cpt());
static size_t count = 0;
const DiscreteKey& key = signature.key();
string dotfile = (boost::format("CPT-%03d-%d") % ++count % key.first).str();
@ -181,19 +181,20 @@ TEST(ADT, joint)
dot(joint, "Asia-ASTLBEX");
joint = apply(joint, pD, &mul);
dot(joint, "Asia-ASTLBEXD");
EXPECT_LONGS_EQUAL(346, (long)muls);
EXPECT_LONGS_EQUAL(346, muls);
gttoc_(asiaJoint);
tictoc_getNode(asiaJointNode, asiaJoint);
elapsed = asiaJointNode->secs() + asiaJointNode->wall();
tictoc_reset_();
printCounts("Asia joint");
// Form P(A,S,T,L) = P(A) P(S) P(T|A) P(L|S)
ADT pASTL = pA;
pASTL = apply(pASTL, pS, &mul);
pASTL = apply(pASTL, pT, &mul);
pASTL = apply(pASTL, pL, &mul);
// test combine
// test combine to check that P(A) = \sum_{S,T,L} P(A,S,T,L)
ADT fAa = pASTL.combine(L, &add_).combine(T, &add_).combine(S, &add_);
EXPECT(assert_equal(pA, fAa));
ADT fAb = pASTL.combine(S, &add_).combine(T, &add_).combine(L, &add_);

View File

@ -18,110 +18,135 @@
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Vector.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/map.hpp>
#include <boost/assign/list_inserter.hpp>
#include <boost/assign/std/map.hpp>
using namespace boost::assign;
#include <iostream>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST(DiscreteBayesNet, Asia)
{
TEST(DiscreteBayesNet, bayesNet) {
DiscreteBayesNet bayesNet;
DiscreteKey Parent(0, 2), Child(1, 2);
auto prior = boost::make_shared<DiscreteConditional>(Parent % "6/4");
CHECK(assert_equal(Potentials::ADT({Parent}, "0.6 0.4"),
(Potentials::ADT)*prior));
bayesNet.push_back(prior);
auto conditional =
boost::make_shared<DiscreteConditional>(Child | Parent = "7/3 8/2");
EXPECT_LONGS_EQUAL(1, *(conditional->beginFrontals()));
Potentials::ADT expected(Child & Parent, "0.7 0.8 0.3 0.2");
CHECK(assert_equal(expected, (Potentials::ADT)*conditional));
bayesNet.push_back(conditional);
DiscreteFactorGraph fg(bayesNet);
LONGS_EQUAL(2, fg.back()->size());
// Check the marginals
const double expectedMarginal[2]{0.4, 0.6 * 0.3 + 0.4 * 0.2};
DiscreteMarginals marginals(fg);
for (size_t j = 0; j < 2; j++) {
Vector FT = marginals.marginalProbabilities(DiscreteKey(j, 2));
EXPECT_DOUBLES_EQUAL(expectedMarginal[j], FT[1], 1e-3);
EXPECT_DOUBLES_EQUAL(FT[0], 1.0 - FT[1], 1e-9);
}
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, Asia) {
DiscreteBayesNet asia;
// DiscreteKey A("Asia"), S("Smoking"), T("Tuberculosis"), L("LungCancer"), B(
// "Bronchitis"), E("Either"), X("XRay"), D("Dyspnoea");
DiscreteKey A(0,2), S(4,2), T(3,2), L(6,2), B(7,2), E(5,2), X(2,2), D(1,2);
DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2), LungCancer(6, 2),
Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
// TODO: make a version that doesn't use the parser
asia.add(A % "99/1");
asia.add(S % "50/50");
asia.add(Asia % "99/1");
asia.add(Smoking % "50/50");
asia.add(T | A = "99/1 95/5");
asia.add(L | S = "99/1 90/10");
asia.add(B | S = "70/30 40/60");
asia.add(Tuberculosis | Asia = "99/1 95/5");
asia.add(LungCancer | Smoking = "99/1 90/10");
asia.add(Bronchitis | Smoking = "70/30 40/60");
asia.add((E | T, L) = "F T T T");
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
asia.add(X | E = "95/5 2/98");
// next lines are same as asia.add((D | E, B) = "9/1 2/8 3/7 1/9");
DiscreteConditional::shared_ptr actual =
boost::make_shared<DiscreteConditional>((D | E, B) = "9/1 2/8 3/7 1/9");
asia.push_back(actual);
// GTSAM_PRINT(asia);
asia.add(XRay | Either = "95/5 2/98");
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
// Convert to factor graph
DiscreteFactorGraph fg(asia);
// GTSAM_PRINT(fg);
LONGS_EQUAL(3,fg.back()->size());
Potentials::ADT expected(B & D & E, "0.9 0.3 0.1 0.7 0.2 0.1 0.8 0.9");
CHECK(assert_equal(expected,(Potentials::ADT)*actual));
LONGS_EQUAL(3, fg.back()->size());
// Check the marginals we know (of the parent-less nodes)
DiscreteMarginals marginals(fg);
Vector2 va(0.99, 0.01), vs(0.5, 0.5);
EXPECT(assert_equal(va, marginals.marginalProbabilities(Asia)));
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
// Create solver and eliminate
Ordering ordering;
ordering += Key(0),Key(1),Key(2),Key(3),Key(4),Key(5),Key(6),Key(7);
ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7);
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
// GTSAM_PRINT(*chordal);
DiscreteConditional expected2(B % "11/9");
CHECK(assert_equal(expected2,*chordal->back()));
DiscreteConditional expected2(Bronchitis % "11/9");
EXPECT(assert_equal(expected2, *chordal->back()));
// solve
DiscreteFactor::sharedValues actualMPE = chordal->optimize();
DiscreteFactor::Values expectedMPE;
insert(expectedMPE)(A.first, 0)(D.first, 0)(X.first, 0)(T.first, 0)(S.first,
0)(E.first, 0)(L.first, 0)(B.first, 0);
insert(expectedMPE)(Asia.first, 0)(Dyspnea.first, 0)(XRay.first, 0)(
Tuberculosis.first, 0)(Smoking.first, 0)(Either.first, 0)(
LungCancer.first, 0)(Bronchitis.first, 0);
EXPECT(assert_equal(expectedMPE, *actualMPE));
// add evidence, we were in Asia and we have Dispnoea
fg.add(A, "0 1");
fg.add(D, "0 1");
// fg.product().dot("fg");
// add evidence, we were in Asia and we have dyspnea
fg.add(Asia, "0 1");
fg.add(Dyspnea, "0 1");
// solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
// GTSAM_PRINT(*chordal2);
DiscreteFactor::sharedValues actualMPE2 = chordal2->optimize();
DiscreteFactor::Values expectedMPE2;
insert(expectedMPE2)(A.first, 1)(D.first, 1)(X.first, 0)(T.first, 0)(S.first,
1)(E.first, 0)(L.first, 0)(B.first, 1);
insert(expectedMPE2)(Asia.first, 1)(Dyspnea.first, 1)(XRay.first, 0)(
Tuberculosis.first, 0)(Smoking.first, 1)(Either.first, 0)(
LungCancer.first, 0)(Bronchitis.first, 1);
EXPECT(assert_equal(expectedMPE2, *actualMPE2));
// now sample from it
DiscreteFactor::Values expectedSample;
SETDEBUG("DiscreteConditional::sample", false);
insert(expectedSample)(A.first, 1)(D.first, 1)(X.first, 1)(T.first, 0)(
S.first, 1)(E.first, 1)(L.first, 1)(B.first, 0);
insert(expectedSample)(Asia.first, 1)(Dyspnea.first, 1)(XRay.first, 1)(
Tuberculosis.first, 0)(Smoking.first, 1)(Either.first, 1)(
LungCancer.first, 1)(Bronchitis.first, 0);
DiscreteFactor::sharedValues actualSample = chordal2->sample();
EXPECT(assert_equal(expectedSample, *actualSample));
}
/* ************************************************************************* */
TEST_UNSAFE(DiscreteBayesNet, Sugar)
{
DiscreteKey T(0,2), L(1,2), E(2,2), D(3,2), C(8,3), S(7,2);
TEST_UNSAFE(DiscreteBayesNet, Sugar) {
DiscreteKey T(0, 2), L(1, 2), E(2, 2), C(8, 3), S(7, 2);
DiscreteBayesNet bn;
// test some mistakes
// add(bn, D);
// add(bn, D | E);
// add(bn, D | E = "blah");
// try logic
bn.add((E | T, L) = "OR");
bn.add((E | T, L) = "AND");
// // try multivalued
bn.add(C % "1/1/2");
bn.add(C | S = "1/1/2 5/2/3");
// try multivalued
bn.add(C % "1/1/2");
bn.add(C | S = "1/1/2 5/2/3");
}
/* ************************************************************************* */
@ -130,4 +155,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -1,261 +1,228 @@
///* ----------------------------------------------------------------------------
//
// * GTSAM Copyright 2010, Georgia Tech Research Corporation,
// * Atlanta, Georgia 30332-0415
// * All Rights Reserved
// * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
//
// * See LICENSE for the license information
//
// * -------------------------------------------------------------------------- */
//
///*
// * @file testDiscreteBayesTree.cpp
// * @date sept 15, 2012
// * @author Frank Dellaert
// */
//
//#include <gtsam/discrete/DiscreteBayesNet.h>
//#include <gtsam/discrete/DiscreteBayesTree.h>
//#include <gtsam/discrete/DiscreteFactorGraph.h>
//
//#include <boost/assign/std/vector.hpp>
//using namespace boost::assign;
//
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file testDiscreteBayesTree.cpp
* @date sept 15, 2012
* @author Frank Dellaert
*/
#include <gtsam/base/Vector.h>
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteBayesTree.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/inference/BayesNet.h>
#include <boost/assign/std/vector.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
//
//using namespace std;
//using namespace gtsam;
//
//static bool debug = false;
//
///**
// * Custom clique class to debug shortcuts
// */
////class Clique: public BayesTreeCliqueBaseOrdered<Clique, DiscreteConditional> {
////
////protected:
////
////public:
////
//// typedef BayesTreeCliqueBaseOrdered<Clique, DiscreteConditional> Base;
//// typedef boost::shared_ptr<Clique> shared_ptr;
////
//// // Constructors
//// Clique() {
//// }
//// Clique(const DiscreteConditional::shared_ptr& conditional) :
//// Base(conditional) {
//// }
//// Clique(
//// const std::pair<DiscreteConditional::shared_ptr,
//// DiscreteConditional::FactorType::shared_ptr>& result) :
//// Base(result) {
//// }
////
//// /// print index signature only
//// void printSignature(const std::string& s = "Clique: ",
//// const KeyFormatter& indexFormatter = DefaultKeyFormatter) const {
//// ((IndexConditionalOrdered::shared_ptr) conditional_)->print(s, indexFormatter);
//// }
////
//// /// evaluate value of sub-tree
//// double evaluate(const DiscreteConditional::Values & values) {
//// double result = (*(this->conditional_))(values);
//// // evaluate all children and multiply into result
//// for(boost::shared_ptr<Clique> c: children_)
//// result *= c->evaluate(values);
//// return result;
//// }
////
////};
//
////typedef BayesTreeOrdered<DiscreteConditional, Clique> DiscreteBayesTree;
////
/////* ************************************************************************* */
////double evaluate(const DiscreteBayesTree& tree,
//// const DiscreteConditional::Values & values) {
//// return tree.root()->evaluate(values);
////}
//
///* ************************************************************************* */
//
//TEST_UNSAFE( DiscreteBayesTree, thinTree ) {
//
// const int nrNodes = 15;
// const size_t nrStates = 2;
//
// // define variables
// vector<DiscreteKey> key;
// for (int i = 0; i < nrNodes; i++) {
// DiscreteKey key_i(i, nrStates);
// key.push_back(key_i);
// }
//
// // create a thin-tree Bayesnet, a la Jean-Guillaume
// DiscreteBayesNet bayesNet;
// bayesNet.add(key[14] % "1/3");
//
// bayesNet.add(key[13] | key[14] = "1/3 3/1");
// bayesNet.add(key[12] | key[14] = "3/1 3/1");
//
// bayesNet.add((key[11] | key[13], key[14]) = "1/4 2/3 3/2 4/1");
// bayesNet.add((key[10] | key[13], key[14]) = "1/4 3/2 2/3 4/1");
// bayesNet.add((key[9] | key[12], key[14]) = "4/1 2/3 F 1/4");
// bayesNet.add((key[8] | key[12], key[14]) = "T 1/4 3/2 4/1");
//
// bayesNet.add((key[7] | key[11], key[13]) = "1/4 2/3 3/2 4/1");
// bayesNet.add((key[6] | key[11], key[13]) = "1/4 3/2 2/3 4/1");
// bayesNet.add((key[5] | key[10], key[13]) = "4/1 2/3 3/2 1/4");
// bayesNet.add((key[4] | key[10], key[13]) = "2/3 1/4 3/2 4/1");
//
// bayesNet.add((key[3] | key[9], key[12]) = "1/4 2/3 3/2 4/1");
// bayesNet.add((key[2] | key[9], key[12]) = "1/4 8/2 2/3 4/1");
// bayesNet.add((key[1] | key[8], key[12]) = "4/1 2/3 3/2 1/4");
// bayesNet.add((key[0] | key[8], key[12]) = "2/3 1/4 3/2 4/1");
//
//// if (debug) {
//// GTSAM_PRINT(bayesNet);
//// bayesNet.saveGraph("/tmp/discreteBayesNet.dot");
//// }
//
// // create a BayesTree out of a Bayes net
// DiscreteBayesTree bayesTree(bayesNet);
// if (debug) {
// GTSAM_PRINT(bayesTree);
// bayesTree.saveGraph("/tmp/discreteBayesTree.dot");
// }
//
// // Check whether BN and BT give the same answer on all configurations
// // Also calculate all some marginals
// Vector marginals = zero(15);
// double joint_12_14 = 0, joint_9_12_14 = 0, joint_8_12_14 = 0, joint_8_12 = 0,
// joint82 = 0, joint12 = 0, joint24 = 0, joint45 = 0, joint46 = 0,
// joint_4_11 = 0;
// vector<DiscreteFactor::Values> allPosbValues = cartesianProduct(
// key[0] & key[1] & key[2] & key[3] & key[4] & key[5] & key[6] & key[7]
// & key[8] & key[9] & key[10] & key[11] & key[12] & key[13] & key[14]);
// for (size_t i = 0; i < allPosbValues.size(); ++i) {
// DiscreteFactor::Values x = allPosbValues[i];
// double expected = evaluate(bayesNet, x);
// double actual = evaluate(bayesTree, x);
// DOUBLES_EQUAL(expected, actual, 1e-9);
// // collect marginals
// for (size_t i = 0; i < 15; i++)
// if (x[i])
// marginals[i] += actual;
// // calculate shortcut 8 and 0
// if (x[12] && x[14])
// joint_12_14 += actual;
// if (x[9] && x[12] & x[14])
// joint_9_12_14 += actual;
// if (x[8] && x[12] & x[14])
// joint_8_12_14 += actual;
// if (x[8] && x[12])
// joint_8_12 += actual;
// if (x[8] && x[2])
// joint82 += actual;
// if (x[1] && x[2])
// joint12 += actual;
// if (x[2] && x[4])
// joint24 += actual;
// if (x[4] && x[5])
// joint45 += actual;
// if (x[4] && x[6])
// joint46 += actual;
// if (x[4] && x[11])
// joint_4_11 += actual;
// }
// DiscreteFactor::Values all1 = allPosbValues.back();
//
// Clique::shared_ptr R = bayesTree.root();
//
// // check separator marginal P(S0)
// Clique::shared_ptr c = bayesTree[0];
// DiscreteFactorGraph separatorMarginal0 = c->separatorMarginal(R,
// EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
//
// // check separator marginal P(S9), should be P(14)
// c = bayesTree[9];
// DiscreteFactorGraph separatorMarginal9 = c->separatorMarginal(R,
// EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(marginals[14], separatorMarginal9(all1), 1e-9);
//
// // check separator marginal of root, should be empty
// c = bayesTree[11];
// DiscreteFactorGraph separatorMarginal11 = c->separatorMarginal(R,
// EliminateDiscrete);
// EXPECT_LONGS_EQUAL(0, separatorMarginal11.size());
//
// // check shortcut P(S9||R) to root
// c = bayesTree[9];
// DiscreteBayesNet shortcut = c->shortcut(R, EliminateDiscrete);
// EXPECT_LONGS_EQUAL(0, shortcut.size());
//
// // check shortcut P(S8||R) to root
// c = bayesTree[8];
// shortcut = c->shortcut(R, EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(joint_12_14/marginals[14], evaluate(shortcut,all1),
// 1e-9);
//
// // check shortcut P(S2||R) to root
// c = bayesTree[2];
// shortcut = c->shortcut(R, EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(joint_9_12_14/marginals[14], evaluate(shortcut,all1),
// 1e-9);
//
// // check shortcut P(S0||R) to root
// c = bayesTree[0];
// shortcut = c->shortcut(R, EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(joint_8_12_14/marginals[14], evaluate(shortcut,all1),
// 1e-9);
//
// // calculate all shortcuts to root
// DiscreteBayesTree::Nodes cliques = bayesTree.nodes();
// for(Clique::shared_ptr c: cliques) {
// DiscreteBayesNet shortcut = c->shortcut(R, EliminateDiscrete);
// if (debug) {
// c->printSignature();
// shortcut.print("shortcut:");
// }
// }
//
// // Check all marginals
// DiscreteFactor::shared_ptr marginalFactor;
// for (size_t i = 0; i < 15; i++) {
// marginalFactor = bayesTree.marginalFactor(i, EliminateDiscrete);
// double actual = (*marginalFactor)(all1);
// EXPECT_DOUBLES_EQUAL(marginals[i], actual, 1e-9);
// }
//
// DiscreteBayesNet::shared_ptr actualJoint;
//
// // Check joint P(8,2) TODO: not disjoint !
//// actualJoint = bayesTree.jointBayesNet(8, 2, EliminateDiscrete);
//// EXPECT_DOUBLES_EQUAL(joint82, evaluate(*actualJoint,all1), 1e-9);
//
// // Check joint P(1,2) TODO: not disjoint !
//// actualJoint = bayesTree.jointBayesNet(1, 2, EliminateDiscrete);
//// EXPECT_DOUBLES_EQUAL(joint12, evaluate(*actualJoint,all1), 1e-9);
//
// // Check joint P(2,4)
// actualJoint = bayesTree.jointBayesNet(2, 4, EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(joint24, evaluate(*actualJoint,all1), 1e-9);
//
// // Check joint P(4,5) TODO: not disjoint !
//// actualJoint = bayesTree.jointBayesNet(4, 5, EliminateDiscrete);
//// EXPECT_DOUBLES_EQUAL(joint46, evaluate(*actualJoint,all1), 1e-9);
//
// // Check joint P(4,6) TODO: not disjoint !
//// actualJoint = bayesTree.jointBayesNet(4, 6, EliminateDiscrete);
//// EXPECT_DOUBLES_EQUAL(joint46, evaluate(*actualJoint,all1), 1e-9);
//
// // Check joint P(4,11)
// actualJoint = bayesTree.jointBayesNet(4, 11, EliminateDiscrete);
// EXPECT_DOUBLES_EQUAL(joint_4_11, evaluate(*actualJoint,all1), 1e-9);
//
//}
#include <vector>
using namespace std;
using namespace gtsam;
static bool debug = false;
/* ************************************************************************* */
TEST_UNSAFE(DiscreteBayesTree, ThinTree) {
const int nrNodes = 15;
const size_t nrStates = 2;
// define variables
vector<DiscreteKey> key;
for (int i = 0; i < nrNodes; i++) {
DiscreteKey key_i(i, nrStates);
key.push_back(key_i);
}
// create a thin-tree Bayesnet, a la Jean-Guillaume
DiscreteBayesNet bayesNet;
bayesNet.add(key[14] % "1/3");
bayesNet.add(key[13] | key[14] = "1/3 3/1");
bayesNet.add(key[12] | key[14] = "3/1 3/1");
bayesNet.add((key[11] | key[13], key[14]) = "1/4 2/3 3/2 4/1");
bayesNet.add((key[10] | key[13], key[14]) = "1/4 3/2 2/3 4/1");
bayesNet.add((key[9] | key[12], key[14]) = "4/1 2/3 F 1/4");
bayesNet.add((key[8] | key[12], key[14]) = "T 1/4 3/2 4/1");
bayesNet.add((key[7] | key[11], key[13]) = "1/4 2/3 3/2 4/1");
bayesNet.add((key[6] | key[11], key[13]) = "1/4 3/2 2/3 4/1");
bayesNet.add((key[5] | key[10], key[13]) = "4/1 2/3 3/2 1/4");
bayesNet.add((key[4] | key[10], key[13]) = "2/3 1/4 3/2 4/1");
bayesNet.add((key[3] | key[9], key[12]) = "1/4 2/3 3/2 4/1");
bayesNet.add((key[2] | key[9], key[12]) = "1/4 8/2 2/3 4/1");
bayesNet.add((key[1] | key[8], key[12]) = "4/1 2/3 3/2 1/4");
bayesNet.add((key[0] | key[8], key[12]) = "2/3 1/4 3/2 4/1");
if (debug) {
GTSAM_PRINT(bayesNet);
bayesNet.saveGraph("/tmp/discreteBayesNet.dot");
}
// create a BayesTree out of a Bayes net
auto bayesTree = DiscreteFactorGraph(bayesNet).eliminateMultifrontal();
if (debug) {
GTSAM_PRINT(*bayesTree);
bayesTree->saveGraph("/tmp/discreteBayesTree.dot");
}
// Check frontals and parents
for (size_t i : {13, 14, 9, 3, 2, 8, 1, 0, 10, 5, 4}) {
auto clique_i = (*bayesTree)[i];
EXPECT_LONGS_EQUAL(i, *(clique_i->conditional_->beginFrontals()));
}
auto R = bayesTree->roots().front();
// Check whether BN and BT give the same answer on all configurations
vector<DiscreteFactor::Values> allPosbValues = cartesianProduct(
key[0] & key[1] & key[2] & key[3] & key[4] & key[5] & key[6] & key[7] &
key[8] & key[9] & key[10] & key[11] & key[12] & key[13] & key[14]);
for (size_t i = 0; i < allPosbValues.size(); ++i) {
DiscreteFactor::Values x = allPosbValues[i];
double expected = bayesNet.evaluate(x);
double actual = bayesTree->evaluate(x);
DOUBLES_EQUAL(expected, actual, 1e-9);
}
// Calculate all some marginals for Values==all1
Vector marginals = Vector::Zero(15);
double joint_12_14 = 0, joint_9_12_14 = 0, joint_8_12_14 = 0, joint_8_12 = 0,
joint82 = 0, joint12 = 0, joint24 = 0, joint45 = 0, joint46 = 0,
joint_4_11 = 0, joint_11_13 = 0, joint_11_13_14 = 0,
joint_11_12_13_14 = 0, joint_9_11_12_13 = 0, joint_8_11_12_13 = 0;
for (size_t i = 0; i < allPosbValues.size(); ++i) {
DiscreteFactor::Values x = allPosbValues[i];
double px = bayesTree->evaluate(x);
for (size_t i = 0; i < 15; i++)
if (x[i]) marginals[i] += px;
if (x[12] && x[14]) {
joint_12_14 += px;
if (x[9]) joint_9_12_14 += px;
if (x[8]) joint_8_12_14 += px;
}
if (x[8] && x[12]) joint_8_12 += px;
if (x[2]) {
if (x[8]) joint82 += px;
if (x[1]) joint12 += px;
}
if (x[4]) {
if (x[2]) joint24 += px;
if (x[5]) joint45 += px;
if (x[6]) joint46 += px;
if (x[11]) joint_4_11 += px;
}
if (x[11] && x[13]) {
joint_11_13 += px;
if (x[8] && x[12]) joint_8_11_12_13 += px;
if (x[9] && x[12]) joint_9_11_12_13 += px;
if (x[14]) {
joint_11_13_14 += px;
if (x[12]) {
joint_11_12_13_14 += px;
}
}
}
}
DiscreteFactor::Values all1 = allPosbValues.back();
// check separator marginal P(S0)
auto clique = (*bayesTree)[0];
DiscreteFactorGraph separatorMarginal0 =
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
// check separator marginal P(S9), should be P(14)
clique = (*bayesTree)[9];
DiscreteFactorGraph separatorMarginal9 =
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(marginals[14], separatorMarginal9(all1), 1e-9);
// check separator marginal of root, should be empty
clique = (*bayesTree)[11];
DiscreteFactorGraph separatorMarginal11 =
clique->separatorMarginal(EliminateDiscrete);
LONGS_EQUAL(0, separatorMarginal11.size());
// check shortcut P(S9||R) to root
clique = (*bayesTree)[9];
DiscreteBayesNet shortcut = clique->shortcut(R, EliminateDiscrete);
LONGS_EQUAL(1, shortcut.size());
DOUBLES_EQUAL(joint_11_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// check shortcut P(S8||R) to root
clique = (*bayesTree)[8];
shortcut = clique->shortcut(R, EliminateDiscrete);
DOUBLES_EQUAL(joint_11_12_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// check shortcut P(S2||R) to root
clique = (*bayesTree)[2];
shortcut = clique->shortcut(R, EliminateDiscrete);
DOUBLES_EQUAL(joint_9_11_12_13 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// check shortcut P(S0||R) to root
clique = (*bayesTree)[0];
shortcut = clique->shortcut(R, EliminateDiscrete);
DOUBLES_EQUAL(joint_8_11_12_13 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// calculate all shortcuts to root
DiscreteBayesTree::Nodes cliques = bayesTree->nodes();
for (auto clique : cliques) {
DiscreteBayesNet shortcut = clique.second->shortcut(R, EliminateDiscrete);
if (debug) {
clique.second->conditional_->printSignature();
shortcut.print("shortcut:");
}
}
// Check all marginals
DiscreteFactor::shared_ptr marginalFactor;
for (size_t i = 0; i < 15; i++) {
marginalFactor = bayesTree->marginalFactor(i, EliminateDiscrete);
double actual = (*marginalFactor)(all1);
DOUBLES_EQUAL(marginals[i], actual, 1e-9);
}
DiscreteBayesNet::shared_ptr actualJoint;
// Check joint P(8, 2)
actualJoint = bayesTree->jointBayesNet(8, 2, EliminateDiscrete);
DOUBLES_EQUAL(joint82, actualJoint->evaluate(all1), 1e-9);
// Check joint P(1, 2)
actualJoint = bayesTree->jointBayesNet(1, 2, EliminateDiscrete);
DOUBLES_EQUAL(joint12, actualJoint->evaluate(all1), 1e-9);
// Check joint P(2, 4)
actualJoint = bayesTree->jointBayesNet(2, 4, EliminateDiscrete);
DOUBLES_EQUAL(joint24, actualJoint->evaluate(all1), 1e-9);
// Check joint P(4, 5)
actualJoint = bayesTree->jointBayesNet(4, 5, EliminateDiscrete);
DOUBLES_EQUAL(joint45, actualJoint->evaluate(all1), 1e-9);
// Check joint P(4, 6)
actualJoint = bayesTree->jointBayesNet(4, 6, EliminateDiscrete);
DOUBLES_EQUAL(joint46, actualJoint->evaluate(all1), 1e-9);
// Check joint P(4, 11)
actualJoint = bayesTree->jointBayesNet(4, 11, EliminateDiscrete);
DOUBLES_EQUAL(joint_4_11, actualJoint->evaluate(all1), 1e-9);
}
/* ************************************************************************* */
int main() {
@ -263,4 +230,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

Binary file not shown.

View File

@ -16,9 +16,9 @@
* @date Feb 14, 2011
*/
#include <boost/make_shared.hpp>
#include <boost/assign/std/map.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/make_shared.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
@ -36,6 +36,11 @@ TEST( DiscreteConditional, constructors)
DiscreteConditional::shared_ptr expected1 = //
boost::make_shared<DiscreteConditional>(X | Y = "1/1 2/3 1/4");
EXPECT(expected1);
EXPECT_LONGS_EQUAL(0, *(expected1->beginFrontals()));
EXPECT_LONGS_EQUAL(2, *(expected1->beginParents()));
EXPECT(expected1->endParents() == expected1->end());
EXPECT(expected1->endFrontals() == expected1->beginParents());
DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
DiscreteConditional actual1(1, f1);
EXPECT(assert_equal(*expected1, actual1, 1e-9));
@ -43,71 +48,68 @@ TEST( DiscreteConditional, constructors)
DecisionTreeFactor f2(X & Y & Z,
"0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DiscreteConditional actual2(1, f2);
DecisionTreeFactor::shared_ptr actual2factor = actual2.toFactor();
// EXPECT(assert_equal(f2, *actual2factor, 1e-9));
EXPECT(assert_equal(f2 / *f2.sum(1), *actual2.toFactor(), 1e-9));
}
/* ************************************************************************* */
TEST( DiscreteConditional, constructors_alt_interface)
{
DiscreteKey X(0, 2), Y(2, 3), Z(1, 2); // watch ordering !
TEST(DiscreteConditional, constructors_alt_interface) {
DiscreteKey X(0, 2), Y(2, 3), Z(1, 2); // watch ordering !
Signature::Table table;
Signature::Row r1, r2, r3;
r1 += 1.0, 1.0; r2 += 2.0, 3.0; r3 += 1.0, 4.0;
r1 += 1.0, 1.0;
r2 += 2.0, 3.0;
r3 += 1.0, 4.0;
table += r1, r2, r3;
DiscreteConditional::shared_ptr expected1 = //
boost::make_shared<DiscreteConditional>(X | Y = table);
EXPECT(expected1);
auto actual1 = boost::make_shared<DiscreteConditional>(X | Y = table);
EXPECT(actual1);
DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
DiscreteConditional actual1(1, f1);
EXPECT(assert_equal(*expected1, actual1, 1e-9));
DiscreteConditional expected1(1, f1);
EXPECT(assert_equal(expected1, *actual1, 1e-9));
DecisionTreeFactor f2(X & Y & Z,
"0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DecisionTreeFactor f2(
X & Y & Z, "0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DiscreteConditional actual2(1, f2);
DecisionTreeFactor::shared_ptr actual2factor = actual2.toFactor();
// EXPECT(assert_equal(f2, *actual2factor, 1e-9));
EXPECT(assert_equal(f2 / *f2.sum(1), *actual2.toFactor(), 1e-9));
}
/* ************************************************************************* */
TEST( DiscreteConditional, constructors2)
{
TEST(DiscreteConditional, constructors2) {
// Declare keys and ordering
DiscreteKey C(0,2), B(1,2);
DecisionTreeFactor expected(C & B, "0.8 0.75 0.2 0.25");
DiscreteKey C(0, 2), B(1, 2);
DecisionTreeFactor actual(C & B, "0.8 0.75 0.2 0.25");
Signature signature((C | B) = "4/1 3/1");
DiscreteConditional actual(signature);
DecisionTreeFactor::shared_ptr actualFactor = actual.toFactor();
EXPECT(assert_equal(expected, *actualFactor));
DiscreteConditional expected(signature);
DecisionTreeFactor::shared_ptr expectedFactor = expected.toFactor();
EXPECT(assert_equal(*expectedFactor, actual));
}
/* ************************************************************************* */
TEST( DiscreteConditional, constructors3)
{
TEST(DiscreteConditional, constructors3) {
// Declare keys and ordering
DiscreteKey C(0,2), B(1,2), A(2,2);
DecisionTreeFactor expected(C & B & A, "0.8 0.5 0.5 0.2 0.2 0.5 0.5 0.8");
DiscreteKey C(0, 2), B(1, 2), A(2, 2);
DecisionTreeFactor actual(C & B & A, "0.8 0.5 0.5 0.2 0.2 0.5 0.5 0.8");
Signature signature((C | B, A) = "4/1 1/1 1/1 1/4");
DiscreteConditional actual(signature);
DecisionTreeFactor::shared_ptr actualFactor = actual.toFactor();
EXPECT(assert_equal(expected, *actualFactor));
DiscreteConditional expected(signature);
DecisionTreeFactor::shared_ptr expectedFactor = expected.toFactor();
EXPECT(assert_equal(*expectedFactor, actual));
}
/* ************************************************************************* */
TEST( DiscreteConditional, Combine) {
TEST(DiscreteConditional, Combine) {
DiscreteKey A(0, 2), B(1, 2);
vector<DiscreteConditional::shared_ptr> c;
c.push_back(boost::make_shared<DiscreteConditional>(A | B = "1/2 2/1"));
c.push_back(boost::make_shared<DiscreteConditional>(B % "1/2"));
DecisionTreeFactor factor(A & B, "0.111111 0.444444 0.222222 0.222222");
DiscreteConditional expected(2, factor);
DiscreteConditional::shared_ptr actual = DiscreteConditional::Combine(
c.begin(), c.end());
EXPECT(assert_equal(expected, *actual,1e-5));
DiscreteConditional actual(2, factor);
auto expected = DiscreteConditional::Combine(c.begin(), c.end());
EXPECT(assert_equal(*expected, actual, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -19,6 +19,7 @@
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteBayesTree.h>
#include <gtsam/inference/BayesNet.h>
#include <CppUnitLite/TestHarness.h>

View File

@ -146,8 +146,7 @@ TEST_UNSAFE( DiscreteMarginals, truss ) {
/* ************************************************************************* */
// Second truss example with non-trivial factors
TEST_UNSAFE( DiscreteMarginals, truss2 ) {
TEST_UNSAFE(DiscreteMarginals, truss2) {
const int nrNodes = 5;
const size_t nrStates = 2;
@ -160,40 +159,39 @@ TEST_UNSAFE( DiscreteMarginals, truss2 ) {
// create graph and add three truss potentials
DiscreteFactorGraph graph;
graph.add(key[0] & key[2] & key[4],"1 2 3 4 5 6 7 8");
graph.add(key[1] & key[3] & key[4],"1 2 3 4 5 6 7 8");
graph.add(key[2] & key[3] & key[4],"1 2 3 4 5 6 7 8");
graph.add(key[0] & key[2] & key[4], "1 2 3 4 5 6 7 8");
graph.add(key[1] & key[3] & key[4], "1 2 3 4 5 6 7 8");
graph.add(key[2] & key[3] & key[4], "1 2 3 4 5 6 7 8");
// Calculate the marginals by brute force
vector<DiscreteFactor::Values> allPosbValues = cartesianProduct(
key[0] & key[1] & key[2] & key[3] & key[4]);
vector<DiscreteFactor::Values> allPosbValues =
cartesianProduct(key[0] & key[1] & key[2] & key[3] & key[4]);
Vector T = Z_5x1, F = Z_5x1;
for (size_t i = 0; i < allPosbValues.size(); ++i) {
DiscreteFactor::Values x = allPosbValues[i];
double px = graph(x);
for (size_t j=0;j<5;j++)
if (x[j]) T[j]+=px; else F[j]+=px;
// cout << x[0] << " " << x[1] << " "<< x[2] << " " << x[3] << " " << x[4] << " :\t" << px << endl;
for (size_t j = 0; j < 5; j++)
if (x[j])
T[j] += px;
else
F[j] += px;
}
// Check all marginals given by a sequential solver and Marginals
// DiscreteSequentialSolver solver(graph);
// DiscreteSequentialSolver solver(graph);
DiscreteMarginals marginals(graph);
for (size_t j=0;j<5;j++) {
double sum = T[j]+F[j];
T[j]/=sum;
F[j]/=sum;
// // solver
// Vector actualV = solver.marginalProbabilities(key[j]);
// EXPECT(assert_equal((Vector(2) << F[j], T[j]), actualV));
for (size_t j = 0; j < 5; j++) {
double sum = T[j] + F[j];
T[j] /= sum;
F[j] /= sum;
// Marginals
vector<double> table;
table += F[j],T[j];
DecisionTreeFactor expectedM(key[j],table);
table += F[j], T[j];
DecisionTreeFactor expectedM(key[j], table);
DiscreteFactor::shared_ptr actualM = marginals(j);
EXPECT(assert_equal(expectedM, *boost::dynamic_pointer_cast<DecisionTreeFactor>(actualM)));
EXPECT(assert_equal(
expectedM, *boost::dynamic_pointer_cast<DecisionTreeFactor>(actualM)));
}
}

View File

@ -11,36 +11,43 @@
/**
* @file testSignature
* @brief Tests focusing on the details of Signatures to evaluate boost compliance
* @brief Tests focusing on the details of Signatures to evaluate boost
* compliance
* @author Alex Cunningham
* @date Sept 19th 2011
*/
#include <boost/assign/std/vector.hpp>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/Signature.h>
#include <boost/assign/std/vector.hpp>
#include <vector>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
DiscreteKey X(0,2), Y(1,3), Z(2,2);
DiscreteKey X(0, 2), Y(1, 3), Z(2, 2);
/* ************************************************************************* */
TEST(testSignature, simple_conditional) {
Signature sig(X | Y = "1/1 2/3 1/4");
Signature::Table table = *sig.table();
vector<double> row[3]{{0.5, 0.5}, {0.4, 0.6}, {0.2, 0.8}};
CHECK(row[0] == table[0]);
CHECK(row[1] == table[1]);
CHECK(row[2] == table[2]);
DiscreteKey actKey = sig.key();
LONGS_EQUAL((long)X.first, (long)actKey.first);
LONGS_EQUAL(X.first, actKey.first);
DiscreteKeys actKeys = sig.discreteKeysParentsFirst();
LONGS_EQUAL(2, (long)actKeys.size());
LONGS_EQUAL((long)Y.first, (long)actKeys.front().first);
LONGS_EQUAL((long)X.first, (long)actKeys.back().first);
DiscreteKeys actKeys = sig.discreteKeys();
LONGS_EQUAL(2, actKeys.size());
LONGS_EQUAL(X.first, actKeys.front().first);
LONGS_EQUAL(Y.first, actKeys.back().first);
vector<double> actCpt = sig.cpt();
EXPECT_LONGS_EQUAL(6, (long)actCpt.size());
EXPECT_LONGS_EQUAL(6, actCpt.size());
}
/* ************************************************************************* */
@ -54,17 +61,20 @@ TEST(testSignature, simple_conditional_nonparser) {
Signature sig(X | Y = table);
DiscreteKey actKey = sig.key();
EXPECT_LONGS_EQUAL((long)X.first, (long)actKey.first);
EXPECT_LONGS_EQUAL(X.first, actKey.first);
DiscreteKeys actKeys = sig.discreteKeysParentsFirst();
LONGS_EQUAL(2, (long)actKeys.size());
LONGS_EQUAL((long)Y.first, (long)actKeys.front().first);
LONGS_EQUAL((long)X.first, (long)actKeys.back().first);
DiscreteKeys actKeys = sig.discreteKeys();
LONGS_EQUAL(2, actKeys.size());
LONGS_EQUAL(X.first, actKeys.front().first);
LONGS_EQUAL(Y.first, actKeys.back().first);
vector<double> actCpt = sig.cpt();
EXPECT_LONGS_EQUAL(6, (long)actCpt.size());
EXPECT_LONGS_EQUAL(6, actCpt.size());
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -60,7 +60,7 @@ public:
/// @{
/// print with optional string
virtual void print(const std::string& s = "") const ;
void print(const std::string& s = "") const override;
/// assert equality up to a tolerance
bool equals(const Cal3DS2& K, double tol = 10e-9) const;
@ -86,7 +86,7 @@ public:
/// @{
/// @return a deep copy of this object
virtual boost::shared_ptr<Base> clone() const {
boost::shared_ptr<Base> clone() const override {
return boost::shared_ptr<Base>(new Cal3DS2(*this));
}

View File

@ -69,7 +69,7 @@ public:
/// @{
/// print with optional string
virtual void print(const std::string& s = "") const ;
virtual void print(const std::string& s = "") const;
/// assert equality up to a tolerance
bool equals(const Cal3DS2_Base& K, double tol = 10e-9) const;

View File

@ -75,7 +75,7 @@ public:
/// @{
/// print with optional string
virtual void print(const std::string& s = "") const ;
void print(const std::string& s = "") const override;
/// assert equality up to a tolerance
bool equals(const Cal3Unified& K, double tol = 10e-9) const;

View File

@ -175,7 +175,7 @@ public:
}
/// return calibration
const Calibration& calibration() const {
const Calibration& calibration() const override {
return K_;
}

View File

@ -107,9 +107,9 @@ public:
// If needed, apply chain rule
if (Dpose)
*Dpose = Dpi_pn * *Dpose;
*Dpose = Dpi_pn * *Dpose;
if (Dpoint)
*Dpoint = Dpi_pn * *Dpoint;
*Dpoint = Dpi_pn * *Dpoint;
return pi;
}
@ -361,7 +361,7 @@ public:
}
/// return calibration
virtual const CALIBRATION& calibration() const {
const CALIBRATION& calibration() const override {
return *K_;
}

View File

@ -45,7 +45,7 @@ public:
/// @{
/// print
virtual void print(const std::string& s = "") const {
void print(const std::string& s = "") const override {
Base::print(s);
}

View File

@ -19,8 +19,10 @@
#include <gtsam/geometry/concepts.h>
#include <gtsam/base/concepts.h>
#include <iostream>
#include <cmath>
#include <iostream>
#include <limits>
#include <string>
using namespace std;
@ -36,10 +38,10 @@ Pose3::Pose3(const Pose2& pose2) :
}
/* ************************************************************************* */
Pose3 Pose3::Create(const Rot3& R, const Point3& t, OptionalJacobian<6, 3> H1,
OptionalJacobian<6, 3> H2) {
if (H1) *H1 << I_3x3, Z_3x3;
if (H2) *H2 << Z_3x3, R.transpose();
Pose3 Pose3::Create(const Rot3& R, const Point3& t, OptionalJacobian<6, 3> HR,
OptionalJacobian<6, 3> Ht) {
if (HR) *HR << I_3x3, Z_3x3;
if (Ht) *Ht << Z_3x3, R.transpose();
return Pose3(R, t);
}
@ -72,15 +74,15 @@ Matrix6 Pose3::adjointMap(const Vector6& xi) {
/* ************************************************************************* */
Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
OptionalJacobian<6,6> H) {
if (H) {
H->setZero();
OptionalJacobian<6, 6> Hxi) {
if (Hxi) {
Hxi->setZero();
for (int i = 0; i < 6; ++i) {
Vector6 dxi;
dxi.setZero();
dxi(i) = 1.0;
Matrix6 Gi = adjointMap(dxi);
H->col(i) = Gi * y;
Hxi->col(i) = Gi * y;
}
}
return adjointMap(xi) * y;
@ -88,15 +90,15 @@ Vector6 Pose3::adjoint(const Vector6& xi, const Vector6& y,
/* ************************************************************************* */
Vector6 Pose3::adjointTranspose(const Vector6& xi, const Vector6& y,
OptionalJacobian<6,6> H) {
if (H) {
H->setZero();
OptionalJacobian<6, 6> Hxi) {
if (Hxi) {
Hxi->setZero();
for (int i = 0; i < 6; ++i) {
Vector6 dxi;
dxi.setZero();
dxi(i) = 1.0;
Matrix6 GTi = adjointMap(dxi).transpose();
H->col(i) = GTi * y;
Hxi->col(i) = GTi * y;
}
}
return adjointMap(xi).transpose() * y;
@ -116,8 +118,8 @@ bool Pose3::equals(const Pose3& pose, double tol) const {
/* ************************************************************************* */
/** Modified from Murray94book version (which assumes w and v normalized?) */
Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> H) {
if (H) *H = ExpmapDerivative(xi);
Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> Hxi) {
if (Hxi) *Hxi = ExpmapDerivative(xi);
// get angular velocity omega and translational velocity v from twist xi
Vector3 omega(xi(0), xi(1), xi(2)), v(xi(3), xi(4), xi(5));
@ -125,8 +127,8 @@ Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> H) {
Rot3 R = Rot3::Expmap(omega);
double theta2 = omega.dot(omega);
if (theta2 > std::numeric_limits<double>::epsilon()) {
Vector3 t_parallel = omega * omega.dot(v); // translation parallel to axis
Vector3 omega_cross_v = omega.cross(v); // points towards axis
Vector3 t_parallel = omega * omega.dot(v); // translation parallel to axis
Vector3 omega_cross_v = omega.cross(v); // points towards axis
Vector3 t = (omega_cross_v - R * omega_cross_v + t_parallel) / theta2;
return Pose3(R, t);
} else {
@ -135,10 +137,10 @@ Pose3 Pose3::Expmap(const Vector6& xi, OptionalJacobian<6, 6> H) {
}
/* ************************************************************************* */
Vector6 Pose3::Logmap(const Pose3& p, OptionalJacobian<6, 6> H) {
if (H) *H = LogmapDerivative(p);
const Vector3 w = Rot3::Logmap(p.rotation());
const Vector3 T = p.translation();
Vector6 Pose3::Logmap(const Pose3& pose, OptionalJacobian<6, 6> Hpose) {
if (Hpose) *Hpose = LogmapDerivative(pose);
const Vector3 w = Rot3::Logmap(pose.rotation());
const Vector3 T = pose.translation();
const double t = w.norm();
if (t < 1e-10) {
Vector6 log;
@ -158,33 +160,33 @@ Vector6 Pose3::Logmap(const Pose3& p, OptionalJacobian<6, 6> H) {
}
/* ************************************************************************* */
Pose3 Pose3::ChartAtOrigin::Retract(const Vector6& xi, ChartJacobian H) {
Pose3 Pose3::ChartAtOrigin::Retract(const Vector6& xi, ChartJacobian Hxi) {
#ifdef GTSAM_POSE3_EXPMAP
return Expmap(xi, H);
return Expmap(xi, Hxi);
#else
Matrix3 DR;
Rot3 R = Rot3::Retract(xi.head<3>(), H ? &DR : 0);
if (H) {
*H = I_6x6;
H->topLeftCorner<3,3>() = DR;
Rot3 R = Rot3::Retract(xi.head<3>(), Hxi ? &DR : 0);
if (Hxi) {
*Hxi = I_6x6;
Hxi->topLeftCorner<3, 3>() = DR;
}
return Pose3(R, Point3(xi.tail<3>()));
#endif
}
/* ************************************************************************* */
Vector6 Pose3::ChartAtOrigin::Local(const Pose3& T, ChartJacobian H) {
Vector6 Pose3::ChartAtOrigin::Local(const Pose3& pose, ChartJacobian Hpose) {
#ifdef GTSAM_POSE3_EXPMAP
return Logmap(T, H);
return Logmap(pose, Hpose);
#else
Matrix3 DR;
Vector3 omega = Rot3::LocalCoordinates(T.rotation(), H ? &DR : 0);
if (H) {
*H = I_6x6;
H->topLeftCorner<3,3>() = DR;
Vector3 omega = Rot3::LocalCoordinates(pose.rotation(), Hpose ? &DR : 0);
if (Hpose) {
*Hpose = I_6x6;
Hpose->topLeftCorner<3, 3>() = DR;
}
Vector6 xi;
xi << omega, T.translation();
xi << omega, pose.translation();
return xi;
#endif
}
@ -261,16 +263,16 @@ Matrix6 Pose3::LogmapDerivative(const Pose3& pose) {
}
/* ************************************************************************* */
const Point3& Pose3::translation(OptionalJacobian<3, 6> H) const {
if (H) *H << Z_3x3, rotation().matrix();
const Point3& Pose3::translation(OptionalJacobian<3, 6> Hself) const {
if (Hself) *Hself << Z_3x3, rotation().matrix();
return t_;
}
/* ************************************************************************* */
const Rot3& Pose3::rotation(OptionalJacobian<3, 6> H) const {
if (H) {
*H << I_3x3, Z_3x3;
const Rot3& Pose3::rotation(OptionalJacobian<3, 6> Hself) const {
if (Hself) {
*Hself << I_3x3, Z_3x3;
}
return R_;
}
@ -284,9 +286,10 @@ Matrix4 Pose3::matrix() const {
}
/* ************************************************************************* */
Pose3 Pose3::transformPoseFrom(const Pose3& aTb) const {
Pose3 Pose3::transformPoseFrom(const Pose3& aTb, OptionalJacobian<6, 6> Hself,
OptionalJacobian<6, 6> HaTb) const {
const Pose3& wTa = *this;
return wTa * aTb;
return wTa.compose(aTb, Hself, HaTb);
}
/* ************************************************************************* */
@ -299,101 +302,101 @@ Pose3 Pose3::transform_to(const Pose3& pose) const {
#endif
/* ************************************************************************* */
Pose3 Pose3::transformPoseTo(const Pose3& wTb, OptionalJacobian<6, 6> H1,
OptionalJacobian<6, 6> H2) const {
if (H1) *H1 = -wTb.inverse().AdjointMap() * AdjointMap();
if (H2) *H2 = I_6x6;
Pose3 Pose3::transformPoseTo(const Pose3& wTb, OptionalJacobian<6, 6> Hself,
OptionalJacobian<6, 6> HwTb) const {
if (Hself) *Hself = -wTb.inverse().AdjointMap() * AdjointMap();
if (HwTb) *HwTb = I_6x6;
const Pose3& wTa = *this;
return wTa.inverse() * wTb;
}
/* ************************************************************************* */
Point3 Pose3::transformFrom(const Point3& p, OptionalJacobian<3,6> Dpose,
OptionalJacobian<3,3> Dpoint) const {
Point3 Pose3::transformFrom(const Point3& point, OptionalJacobian<3, 6> Hself,
OptionalJacobian<3, 3> Hpoint) const {
// Only get matrix once, to avoid multiple allocations,
// as well as multiple conversions in the Quaternion case
const Matrix3 R = R_.matrix();
if (Dpose) {
Dpose->leftCols<3>() = R * skewSymmetric(-p.x(), -p.y(), -p.z());
Dpose->rightCols<3>() = R;
if (Hself) {
Hself->leftCols<3>() = R * skewSymmetric(-point.x(), -point.y(), -point.z());
Hself->rightCols<3>() = R;
}
if (Dpoint) {
*Dpoint = R;
if (Hpoint) {
*Hpoint = R;
}
return R_ * p + t_;
return R_ * point + t_;
}
/* ************************************************************************* */
Point3 Pose3::transformTo(const Point3& p, OptionalJacobian<3,6> Dpose,
OptionalJacobian<3,3> Dpoint) const {
Point3 Pose3::transformTo(const Point3& point, OptionalJacobian<3, 6> Hself,
OptionalJacobian<3, 3> Hpoint) const {
// Only get transpose once, to avoid multiple allocations,
// as well as multiple conversions in the Quaternion case
const Matrix3 Rt = R_.transpose();
const Point3 q(Rt*(p - t_));
if (Dpose) {
const Point3 q(Rt*(point - t_));
if (Hself) {
const double wx = q.x(), wy = q.y(), wz = q.z();
(*Dpose) <<
(*Hself) <<
0.0, -wz, +wy,-1.0, 0.0, 0.0,
+wz, 0.0, -wx, 0.0,-1.0, 0.0,
-wy, +wx, 0.0, 0.0, 0.0,-1.0;
}
if (Dpoint) {
*Dpoint = Rt;
if (Hpoint) {
*Hpoint = Rt;
}
return q;
}
/* ************************************************************************* */
double Pose3::range(const Point3& point, OptionalJacobian<1, 6> H1,
OptionalJacobian<1, 3> H2) const {
double Pose3::range(const Point3& point, OptionalJacobian<1, 6> Hself,
OptionalJacobian<1, 3> Hpoint) const {
Matrix36 D_local_pose;
Matrix3 D_local_point;
Point3 local = transformTo(point, H1 ? &D_local_pose : 0, H2 ? &D_local_point : 0);
if (!H1 && !H2) {
Point3 local = transformTo(point, Hself ? &D_local_pose : 0, Hpoint ? &D_local_point : 0);
if (!Hself && !Hpoint) {
return local.norm();
} else {
Matrix13 D_r_local;
const double r = norm3(local, D_r_local);
if (H1) *H1 = D_r_local * D_local_pose;
if (H2) *H2 = D_r_local * D_local_point;
if (Hself) *Hself = D_r_local * D_local_pose;
if (Hpoint) *Hpoint = D_r_local * D_local_point;
return r;
}
}
/* ************************************************************************* */
double Pose3::range(const Pose3& pose, OptionalJacobian<1, 6> H1,
OptionalJacobian<1, 6> H2) const {
double Pose3::range(const Pose3& pose, OptionalJacobian<1, 6> Hself,
OptionalJacobian<1, 6> Hpose) const {
Matrix13 D_local_point;
double r = range(pose.translation(), H1, H2 ? &D_local_point : 0);
if (H2) *H2 << Matrix13::Zero(), D_local_point * pose.rotation().matrix();
double r = range(pose.translation(), Hself, Hpose ? &D_local_point : 0);
if (Hpose) *Hpose << Matrix13::Zero(), D_local_point * pose.rotation().matrix();
return r;
}
/* ************************************************************************* */
Unit3 Pose3::bearing(const Point3& point, OptionalJacobian<2, 6> H1,
OptionalJacobian<2, 3> H2) const {
Unit3 Pose3::bearing(const Point3& point, OptionalJacobian<2, 6> Hself,
OptionalJacobian<2, 3> Hpoint) const {
Matrix36 D_local_pose;
Matrix3 D_local_point;
Point3 local = transformTo(point, H1 ? &D_local_pose : 0, H2 ? &D_local_point : 0);
if (!H1 && !H2) {
Point3 local = transformTo(point, Hself ? &D_local_pose : 0, Hpoint ? &D_local_point : 0);
if (!Hself && !Hpoint) {
return Unit3(local);
} else {
Matrix23 D_b_local;
Unit3 b = Unit3::FromPoint3(local, D_b_local);
if (H1) *H1 = D_b_local * D_local_pose;
if (H2) *H2 = D_b_local * D_local_point;
if (Hself) *Hself = D_b_local * D_local_pose;
if (Hpoint) *Hpoint = D_b_local * D_local_point;
return b;
}
}
/* ************************************************************************* */
Unit3 Pose3::bearing(const Pose3& pose, OptionalJacobian<2, 6> H1,
OptionalJacobian<2, 6> H2) const {
if (H2) {
H2->setZero();
return bearing(pose.translation(), H1, H2.cols<3>(3));
Unit3 Pose3::bearing(const Pose3& pose, OptionalJacobian<2, 6> Hself,
OptionalJacobian<2, 6> Hpose) const {
if (Hpose) {
Hpose->setZero();
return bearing(pose.translation(), Hself, Hpose.cols<3>(3));
}
return bearing(pose.translation(), H1, boost::none);
return bearing(pose.translation(), Hself, boost::none);
}
/* ************************************************************************* */

View File

@ -75,8 +75,8 @@ public:
/// Named constructor with derivatives
static Pose3 Create(const Rot3& R, const Point3& t,
OptionalJacobian<6, 3> H1 = boost::none,
OptionalJacobian<6, 3> H2 = boost::none);
OptionalJacobian<6, 3> HR = boost::none,
OptionalJacobian<6, 3> Ht = boost::none);
/**
* Create Pose3 by aligning two point pairs
@ -117,10 +117,10 @@ public:
/// @{
/// Exponential map at identity - create a rotation from canonical coordinates \f$ [R_x,R_y,R_z,T_x,T_y,T_z] \f$
static Pose3 Expmap(const Vector6& xi, OptionalJacobian<6, 6> H = boost::none);
static Pose3 Expmap(const Vector6& xi, OptionalJacobian<6, 6> Hxi = boost::none);
/// Log map at identity - return the canonical coordinates \f$ [R_x,R_y,R_z,T_x,T_y,T_z] \f$ of this rotation
static Vector6 Logmap(const Pose3& p, OptionalJacobian<6, 6> H = boost::none);
static Vector6 Logmap(const Pose3& pose, OptionalJacobian<6, 6> Hpose = boost::none);
/**
* Calculate Adjoint map, transforming a twist in the this pose's (i.e, body) frame to the world spatial frame
@ -157,7 +157,7 @@ public:
* Action of the adjointMap on a Lie-algebra vector y, with optional derivatives
*/
static Vector6 adjoint(const Vector6 &xi, const Vector6 &y,
OptionalJacobian<6, 6> = boost::none);
OptionalJacobian<6, 6> Hxi = boost::none);
// temporary fix for wrappers until case issue is resolved
static Matrix6 adjointMap_(const Vector6 &xi) { return adjointMap(xi);}
@ -167,7 +167,7 @@ public:
* The dual version of adjoint action, acting on the dual space of the Lie-algebra vector space.
*/
static Vector6 adjointTranspose(const Vector6& xi, const Vector6& y,
OptionalJacobian<6, 6> H = boost::none);
OptionalJacobian<6, 6> Hxi = boost::none);
/// Derivative of Expmap
static Matrix6 ExpmapDerivative(const Vector6& xi);
@ -177,8 +177,8 @@ public:
// Chart at origin, depends on compile-time flag GTSAM_POSE3_EXPMAP
struct ChartAtOrigin {
static Pose3 Retract(const Vector6& v, ChartJacobian H = boost::none);
static Vector6 Local(const Pose3& r, ChartJacobian H = boost::none);
static Pose3 Retract(const Vector6& xi, ChartJacobian Hxi = boost::none);
static Vector6 Local(const Pose3& pose, ChartJacobian Hpose = boost::none);
};
using LieGroup<Pose3, 6>::inverse; // version with derivative
@ -201,38 +201,38 @@ public:
/**
* @brief takes point in Pose coordinates and transforms it to world coordinates
* @param p point in Pose coordinates
* @param Dpose optional 3*6 Jacobian wrpt this pose
* @param Dpoint optional 3*3 Jacobian wrpt point
* @param point point in Pose coordinates
* @param Hself optional 3*6 Jacobian wrpt this pose
* @param Hpoint optional 3*3 Jacobian wrpt point
* @return point in world coordinates
*/
Point3 transformFrom(const Point3& p, OptionalJacobian<3, 6> Dpose =
boost::none, OptionalJacobian<3, 3> Dpoint = boost::none) const;
Point3 transformFrom(const Point3& point, OptionalJacobian<3, 6> Hself =
boost::none, OptionalJacobian<3, 3> Hpoint = boost::none) const;
/** syntactic sugar for transformFrom */
inline Point3 operator*(const Point3& p) const {
return transformFrom(p);
inline Point3 operator*(const Point3& point) const {
return transformFrom(point);
}
/**
* @brief takes point in world coordinates and transforms it to Pose coordinates
* @param p point in world coordinates
* @param Dpose optional 3*6 Jacobian wrpt this pose
* @param Dpoint optional 3*3 Jacobian wrpt point
* @param point point in world coordinates
* @param Hself optional 3*6 Jacobian wrpt this pose
* @param Hpoint optional 3*3 Jacobian wrpt point
* @return point in Pose coordinates
*/
Point3 transformTo(const Point3& p, OptionalJacobian<3, 6> Dpose =
boost::none, OptionalJacobian<3, 3> Dpoint = boost::none) const;
Point3 transformTo(const Point3& point, OptionalJacobian<3, 6> Hself =
boost::none, OptionalJacobian<3, 3> Hpoint = boost::none) const;
/// @}
/// @name Standard Interface
/// @{
/// get rotation
const Rot3& rotation(OptionalJacobian<3, 6> H = boost::none) const;
const Rot3& rotation(OptionalJacobian<3, 6> Hself = boost::none) const;
/// get translation
const Point3& translation(OptionalJacobian<3, 6> H = boost::none) const;
const Point3& translation(OptionalJacobian<3, 6> Hself = boost::none) const;
/// get x
double x() const {
@ -252,36 +252,44 @@ public:
/** convert to 4*4 matrix */
Matrix4 matrix() const;
/** receives a pose in local coordinates and transforms it to world coordinates */
Pose3 transformPoseFrom(const Pose3& pose) const;
/**
* Assuming self == wTa, takes a pose aTb in local coordinates
* and transforms it to world coordinates wTb = wTa * aTb.
* This is identical to compose.
*/
Pose3 transformPoseFrom(const Pose3& aTb, OptionalJacobian<6, 6> Hself = boost::none,
OptionalJacobian<6, 6> HaTb = boost::none) const;
/** receives a pose in world coordinates and transforms it to local coordinates */
Pose3 transformPoseTo(const Pose3& pose, OptionalJacobian<6, 6> H1 = boost::none,
OptionalJacobian<6, 6> H2 = boost::none) const;
/**
* Assuming self == wTa, takes a pose wTb in world coordinates
* and transforms it to local coordinates aTb = inv(wTa) * wTb
*/
Pose3 transformPoseTo(const Pose3& wTb, OptionalJacobian<6, 6> Hself = boost::none,
OptionalJacobian<6, 6> HwTb = boost::none) const;
/**
* Calculate range to a landmark
* @param point 3D location of landmark
* @return range (double)
*/
double range(const Point3& point, OptionalJacobian<1, 6> H1 = boost::none,
OptionalJacobian<1, 3> H2 = boost::none) const;
double range(const Point3& point, OptionalJacobian<1, 6> Hself = boost::none,
OptionalJacobian<1, 3> Hpoint = boost::none) const;
/**
* Calculate range to another pose
* @param pose Other SO(3) pose
* @return range (double)
*/
double range(const Pose3& pose, OptionalJacobian<1, 6> H1 = boost::none,
OptionalJacobian<1, 6> H2 = boost::none) const;
double range(const Pose3& pose, OptionalJacobian<1, 6> Hself = boost::none,
OptionalJacobian<1, 6> Hpose = boost::none) const;
/**
* Calculate bearing to a landmark
* @param point 3D location of landmark
* @return bearing (Unit3)
*/
Unit3 bearing(const Point3& point, OptionalJacobian<2, 6> H1 = boost::none,
OptionalJacobian<2, 3> H2 = boost::none) const;
Unit3 bearing(const Point3& point, OptionalJacobian<2, 6> Hself = boost::none,
OptionalJacobian<2, 3> Hpoint = boost::none) const;
/**
* Calculate bearing to another pose
@ -289,8 +297,8 @@ public:
* information is ignored.
* @return bearing (Unit3)
*/
Unit3 bearing(const Pose3& pose, OptionalJacobian<2, 6> H1 = boost::none,
OptionalJacobian<2, 6> H2 = boost::none) const;
Unit3 bearing(const Pose3& pose, OptionalJacobian<2, 6> Hself = boost::none,
OptionalJacobian<2, 6> Hpose = boost::none) const;
/// @}
/// @name Advanced Interface
@ -321,20 +329,20 @@ public:
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V4
/// @name Deprecated
/// @{
Point3 transform_from(const Point3& p,
OptionalJacobian<3, 6> Dpose = boost::none,
OptionalJacobian<3, 3> Dpoint = boost::none) const {
return transformFrom(p, Dpose, Dpoint);
Point3 transform_from(const Point3& point,
OptionalJacobian<3, 6> Hself = boost::none,
OptionalJacobian<3, 3> Hpoint = boost::none) const {
return transformFrom(point, Hself, Hpoint);
}
Point3 transform_to(const Point3& p,
OptionalJacobian<3, 6> Dpose = boost::none,
OptionalJacobian<3, 3> Dpoint = boost::none) const {
return transformTo(p, Dpose, Dpoint);
Point3 transform_to(const Point3& point,
OptionalJacobian<3, 6> Hself = boost::none,
OptionalJacobian<3, 3> Hpoint = boost::none) const {
return transformTo(point, Hself, Hpoint);
}
Pose3 transform_pose_to(const Pose3& pose,
OptionalJacobian<6, 6> H1 = boost::none,
OptionalJacobian<6, 6> H2 = boost::none) const {
return transformPoseTo(pose, H1, H2);
Pose3 transform_pose_to(const Pose3& pose,
OptionalJacobian<6, 6> Hself = boost::none,
OptionalJacobian<6, 6> Hpose = boost::none) const {
return transformPoseTo(pose, Hself, Hpose);
}
/**
* @deprecated: this function is neither here not there. */

View File

@ -35,7 +35,7 @@ namespace gtsam {
// TODO(frank): is this better than SOn::Random?
// /* *************************************************************************
// */ static Vector3 randomOmega(boost::mt19937 &rng) {
// */ static Vector3 randomOmega(std::mt19937 &rng) {
// static std::uniform_real_distribution<double> randomAngle(-M_PI, M_PI);
// return Unit3::Random(rng).unitVector() * randomAngle(rng);
// }
@ -43,7 +43,7 @@ namespace gtsam {
// /* *************************************************************************
// */
// // Create random SO(4) element using direct product of lie algebras.
// SO4 SO4::Random(boost::mt19937 &rng) {
// SO4 SO4::Random(std::mt19937 &rng) {
// Vector6 delta;
// delta << randomOmega(rng), randomOmega(rng);
// return SO4::Expmap(delta);

View File

@ -34,7 +34,7 @@ namespace gtsam {
using SO4 = SO<4>;
// /// Random SO(4) element (no big claims about uniformity)
// static SO4 Random(boost::mt19937 &rng);
// static SO4 Random(std::mt19937 &rng);
// Below are all declarations of SO<4> specializations.
// They are *defined* in SO4.cpp.

View File

@ -292,6 +292,10 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
boost::none) const;
/// @}
template <class Archive>
friend void save(Archive&, SO&, const unsigned int);
template <class Archive>
friend void load(Archive&, SO&, const unsigned int);
template <class Archive>
friend void serialize(Archive&, SO&, const unsigned int);
friend class boost::serialization::access;
@ -329,6 +333,16 @@ template <>
SOn LieGroup<SOn, Eigen::Dynamic>::between(const SOn& g, DynamicJacobian H1,
DynamicJacobian H2) const;
/** Serialization function */
template<class Archive>
void serialize(
Archive& ar, SOn& Q,
const unsigned int file_version
) {
Matrix& M = Q.matrix_;
ar& BOOST_SERIALIZATION_NVP(M);
}
/*
* Define the traits. internal::LieGroup provides both Lie group and Testable
*/

View File

@ -90,6 +90,8 @@ public:
/// Copy assignment
Unit3& operator=(const Unit3 & u) {
p_ = u.p_;
B_ = u.B_;
H_B_ = u.H_B_;
return *this;
}

View File

@ -418,6 +418,29 @@ TEST(Pose3, transform_to_rotate) {
EXPECT(assert_equal(expected, actual, 0.001));
}
/* ************************************************************************* */
// Check transformPoseFrom and its pushforward
Pose3 transformPoseFrom_(const Pose3& wTa, const Pose3& aTb) {
return wTa.transformPoseFrom(aTb);
}
TEST(Pose3, transformPoseFrom)
{
Matrix actual = (T2*T2).matrix();
Matrix expected = T2.matrix()*T2.matrix();
EXPECT(assert_equal(actual, expected, 1e-8));
Matrix H1, H2;
T2.transformPoseFrom(T2, H1, H2);
Matrix numericalH1 = numericalDerivative21(transformPoseFrom_, T2, T2);
EXPECT(assert_equal(numericalH1, H1, 5e-3));
EXPECT(assert_equal(T2.inverse().AdjointMap(), H1, 5e-3));
Matrix numericalH2 = numericalDerivative22(transformPoseFrom_, T2, T2);
EXPECT(assert_equal(numericalH2, H2, 1e-4));
}
/* ************************************************************************* */
TEST(Pose3, transformTo) {
Pose3 transform(Rot3::Rodrigues(0, 0, -1.570796), Point3(2, 4, 0));

View File

@ -484,6 +484,15 @@ TEST(Unit3, ErrorBetweenFactor) {
}
}
TEST(Unit3, CopyAssign) {
Unit3 p{1, 0.2, 0.3};
EXPECT(p.error(p).isZero());
p = Unit3{-1, 2, 8};
EXPECT(p.error(p).isZero());
}
/* ************************************************************************* */
TEST(actualH, Serialization) {
Unit3 p(0, 1, 0);

View File

@ -69,4 +69,6 @@ namespace gtsam {
void saveGraph(const std::string &s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
};
}
}
#include <gtsam/inference/BayesNet-inst.h>

View File

@ -299,7 +299,7 @@ namespace gtsam {
this->keys_.assign(clique->conditional()->beginParents(), clique->conditional()->endParents());
}
void print(const std::string& s="", const KeyFormatter& formatter = DefaultKeyFormatter) const {
void print(const std::string& s="", const KeyFormatter& formatter = DefaultKeyFormatter) const override {
clique->print(s + "stored clique", formatter);
}
};

View File

@ -136,57 +136,61 @@ namespace gtsam {
}
}
/* ************************************************************************* */
/* *********************************************************************** */
// separator marginal, uses separator marginal of parent recursively
// P(C) = P(F|S) P(S)
/* ************************************************************************* */
template<class DERIVED, class FACTORGRAPH>
/* *********************************************************************** */
template <class DERIVED, class FACTORGRAPH>
typename BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::FactorGraphType
BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::separatorMarginal(Eliminate function) const
{
BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::separatorMarginal(
Eliminate function) const {
gttic(BayesTreeCliqueBase_separatorMarginal);
// Check if the Separator marginal was already calculated
if (!cachedSeparatorMarginal_)
{
if (!cachedSeparatorMarginal_) {
gttic(BayesTreeCliqueBase_separatorMarginal_cachemiss);
// If this is the root, there is no separator
if (parent_.expired() /*(if we're the root)*/)
{
if (parent_.expired() /*(if we're the root)*/) {
// we are root, return empty
FactorGraphType empty;
cachedSeparatorMarginal_ = empty;
}
else
{
} else {
// Flatten recursion in timing outline
gttoc(BayesTreeCliqueBase_separatorMarginal_cachemiss);
gttoc(BayesTreeCliqueBase_separatorMarginal);
// Obtain P(S) = \int P(Cp) = \int P(Fp|Sp) P(Sp)
// initialize P(Cp) with the parent separator marginal
derived_ptr parent(parent_.lock());
gttoc(BayesTreeCliqueBase_separatorMarginal_cachemiss); // Flatten recursion in timing outline
gttoc(BayesTreeCliqueBase_separatorMarginal);
FactorGraphType p_Cp(parent->separatorMarginal(function)); // P(Sp)
FactorGraphType p_Cp(parent->separatorMarginal(function)); // P(Sp)
gttic(BayesTreeCliqueBase_separatorMarginal);
gttic(BayesTreeCliqueBase_separatorMarginal_cachemiss);
// now add the parent conditional
p_Cp += parent->conditional_; // P(Fp|Sp)
p_Cp += parent->conditional_; // P(Fp|Sp)
// The variables we want to keepSet are exactly the ones in S
KeyVector indicesS(this->conditional()->beginParents(), this->conditional()->endParents());
cachedSeparatorMarginal_ = *p_Cp.marginalMultifrontalBayesNet(Ordering(indicesS), function);
KeyVector indicesS(this->conditional()->beginParents(),
this->conditional()->endParents());
auto separatorMarginal =
p_Cp.marginalMultifrontalBayesNet(Ordering(indicesS), function);
cachedSeparatorMarginal_.reset(*separatorMarginal);
}
}
// return the shortcut P(S||B)
return *cachedSeparatorMarginal_; // return the cached version
return *cachedSeparatorMarginal_; // return the cached version
}
/* ************************************************************************* */
// marginal2, uses separator marginal of parent recursively
/* *********************************************************************** */
// marginal2, uses separator marginal of parent
// P(C) = P(F|S) P(S)
/* ************************************************************************* */
template<class DERIVED, class FACTORGRAPH>
/* *********************************************************************** */
template <class DERIVED, class FACTORGRAPH>
typename BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::FactorGraphType
BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::marginal2(Eliminate function) const
{
BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::marginal2(
Eliminate function) const {
gttic(BayesTreeCliqueBase_marginal2);
// initialize with separator marginal P(S)
FactorGraphType p_C = this->separatorMarginal(function);

View File

@ -100,7 +100,7 @@ namespace gtsam {
bool equals(const DERIVED& other, double tol = 1e-9) const;
/** print this node */
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
virtual void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/// @}
/// @name Standard Interface

View File

@ -65,6 +65,8 @@ namespace gtsam {
Conditional(size_t nrFrontals) : nrFrontals_(nrFrontals) {}
/// @}
public:
/// @name Testable
/// @{
@ -76,7 +78,6 @@ namespace gtsam {
/// @}
public:
/// @name Standard Interface
/// @{

View File

@ -28,9 +28,9 @@ namespace gtsam {
* with an ordering that does not include all of the variables. */
class InconsistentEliminationRequested : public std::exception {
public:
InconsistentEliminationRequested() throw() {}
virtual ~InconsistentEliminationRequested() throw() {}
virtual const char* what() const throw() {
InconsistentEliminationRequested() noexcept {}
virtual ~InconsistentEliminationRequested() noexcept {}
const char* what() const noexcept override {
return
"An inference algorithm was called with inconsistent arguments. The\n"
"factor graph, ordering, or variable index were inconsistent with each\n"

View File

@ -49,7 +49,7 @@ struct BinaryJacobianFactor: JacobianFactor {
// Fixed-size matrix update
void updateHessian(const KeyVector& infoKeys,
SymmetricBlockMatrix* info) const {
SymmetricBlockMatrix* info) const override {
gttic(updateHessian_BinaryJacobianFactor);
// Whiten the factor if it has a noise model
const SharedDiagonal& model = get_model();

View File

@ -80,7 +80,7 @@ public:
void print() const { Base::print(); }
virtual void print(std::ostream &os) const;
void print(std::ostream &os) const override;
static std::string blasTranslator(const BLASKernel k) ;
static BLASKernel blasTranslator(const std::string &s) ;

View File

@ -41,6 +41,7 @@ namespace gtsam {
typedef boost::shared_ptr<This> shared_ptr;
typedef boost::weak_ptr<This> weak_ptr;
GaussianBayesTreeClique() {}
virtual ~GaussianBayesTreeClique() {}
GaussianBayesTreeClique(const boost::shared_ptr<GaussianConditional>& conditional) : Base(conditional) {}
};

View File

@ -88,10 +88,10 @@ namespace gtsam {
/** print */
void print(const std::string& = "GaussianConditional",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/** equals function */
bool equals(const GaussianFactor&cg, double tol = 1e-9) const;
bool equals(const GaussianFactor&cg, double tol = 1e-9) const override;
/** Return a view of the upper-triangular R block of the conditional */
constABlock R() const { return Ab_.range(0, nrFrontals()); }

View File

@ -57,7 +57,7 @@ namespace gtsam {
/// print
void print(const std::string& = "GaussianDensity",
const KeyFormatter& formatter = DefaultKeyFormatter) const;
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// Mean \f$ \mu = R^{-1} d \f$
Vector mean() const;

View File

@ -20,6 +20,7 @@
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/inference/ISAM.h>
#include <gtsam/base/Testable.h>
namespace gtsam {
@ -43,4 +44,8 @@ namespace gtsam {
};
/// traits
template <>
struct traits<GaussianISAM> : public Testable<GaussianISAM> {};
}

View File

@ -515,7 +515,7 @@ Vector JacobianFactor::error_vector(const VectorValues& c) const {
double JacobianFactor::error(const VectorValues& c) const {
Vector e = unweighted_error(c);
// Use the noise model distance function to get the correct error if available.
if (model_) return 0.5 * model_->distance(e);
if (model_) return 0.5 * model_->squaredMahalanobisDistance(e);
return 0.5 * e.dot(e);
}

View File

@ -137,12 +137,12 @@ Fair::Fair(double c, const ReweightScheme reweight) : Base(reweight), c_(c) {
}
}
double Fair::weight(double error) const {
return 1.0 / (1.0 + std::abs(error) / c_);
double Fair::weight(double distance) const {
return 1.0 / (1.0 + std::abs(distance) / c_);
}
double Fair::residual(double error) const {
const double absError = std::abs(error);
double Fair::loss(double distance) const {
const double absError = std::abs(distance);
const double normalizedError = absError / c_;
const double c_2 = c_ * c_;
return c_2 * (normalizedError - std::log1p(normalizedError));
@ -170,15 +170,15 @@ Huber::Huber(double k, const ReweightScheme reweight) : Base(reweight), k_(k) {
}
}
double Huber::weight(double error) const {
const double absError = std::abs(error);
double Huber::weight(double distance) const {
const double absError = std::abs(distance);
return (absError <= k_) ? (1.0) : (k_ / absError);
}
double Huber::residual(double error) const {
const double absError = std::abs(error);
double Huber::loss(double distance) const {
const double absError = std::abs(distance);
if (absError <= k_) { // |x| <= k
return error*error / 2;
return distance*distance / 2;
} else { // |x| > k
return k_ * (absError - (k_/2));
}
@ -208,12 +208,12 @@ Cauchy::Cauchy(double k, const ReweightScheme reweight) : Base(reweight), k_(k),
}
}
double Cauchy::weight(double error) const {
return ksquared_ / (ksquared_ + error*error);
double Cauchy::weight(double distance) const {
return ksquared_ / (ksquared_ + distance*distance);
}
double Cauchy::residual(double error) const {
const double val = std::log1p(error * error / ksquared_);
double Cauchy::loss(double distance) const {
const double val = std::log1p(distance * distance / ksquared_);
return ksquared_ * val * 0.5;
}
@ -241,18 +241,18 @@ Tukey::Tukey(double c, const ReweightScheme reweight) : Base(reweight), c_(c), c
}
}
double Tukey::weight(double error) const {
if (std::abs(error) <= c_) {
const double one_minus_xc2 = 1.0 - error*error/csquared_;
double Tukey::weight(double distance) const {
if (std::abs(distance) <= c_) {
const double one_minus_xc2 = 1.0 - distance*distance/csquared_;
return one_minus_xc2 * one_minus_xc2;
}
return 0.0;
}
double Tukey::residual(double error) const {
double absError = std::abs(error);
double Tukey::loss(double distance) const {
double absError = std::abs(distance);
if (absError <= c_) {
const double one_minus_xc2 = 1.0 - error*error/csquared_;
const double one_minus_xc2 = 1.0 - distance*distance/csquared_;
const double t = one_minus_xc2*one_minus_xc2*one_minus_xc2;
return csquared_ * (1 - t) / 6.0;
} else {
@ -280,13 +280,13 @@ Tukey::shared_ptr Tukey::Create(double c, const ReweightScheme reweight) {
Welsch::Welsch(double c, const ReweightScheme reweight) : Base(reweight), c_(c), csquared_(c * c) {}
double Welsch::weight(double error) const {
const double xc2 = (error*error)/csquared_;
double Welsch::weight(double distance) const {
const double xc2 = (distance*distance)/csquared_;
return std::exp(-xc2);
}
double Welsch::residual(double error) const {
const double xc2 = (error*error)/csquared_;
double Welsch::loss(double distance) const {
const double xc2 = (distance*distance)/csquared_;
return csquared_ * 0.5 * -std::expm1(-xc2);
}
@ -311,16 +311,16 @@ GemanMcClure::GemanMcClure(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
}
double GemanMcClure::weight(double error) const {
double GemanMcClure::weight(double distance) const {
const double c2 = c_*c_;
const double c4 = c2*c2;
const double c2error = c2 + error*error;
const double c2error = c2 + distance*distance;
return c4/(c2error*c2error);
}
double GemanMcClure::residual(double error) const {
double GemanMcClure::loss(double distance) const {
const double c2 = c_*c_;
const double error2 = error*error;
const double error2 = distance*distance;
return 0.5 * (c2 * error2) / (c2 + error2);
}
@ -345,8 +345,8 @@ DCS::DCS(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
}
double DCS::weight(double error) const {
const double e2 = error*error;
double DCS::weight(double distance) const {
const double e2 = distance*distance;
if (e2 > c_)
{
const double w = 2.0*c_/(c_ + e2);
@ -356,10 +356,10 @@ double DCS::weight(double error) const {
return 1.0;
}
double DCS::residual(double error) const {
double DCS::loss(double distance) const {
// This is the simplified version of Eq 9 from (Agarwal13icra)
// after you simplify and cancel terms.
const double e2 = error*error;
const double e2 = distance*distance;
const double e4 = e2*e2;
const double c2 = c_*c_;
@ -391,17 +391,17 @@ L2WithDeadZone::L2WithDeadZone(double k, const ReweightScheme reweight)
}
}
double L2WithDeadZone::weight(double error) const {
double L2WithDeadZone::weight(double distance) const {
// note that this code is slightly uglier than residual, because there are three distinct
// cases to handle (left of deadzone, deadzone, right of deadzone) instead of the two
// cases (deadzone, non-deadzone) in residual.
if (std::abs(error) <= k_) return 0.0;
else if (error > k_) return (-k_+error)/error;
else return (k_+error)/error;
if (std::abs(distance) <= k_) return 0.0;
else if (distance > k_) return (-k_+distance)/distance;
else return (k_+distance)/distance;
}
double L2WithDeadZone::residual(double error) const {
const double abs_error = std::abs(error);
double L2WithDeadZone::loss(double distance) const {
const double abs_error = std::abs(distance);
return (abs_error < k_) ? 0.0 : 0.5*(k_-abs_error)*(k_-abs_error);
}

Some files were not shown because too many files have changed in this diff Show More