Fix some comments
parent
c24e975729
commit
5d0bc3191a
|
|
@ -764,13 +764,10 @@ TEST(HybridGaussianFactorGraph, EliminateTiny22) {
|
|||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.018253037966018862, expected_ratio, 1e-6);
|
||||
|
||||
// 3. Do sampling
|
||||
// Test ratios for a number of independent samples:
|
||||
constexpr int num_samples = 100;
|
||||
for (size_t i = 0; i < num_samples; i++) {
|
||||
// Sample from the bayes net
|
||||
HybridValues sample = bn.sample(&rng);
|
||||
|
||||
// Check that the ratio is constant.
|
||||
EXPECT_DOUBLES_EQUAL(expected_ratio, compute_ratio(&sample), 1e-6);
|
||||
}
|
||||
}
|
||||
|
|
@ -822,7 +819,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
// Create measurements consistent with moving right every time:
|
||||
const VectorValues measurements{
|
||||
{Z(0), Vector1(0.0)}, {Z(1), Vector1(1.0)}, {Z(2), Vector1(2.0)}};
|
||||
const auto fg = bn.toFactorGraph(measurements);
|
||||
const HybridGaussianFactorGraph fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Create ordering that eliminates in time order, then discrete modes:
|
||||
Ordering ordering;
|
||||
|
|
@ -835,11 +832,11 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
ordering.push_back(M(1));
|
||||
ordering.push_back(M(2));
|
||||
|
||||
// Test elimination result has correct size:
|
||||
const auto posterior = fg.eliminateSequential(ordering);
|
||||
// Do elimination:
|
||||
const HybridBayesNet::shared_ptr posterior = fg.eliminateSequential(ordering);
|
||||
// GTSAM_PRINT(*posterior);
|
||||
|
||||
// Test elimination result has correct size:
|
||||
// Test resulting posterior Bayes net has correct size:
|
||||
EXPECT_LONGS_EQUAL(8, posterior->size());
|
||||
|
||||
// TODO(dellaert): below is copy/pasta from above, refactor
|
||||
|
|
@ -861,13 +858,10 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.0094526745785019472, expected_ratio, 1e-6);
|
||||
|
||||
// 3. Do sampling
|
||||
// Test ratios for a number of independent samples:
|
||||
constexpr int num_samples = 100;
|
||||
for (size_t i = 0; i < num_samples; i++) {
|
||||
// Sample from the bayes net
|
||||
HybridValues sample = bn.sample(&rng);
|
||||
|
||||
// Check that the ratio is constant.
|
||||
EXPECT_DOUBLES_EQUAL(expected_ratio, compute_ratio(&sample), 1e-6);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue