Added marginalization code and unit tests to ConcurrentBatchFilter
							parent
							
								
									e10413c135
								
							
						
					
					
						commit
						5cd020080b
					
				|  | @ -88,14 +88,7 @@ ConcurrentBatchFilter::Result ConcurrentBatchFilter::update(const NonlinearFacto | |||
| 
 | ||||
|   gttic(marginalize); | ||||
|   if(keysToMove && keysToMove->size() > 0){ | ||||
| //    // Generate a permutation that will put the factor graph into the proper order
 | ||||
| //    std::set<Key> activeKeys;
 | ||||
| //    std::set<Key> marginalizableKeys;
 | ||||
| //    calculateKeySets(activeKeys, marginalizableKeys, registeredSensors_, ordering_, keyTimestampMap_, currentTimestamp, parameters_.smootherLag);
 | ||||
| //    permuteOrdering(ordering_, factors_, marginalizableKeys, activeKeys);
 | ||||
| //
 | ||||
| //    // Marginalize out inactive states (and remove from ordering/values)
 | ||||
| //    marginalize(factors_, theta_, ordering_, keyTimestampMap_, linearValues_, marginalizableKeys);
 | ||||
|     marginalize(*keysToMove); | ||||
|   } | ||||
|   gttoc(marginalize); | ||||
| 
 | ||||
|  | @ -175,16 +168,13 @@ std::vector<size_t> ConcurrentBatchFilter::insertFactors(const NonlinearFactorGr | |||
|     slots.push_back(slot); | ||||
|   } | ||||
| 
 | ||||
|   // Augment the Variable Index
 | ||||
|   variableIndex_.augment(*factors.symbolic(ordering_)); | ||||
| 
 | ||||
|   gttoc(insert_factors); | ||||
| 
 | ||||
|   return slots; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void ConcurrentBatchFilter::removeFactors(const std::vector<size_t>& slots) { | ||||
| void ConcurrentBatchFilter::removeFactors(const std::set<size_t>& slots) { | ||||
| 
 | ||||
|   gttic(remove_factors); | ||||
| 
 | ||||
|  | @ -201,19 +191,18 @@ void ConcurrentBatchFilter::removeFactors(const std::vector<size_t>& slots) { | |||
|     availableSlots_.push(slot); | ||||
|   } | ||||
| 
 | ||||
|   // Remove references to this factor from the VariableIndex
 | ||||
|   variableIndex_.remove(slots, factors); | ||||
| 
 | ||||
|   gttoc(remove_factors); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void ConcurrentBatchFilter::reorder(const boost::optional<FastList<Key> >& keysToMove) { | ||||
| 
 | ||||
|   // COLAMD groups will be used to place marginalize keys in Group 0, active keys in Group 1, and separator keys in Group 2
 | ||||
|   // Recalculate the variable index
 | ||||
|   variableIndex_ = VariableIndex(*factors_.symbolic(ordering_)); | ||||
| 
 | ||||
|   // COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
 | ||||
|   int group0 = 0; | ||||
|   int group1 = group0 + (keysToMove ? 1 : 0); | ||||
|   int group2 = group1 + 1; | ||||
|   int group1 = keysToMove ? 1 : 0; | ||||
| 
 | ||||
|   // Initialize all variables to group1
 | ||||
|   std::vector<int> cmember(variableIndex_.size(), group1); | ||||
|  | @ -225,13 +214,6 @@ void ConcurrentBatchFilter::reorder(const boost::optional<FastList<Key> >& keysT | |||
|     } | ||||
|   } | ||||
| 
 | ||||
|   // Set all of the separator keys to Group2
 | ||||
|   if(separatorValues_.size() > 0) { | ||||
|     BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) { | ||||
|       cmember[ordering_.at(key_value.key)] = group2; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   // Generate the permutation
 | ||||
|   Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex_, cmember); | ||||
| 
 | ||||
|  | @ -349,6 +331,114 @@ ConcurrentBatchFilter::Result ConcurrentBatchFilter::optimize() { | |||
|   return result; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void ConcurrentBatchFilter::marginalize(const FastList<Key>& keysToMove) { | ||||
|   // In order to marginalize out the selected variables, the factors involved in those variables
 | ||||
|   // must be identified and removed. Also, the effect of those removed factors on the
 | ||||
|   // remaining variables needs to be accounted for. This will be done with linear container factors
 | ||||
|   // from the result of a partial elimination. This function removes the marginalized factors and
 | ||||
|   // adds the linearized factors back in.
 | ||||
| 
 | ||||
|   std::set<size_t> removedFactorSlots; | ||||
|   std::vector<size_t> marginalSlots; | ||||
| 
 | ||||
|   // Calculate marginal factors on the remaining variables (after marginalizing 'keyToMove')
 | ||||
|   // Note: It is assumed the ordering already has these keys first
 | ||||
|   { | ||||
|     // Use the variable Index to mark the factors that will be marginalized
 | ||||
|     BOOST_FOREACH(gtsam::Key key, keysToMove) { | ||||
|       const gtsam::FastList<size_t>& slots = variableIndex_[ordering_.at(key)]; | ||||
|       removedFactorSlots.insert(slots.begin(), slots.end()); | ||||
|     } | ||||
| 
 | ||||
|     // Create the linear factor graph
 | ||||
|     gtsam::GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_); | ||||
| 
 | ||||
|     // Construct an elimination tree to perform sparse elimination
 | ||||
|     std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex_) ); | ||||
| 
 | ||||
|     // This is a tree. Only the top-most nodes/indices need to be eliminated; all of the children will be eliminated automatically
 | ||||
|     // Find the subset of nodes/keys that must be eliminated
 | ||||
|     std::set<gtsam::Index> indicesToEliminate; | ||||
|     BOOST_FOREACH(gtsam::Key key, keysToMove) { | ||||
|       indicesToEliminate.insert(ordering_.at(key)); | ||||
|     } | ||||
|     BOOST_FOREACH(gtsam::Key key, keysToMove) { | ||||
|       EliminationForest::removeChildrenIndices(indicesToEliminate, forest.at(ordering_.at(key))); | ||||
|     } | ||||
| 
 | ||||
|     // Eliminate each top-most key, returning a Gaussian Factor on some of the remaining variables
 | ||||
|     // Convert the marginal factors into Linear Container Factors
 | ||||
|     // Add the marginal factor variables to the separator
 | ||||
|     NonlinearFactorGraph marginalFactors; | ||||
|     BOOST_FOREACH(gtsam::Index index, indicesToEliminate) { | ||||
|       GaussianFactor::shared_ptr gaussianFactor = forest.at(index)->eliminateRecursive(parameters_.getEliminationFunction()); | ||||
|       LinearContainerFactor::shared_ptr marginalFactor(new LinearContainerFactor(gaussianFactor, ordering_, theta_)); | ||||
|       marginalFactors.push_back(marginalFactor); | ||||
|       // Add the keys associated with the marginal factor to the separator values
 | ||||
|       BOOST_FOREACH(gtsam::Key key, *marginalFactor) { | ||||
|         if(!separatorValues_.exists(key)) { | ||||
|           separatorValues_.insert(key, theta_.at(key)); | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|     marginalSlots = insertFactors(marginalFactors); | ||||
|   } | ||||
| 
 | ||||
|   // Cache marginalized variables and factors for later transmission to the smoother
 | ||||
|   { | ||||
|     // Add the new marginal factors to the list of smootherSeparatorFactors. In essence, we have just moved the separator
 | ||||
|     smootherSummarizationSlots_.insert(smootherSummarizationSlots_.end(), marginalSlots.begin(), marginalSlots.end()); | ||||
| 
 | ||||
|     // Move the marginalized factors from the filter to the smoother (holding area)
 | ||||
|     // Note: Be careful to only move nonlinear factors and not any marginals they may also need to be removed
 | ||||
|     BOOST_FOREACH(size_t slot, removedFactorSlots) { | ||||
|       std::vector<size_t>::iterator iter = std::find(smootherSummarizationSlots_.begin(), smootherSummarizationSlots_.end(), slot); | ||||
|       if(iter == smootherSummarizationSlots_.end()) { | ||||
|         // This is a real nonlinear factor. Add it to the smoother factor cache.
 | ||||
|         smootherFactors_.push_back(factors_.at(slot)); | ||||
|       } else { | ||||
|         // This is a marginal factor that was removed and replaced by a new marginal factor. Remove this slot from the separator factor list.
 | ||||
|         smootherSummarizationSlots_.erase(iter); | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     // Add the linearization point of the moved variables to the smoother cache
 | ||||
|     BOOST_FOREACH(gtsam::Key key, keysToMove) { | ||||
|       smootherValues_.insert(key, theta_.at(key)); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   // Remove the marginalized variables and factors from the filter
 | ||||
|   { | ||||
|     // Remove marginalized factors from the factor graph
 | ||||
|     removeFactors(removedFactorSlots); | ||||
| 
 | ||||
|     // Remove marginalized keys from values (and separator)
 | ||||
|     BOOST_FOREACH(gtsam::Key key, keysToMove) { | ||||
|       theta_.erase(key); | ||||
|       if(separatorValues_.exists(key)) { | ||||
|         separatorValues_.erase(key); | ||||
|       } | ||||
|     } | ||||
| 
 | ||||
|     // Permute the ordering such that the removed keys are at the end.
 | ||||
|     // This is a prerequisite for removing them from several structures
 | ||||
|     std::vector<gtsam::Index> toBack; | ||||
|     BOOST_FOREACH(gtsam::Key key, keysToMove) { | ||||
|       toBack.push_back(ordering_.at(key)); | ||||
|     } | ||||
|     Permutation forwardPermutation = Permutation::PushToBack(toBack, ordering_.size()); | ||||
|     ordering_.permuteInPlace(forwardPermutation); | ||||
|     delta_.permuteInPlace(forwardPermutation); | ||||
| 
 | ||||
|     // Remove marginalized keys from the ordering, variableIndex, and delta
 | ||||
|     for(size_t i = 0; i < keysToMove.size(); ++i) { | ||||
|       ordering_.pop_back(); | ||||
|       delta_.pop_back(); | ||||
|     } | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void ConcurrentBatchFilter::PrintNonlinearFactor(const NonlinearFactor::shared_ptr& factor, | ||||
|  | @ -384,6 +474,96 @@ void ConcurrentBatchFilter::PrintLinearFactor(const GaussianFactor::shared_ptr& | |||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| std::vector<Index> ConcurrentBatchFilter::EliminationForest::ComputeParents(const VariableIndex& structure) { | ||||
|   // Number of factors and variables
 | ||||
|   const size_t m = structure.nFactors(); | ||||
|   const size_t n = structure.size(); | ||||
| 
 | ||||
|   static const gtsam::Index none = std::numeric_limits<gtsam::Index>::max(); | ||||
| 
 | ||||
|   // Allocate result parent vector and vector of last factor columns
 | ||||
|   std::vector<gtsam::Index> parents(n, none); | ||||
|   std::vector<gtsam::Index> prevCol(m, none); | ||||
| 
 | ||||
|   // for column j \in 1 to n do
 | ||||
|   for (gtsam::Index j = 0; j < n; j++) { | ||||
|     // for row i \in Struct[A*j] do
 | ||||
|     BOOST_FOREACH(const size_t i, structure[j]) { | ||||
|       if (prevCol[i] != none) { | ||||
|         gtsam::Index k = prevCol[i]; | ||||
|         // find root r of the current tree that contains k
 | ||||
|         gtsam::Index r = k; | ||||
|         while (parents[r] != none) | ||||
|           r = parents[r]; | ||||
|         if (r != j) parents[r] = j; | ||||
|       } | ||||
|       prevCol[i] = j; | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   return parents; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| std::vector<ConcurrentBatchFilter::EliminationForest::shared_ptr> ConcurrentBatchFilter::EliminationForest::Create(const gtsam::GaussianFactorGraph& factorGraph, const gtsam::VariableIndex& structure) { | ||||
|   // Compute the tree structure
 | ||||
|   std::vector<gtsam::Index> parents(ComputeParents(structure)); | ||||
| 
 | ||||
|   // Number of variables
 | ||||
|   const size_t n = structure.size(); | ||||
| 
 | ||||
|   static const gtsam::Index none = std::numeric_limits<gtsam::Index>::max(); | ||||
| 
 | ||||
|   // Create tree structure
 | ||||
|   std::vector<shared_ptr> trees(n); | ||||
|   for (gtsam::Index k = 1; k <= n; k++) { | ||||
|     gtsam::Index j = n - k;  // Start at the last variable and loop down to 0
 | ||||
|     trees[j].reset(new EliminationForest(j));  // Create a new node on this variable
 | ||||
|     if (parents[j] != none)  // If this node has a parent, add it to the parent's children
 | ||||
|       trees[parents[j]]->add(trees[j]); | ||||
|   } | ||||
| 
 | ||||
|   // Hang factors in right places
 | ||||
|   BOOST_FOREACH(const sharedFactor& factor, factorGraph) { | ||||
|     if(factor && factor->size() > 0) { | ||||
|       gtsam::Index j = *std::min_element(factor->begin(), factor->end()); | ||||
|       if(j < structure.size()) | ||||
|         trees[j]->add(factor); | ||||
|     } | ||||
|   } | ||||
| 
 | ||||
|   return trees; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| ConcurrentBatchFilter::EliminationForest::sharedFactor ConcurrentBatchFilter::EliminationForest::eliminateRecursive(Eliminate function) { | ||||
| 
 | ||||
|   // Create the list of factors to be eliminated, initially empty, and reserve space
 | ||||
|   gtsam::GaussianFactorGraph factors; | ||||
|   factors.reserve(this->factors_.size() + this->subTrees_.size()); | ||||
| 
 | ||||
|   // Add all factors associated with the current node
 | ||||
|   factors.push_back(this->factors_.begin(), this->factors_.end()); | ||||
| 
 | ||||
|   // for all subtrees, eliminate into Bayes net and a separator factor, added to [factors]
 | ||||
|   BOOST_FOREACH(const shared_ptr& child, subTrees_) | ||||
|     factors.push_back(child->eliminateRecursive(function)); | ||||
| 
 | ||||
|   // Combine all factors (from this node and from subtrees) into a joint factor
 | ||||
|   gtsam::GaussianFactorGraph::EliminationResult eliminated(function(factors, 1)); | ||||
| 
 | ||||
|   return eliminated.second; | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| void ConcurrentBatchFilter::EliminationForest::removeChildrenIndices(std::set<Index>& indices, const ConcurrentBatchFilter::EliminationForest::shared_ptr& tree) { | ||||
|   BOOST_FOREACH(const EliminationForest::shared_ptr& child, tree->children()) { | ||||
|     indices.erase(child->key()); | ||||
|     removeChildrenIndices(indices, child); | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| //void ConcurrentBatchFilter::synchronize(const NonlinearFactorGraph& summarizedFactors) {
 | ||||
| //
 | ||||
|  |  | |||
|  | @ -76,16 +76,11 @@ public: | |||
|     return delta_; | ||||
|   } | ||||
| 
 | ||||
|   /** Access the nonlinear variable index */ | ||||
|   const VariableIndex& getVariableIndex() const { | ||||
|     return variableIndex_; | ||||
|   } | ||||
| 
 | ||||
|   /** Compute the current best estimate of all variables and return a full Values structure.
 | ||||
|    * If only a single variable is needed, it may be faster to call calculateEstimate(const KEY&). | ||||
|    */ | ||||
|   Values calculateEstimate() const { | ||||
|     return getLinearizationPoint().retract(getDelta(), getOrdering()); | ||||
|     return theta_.retract(delta_, ordering_); | ||||
|   } | ||||
| 
 | ||||
|   /** Compute the current best estimate of a single variable. This is generally faster than
 | ||||
|  | @ -95,9 +90,9 @@ public: | |||
|    */ | ||||
|   template<class VALUE> | ||||
|   VALUE calculateEstimate(Key key) const { | ||||
|     const Index index = getOrdering().at(key); | ||||
|     const Vector delta = getDelta().at(index); | ||||
|     return getLinearizationPoint().at<VALUE>(key).retract(delta); | ||||
|     const Index index = ordering_.at(key); | ||||
|     const Vector delta = delta_.at(index); | ||||
|     return theta_.at<VALUE>(key).retract(delta); | ||||
|   } | ||||
| 
 | ||||
|   /**
 | ||||
|  | @ -122,7 +117,7 @@ protected: | |||
|   Values theta_;  ///< Current linearization point of all variables in the filter
 | ||||
|   Ordering ordering_; ///< The current ordering used to calculate the linear deltas
 | ||||
|   VectorValues delta_; ///< The current set of linear deltas from the linearization point
 | ||||
|   VariableIndex variableIndex_; ///< The current variable index, which allows efficient factor lookup by variable
 | ||||
|   VariableIndex variableIndex_; ///< The current variable index, which allows efficient factor lookup by variable. Note: after marginalization, this is left in an inconsistent state
 | ||||
|   std::queue<size_t> availableSlots_; ///< The set of available factor graph slots caused by deleting factors
 | ||||
|   Values separatorValues_; ///< The linearization points of the separator variables. These should not be updated during optimization.
 | ||||
|   std::vector<size_t> smootherSummarizationSlots_;  ///< The slots in factor graph that correspond to the current smoother summarization factors
 | ||||
|  | @ -183,8 +178,8 @@ private: | |||
|   /** Remove factors from the graph by slot index
 | ||||
|    * | ||||
|    * @param slots The slots in the factor graph that should be deleted | ||||
|    * */ | ||||
|   void removeFactors(const std::vector<size_t>& slots); | ||||
|    */ | ||||
|   void removeFactors(const std::set<size_t>& slots); | ||||
| 
 | ||||
|   /** Use colamd to update into an efficient ordering */ | ||||
|   void reorder(const boost::optional<FastList<Key> >& keysToMove = boost::none); | ||||
|  | @ -192,6 +187,11 @@ private: | |||
|   /** Use a modified version of L-M to update the linearization point and delta */ | ||||
|   Result optimize(); | ||||
| 
 | ||||
|   /** Marginalize out the set of requested variables from the filter, caching them for the smoother
 | ||||
|    *  This effectively moves the separator. | ||||
|    */ | ||||
|   void marginalize(const FastList<Key>& keysToMove); | ||||
| 
 | ||||
|   /** Print just the nonlinear keys in a nonlinear factor */ | ||||
|   static void PrintNonlinearFactor(const NonlinearFactor::shared_ptr& factor, | ||||
|       const std::string& indent = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter); | ||||
|  | @ -200,6 +200,60 @@ private: | |||
|   static void PrintLinearFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering, | ||||
|       const std::string& indent = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter); | ||||
| 
 | ||||
|   // A custom elimination tree that supports forests and partial elimination
 | ||||
|   class EliminationForest { | ||||
|   public: | ||||
|     typedef boost::shared_ptr<EliminationForest> shared_ptr; ///< Shared pointer to this class
 | ||||
|     typedef gtsam::GaussianFactor Factor; ///< The factor Type
 | ||||
|     typedef Factor::shared_ptr sharedFactor;  ///< Shared pointer to a factor
 | ||||
|     typedef gtsam::BayesNet<Factor::ConditionalType> BayesNet; ///< The BayesNet
 | ||||
|     typedef gtsam::GaussianFactorGraph::Eliminate Eliminate; ///< The eliminate subroutine
 | ||||
| 
 | ||||
|   private: | ||||
|     typedef gtsam::FastList<sharedFactor> Factors; | ||||
|     typedef gtsam::FastList<shared_ptr> SubTrees; | ||||
|     typedef std::vector<Factor::ConditionalType::shared_ptr> Conditionals; | ||||
| 
 | ||||
|     gtsam::Index key_; ///< index associated with root
 | ||||
|     Factors factors_; ///< factors associated with root
 | ||||
|     SubTrees subTrees_; ///< sub-trees
 | ||||
| 
 | ||||
|     /** default constructor, private, as you should use Create below */ | ||||
|     EliminationForest(gtsam::Index key = 0) : key_(key) {} | ||||
| 
 | ||||
|     /**
 | ||||
|      * Static internal function to build a vector of parent pointers using the | ||||
|      * algorithm of Gilbert et al., 2001, BIT. | ||||
|      */ | ||||
|     static std::vector<gtsam::Index> ComputeParents(const gtsam::VariableIndex& structure); | ||||
| 
 | ||||
|     /** add a factor, for Create use only */ | ||||
|     void add(const sharedFactor& factor) { factors_.push_back(factor); } | ||||
| 
 | ||||
|     /** add a subtree, for Create use only */ | ||||
|     void add(const shared_ptr& child) { subTrees_.push_back(child); } | ||||
| 
 | ||||
|   public: | ||||
| 
 | ||||
|     /** return the key associated with this tree node */ | ||||
|     gtsam::Index key() const { return key_; } | ||||
| 
 | ||||
|     /** return the const reference of children */ | ||||
|     const SubTrees& children() const { return subTrees_; } | ||||
| 
 | ||||
|     /** return the const reference to the factors */ | ||||
|     const Factors& factors() const { return factors_; } | ||||
| 
 | ||||
|     /** Create an elimination tree from a factor graph */ | ||||
|     static std::vector<shared_ptr> Create(const gtsam::GaussianFactorGraph& factorGraph, const gtsam::VariableIndex& structure); | ||||
| 
 | ||||
|     /** Recursive routine that eliminates the factors arranged in an elimination tree */ | ||||
|     sharedFactor eliminateRecursive(Eliminate function); | ||||
| 
 | ||||
|     /** Recursive function that helps find the top of each tree */ | ||||
|     static void removeChildrenIndices(std::set<Index>& indices, const EliminationForest::shared_ptr& tree); | ||||
|   }; | ||||
| 
 | ||||
| }; // ConcurrentBatchFilter
 | ||||
| 
 | ||||
| }/// namespace gtsam
 | ||||
|  |  | |||
|  | @ -440,47 +440,47 @@ TEST_UNSAFE( ConcurrentBatchFilter, update_batch ) | |||
|   CHECK(assert_equal(expected, actual, 1e-4)); | ||||
| } | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST_UNSAFE( ConcurrentBatchFilter, update_batch_with_marginalization )
 | ||||
| //{
 | ||||
| //  // Test the 'update' function of the ConcurrentBatchFilter in a nonlinear environment.
 | ||||
| //  // Thus, a full L-M optimization and the ConcurrentBatchFilter results should be identical
 | ||||
| //  // This tests adds all of the factors to the filter at once (i.e. batch)
 | ||||
| //
 | ||||
| //  // Create a set of optimizer parameters
 | ||||
| //  LevenbergMarquardtParams parameters;
 | ||||
| //
 | ||||
| //  // Create a Concurrent Batch Filter
 | ||||
| //  ConcurrentBatchFilter filter(parameters);
 | ||||
| //
 | ||||
| //  // Create containers to keep the full graph
 | ||||
| //  Values fullTheta;
 | ||||
| //  NonlinearFactorGraph fullGraph;
 | ||||
| //
 | ||||
| //  // Create all factors
 | ||||
| //  CreateFactors(fullGraph, fullTheta, 0, 20);
 | ||||
| //
 | ||||
| //  // Create the set of key to marginalize out
 | ||||
| //  FastList<Key> marginalizeKeys;
 | ||||
| //  for(size_t j = 0; j < 15; ++j) {
 | ||||
| //    marginalizeKeys.push_back(Symbol('X', j));
 | ||||
| //  }
 | ||||
| //
 | ||||
| //  // Optimize with Concurrent Batch Filter
 | ||||
| //  filter.update(fullGraph, fullTheta, marginalizeKeys);
 | ||||
| //  Values actual = filter.calculateEstimate();
 | ||||
| //
 | ||||
| //
 | ||||
| //  // Optimize with L-M
 | ||||
| //  Values expected = BatchOptimize(fullGraph, fullTheta);
 | ||||
| //  // Remove the marginalized keys
 | ||||
| //  for(size_t j = 0; j < 15; ++j) {
 | ||||
| //    expected.erase(Symbol('X', j));
 | ||||
| //  }
 | ||||
| //
 | ||||
| //  // Check smoother versus batch
 | ||||
| //  CHECK(assert_equal(expected, actual, 1e-4));
 | ||||
| //}
 | ||||
| /* ************************************************************************* */ | ||||
| TEST_UNSAFE( ConcurrentBatchFilter, update_batch_with_marginalization ) | ||||
| { | ||||
|   // Test the 'update' function of the ConcurrentBatchFilter in a nonlinear environment.
 | ||||
|   // Thus, a full L-M optimization and the ConcurrentBatchFilter results should be identical
 | ||||
|   // This tests adds all of the factors to the filter at once (i.e. batch)
 | ||||
| 
 | ||||
|   // Create a set of optimizer parameters
 | ||||
|   LevenbergMarquardtParams parameters; | ||||
| 
 | ||||
|   // Create a Concurrent Batch Filter
 | ||||
|   ConcurrentBatchFilter filter(parameters); | ||||
| 
 | ||||
|   // Create containers to keep the full graph
 | ||||
|   Values fullTheta; | ||||
|   NonlinearFactorGraph fullGraph; | ||||
| 
 | ||||
|   // Create all factors
 | ||||
|   CreateFactors(fullGraph, fullTheta, 0, 20); | ||||
| 
 | ||||
|   // Create the set of key to marginalize out
 | ||||
|   FastList<Key> marginalizeKeys; | ||||
|   for(size_t j = 0; j < 15; ++j) { | ||||
|     marginalizeKeys.push_back(Symbol('X', j)); | ||||
|   } | ||||
| 
 | ||||
|   // Optimize with Concurrent Batch Filter
 | ||||
|   filter.update(fullGraph, fullTheta, marginalizeKeys); | ||||
|   Values actual = filter.calculateEstimate(); | ||||
| 
 | ||||
| 
 | ||||
|   // Optimize with L-M
 | ||||
|   Values expected = BatchOptimize(fullGraph, fullTheta); | ||||
|   // Remove the marginalized keys
 | ||||
|   for(size_t j = 0; j < 15; ++j) { | ||||
|     expected.erase(Symbol('X', j)); | ||||
|   } | ||||
| 
 | ||||
|   // Check smoother versus batch
 | ||||
|   CHECK(assert_equal(expected, actual, 1e-4)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
| TEST_UNSAFE( ConcurrentBatchFilter, update_incremental ) | ||||
|  | @ -524,57 +524,58 @@ TEST_UNSAFE( ConcurrentBatchFilter, update_incremental ) | |||
| 
 | ||||
| } | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST_UNSAFE( ConcurrentBatchFilter, update_incremental_with_marginalization )
 | ||||
| //{
 | ||||
| //  // Test the 'update' function of the ConcurrentBatchFilter in a nonlinear environment.
 | ||||
| //  // Thus, a full L-M optimization and the ConcurrentBatchFilter results should be identical
 | ||||
| //  // This tests adds the factors to the filter as they are created (i.e. incrementally)
 | ||||
| //
 | ||||
| //  // Create a set of optimizer parameters
 | ||||
| //  LevenbergMarquardtParams parameters;
 | ||||
| //
 | ||||
| //  // Create a Concurrent Batch Filter
 | ||||
| //  ConcurrentBatchFilter filter(parameters);
 | ||||
| //
 | ||||
| //  // Create containers to keep the full graph
 | ||||
| //  Values fullTheta;
 | ||||
| //  NonlinearFactorGraph fullGraph;
 | ||||
| //
 | ||||
| //  // Add odometry from time 0 to time 10
 | ||||
| //  for(size_t i = 0; i < 20; ++i) {
 | ||||
| //    // Create containers to keep the new factors
 | ||||
| //    Values newTheta;
 | ||||
| //    NonlinearFactorGraph newGraph;
 | ||||
| //
 | ||||
| //    // Create factors
 | ||||
| //    CreateFactors(newGraph, newTheta, i, i+1);
 | ||||
| //
 | ||||
| //    // Create the set of factors to marginalize
 | ||||
| //    FastList<Key> marginalizeKeys;
 | ||||
| //    if(i >= 4) {
 | ||||
| //      marginalizeKeys.push_back(Symbol('X', i-4));
 | ||||
| //    }
 | ||||
| //
 | ||||
| //    // Add these entries to the filter
 | ||||
| //    filter.update(newGraph, newTheta, marginalizeKeys);
 | ||||
| //    Values actual = filter.calculateEstimate();
 | ||||
| //
 | ||||
| //    // Add these entries to the full batch version
 | ||||
| //    fullGraph.push_back(newGraph);
 | ||||
| //    fullTheta.insert(newTheta);
 | ||||
| //    Values expected = BatchOptimize(fullGraph, fullTheta);
 | ||||
| //    fullTheta = expected;
 | ||||
| //    // Remove marginalized keys
 | ||||
| //    for(int j = 0; j < (int)i - 4; ++j) {
 | ||||
| //      expected.erase(Symbol('X', j));
 | ||||
| //    }
 | ||||
| //
 | ||||
| //    // Compare filter solution with full batch
 | ||||
| //    CHECK(assert_equal(expected, actual, 1e-4));
 | ||||
| //  }
 | ||||
| //
 | ||||
| //}
 | ||||
| /* ************************************************************************* */ | ||||
| TEST_UNSAFE( ConcurrentBatchFilter, update_incremental_with_marginalization ) | ||||
| { | ||||
|   // Test the 'update' function of the ConcurrentBatchFilter in a nonlinear environment.
 | ||||
|   // Thus, a full L-M optimization and the ConcurrentBatchFilter results should be identical
 | ||||
|   // This tests adds the factors to the filter as they are created (i.e. incrementally)
 | ||||
| 
 | ||||
|   // Create a set of optimizer parameters
 | ||||
|   LevenbergMarquardtParams parameters; | ||||
| 
 | ||||
|   // Create a Concurrent Batch Filter
 | ||||
|   ConcurrentBatchFilter filter(parameters); | ||||
| 
 | ||||
|   // Create containers to keep the full graph
 | ||||
|   Values fullTheta; | ||||
|   NonlinearFactorGraph fullGraph; | ||||
| 
 | ||||
|   // Add odometry from time 0 to time 10
 | ||||
|   for(size_t i = 0; i < 20; ++i) { | ||||
| 
 | ||||
|     // Create containers to keep the new factors
 | ||||
|     Values newTheta; | ||||
|     NonlinearFactorGraph newGraph; | ||||
| 
 | ||||
|     // Create factors
 | ||||
|     CreateFactors(newGraph, newTheta, i, i+1); | ||||
| 
 | ||||
|     // Create the set of factors to marginalize
 | ||||
|     FastList<Key> marginalizeKeys; | ||||
|     if(i >= 5) { | ||||
|       marginalizeKeys.push_back(Symbol('X', i-5)); | ||||
|     } | ||||
| 
 | ||||
|     // Add these entries to the filter
 | ||||
|     filter.update(newGraph, newTheta, marginalizeKeys); | ||||
|     Values actual = filter.calculateEstimate(); | ||||
| 
 | ||||
|     // Add these entries to the full batch version
 | ||||
|     fullGraph.push_back(newGraph); | ||||
|     fullTheta.insert(newTheta); | ||||
|     Values expected = BatchOptimize(fullGraph, fullTheta); | ||||
|     fullTheta = expected; | ||||
|     // Remove marginalized keys
 | ||||
|     for(int j = (int)i - 5; j >= 0; --j) { | ||||
|       expected.erase(Symbol('X', j)); | ||||
|     } | ||||
| 
 | ||||
|     // Compare filter solution with full batch
 | ||||
|     CHECK(assert_equal(expected, actual, 1e-4)); | ||||
|   } | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| ///* ************************************************************************* */
 | ||||
| //TEST_UNSAFE( ConcurrentBatchFilter, synchronize )
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue