Merge branch 'borglab:develop' into patch-4

release/4.3a0
roderick-koehle 2023-04-18 12:17:51 +02:00 committed by GitHub
commit 5bf11de6cf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 65 additions and 77 deletions

8
.clang-format Normal file
View File

@ -0,0 +1,8 @@
BasedOnStyle: Google
BinPackArguments: false
BinPackParameters: false
ColumnLimit: 100
DerivePointerAlignment: false
IncludeBlocks: Preserve
PointerAlignment: Left

View File

@ -150,7 +150,7 @@ if (NOT CMAKE_VERSION VERSION_LESS 3.8)
set(CMAKE_CXX_EXTENSIONS OFF) set(CMAKE_CXX_EXTENSIONS OFF)
if (MSVC) if (MSVC)
# NOTE(jlblanco): seems to be required in addition to the cxx_std_17 above? # NOTE(jlblanco): seems to be required in addition to the cxx_std_17 above?
list_append_cache(GTSAM_COMPILE_OPTIONS_PUBLIC /std:c++latest) list_append_cache(GTSAM_COMPILE_OPTIONS_PUBLIC /std:c++17)
endif() endif()
else() else()
# Old cmake versions: # Old cmake versions:

View File

@ -76,8 +76,7 @@ void save(Archive& ar, const std::optional<T>& t, const unsigned int /*version*/
} }
template <class Archive, class T> template <class Archive, class T>
void load(Archive& ar, std::optional<T>& t, const unsigned int /*version*/ void load(Archive& ar, std::optional<T>& t, const unsigned int /*version*/) {
) {
bool tflag; bool tflag;
ar >> boost::serialization::make_nvp("initialized", tflag); ar >> boost::serialization::make_nvp("initialized", tflag);
if (!tflag) { if (!tflag) {

View File

@ -272,20 +272,21 @@ void tic(size_t id, const char *labelC) {
} }
/* ************************************************************************* */ /* ************************************************************************* */
void toc(size_t id, const char *label) { void toc(size_t id, const char *labelC) {
// disable anything which refers to TimingOutline as well, for good measure // disable anything which refers to TimingOutline as well, for good measure
#ifdef GTSAM_USE_BOOST_FEATURES #ifdef GTSAM_USE_BOOST_FEATURES
const std::string label(labelC);
std::shared_ptr<TimingOutline> current(gCurrentTimer.lock()); std::shared_ptr<TimingOutline> current(gCurrentTimer.lock());
if (id != current->id_) { if (id != current->id_) {
gTimingRoot->print(); gTimingRoot->print();
throw std::invalid_argument( throw std::invalid_argument(
"gtsam timing: Mismatched tic/toc: gttoc(\"" + std::string(label) + "gtsam timing: Mismatched tic/toc: gttoc(\"" + label +
"\") called when last tic was \"" + current->label_ + "\"."); "\") called when last tic was \"" + current->label_ + "\".");
} }
if (!current->parent_.lock()) { if (!current->parent_.lock()) {
gTimingRoot->print(); gTimingRoot->print();
throw std::invalid_argument( throw std::invalid_argument(
"gtsam timing: Mismatched tic/toc: extra gttoc(\"" + std::string(label) + "gtsam timing: Mismatched tic/toc: extra gttoc(\"" + label +
"\"), already at the root"); "\"), already at the root");
} }
current->toc(); current->toc();

View File

@ -94,7 +94,10 @@ namespace gtsam {
for (Key j : f.keys()) cs[j] = f.cardinality(j); for (Key j : f.keys()) cs[j] = f.cardinality(j);
// Convert map into keys // Convert map into keys
DiscreteKeys keys; DiscreteKeys keys;
for (const std::pair<const Key, size_t>& key : cs) keys.push_back(key); keys.reserve(cs.size());
for (const auto& key : cs) {
keys.emplace_back(key);
}
// apply operand // apply operand
ADT result = ADT::apply(f, op); ADT result = ADT::apply(f, op);
// Make a new factor // Make a new factor

View File

@ -111,8 +111,8 @@ Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
} }
if (Dline) { if (Dline) {
Dline->setIdentity(); Dline->setIdentity();
(*Dline)(0, 3) = -t[2]; (*Dline)(3, 0) = -t[2];
(*Dline)(1, 2) = t[2]; (*Dline)(2, 1) = t[2];
} }
return Line3(cRl, c_ab[0], c_ab[1]); return Line3(cRl, c_ab[0], c_ab[1]);
} }

View File

@ -123,10 +123,10 @@ TEST(Line3, localCoordinatesOfRetract) {
// transform from world to camera test // transform from world to camera test
TEST(Line3, transformToExpressionJacobians) { TEST(Line3, transformToExpressionJacobians) {
Rot3 r = Rot3::Expmap(Vector3(0, M_PI / 3, 0)); Rot3 r = Rot3::Expmap(Vector3(0, M_PI / 3, 0));
Vector3 t(0, 0, 0); Vector3 t(-2.0, 2.0, 3.0);
Pose3 p(r, t); Pose3 p(r, t);
Line3 l_c(r.inverse(), 1, 1); Line3 l_c(r.inverse(), 3, -1);
Line3 l_w(Rot3(), 1, 1); Line3 l_w(Rot3(), 1, 1);
EXPECT(l_c.equals(transformTo(p, l_w))); EXPECT(l_c.equals(transformTo(p, l_w)));

View File

@ -248,7 +248,6 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
#ifdef HYBRID_TIMING #ifdef HYBRID_TIMING
tictoc_print_(); tictoc_print_();
tictoc_reset_();
#endif #endif
// Separate out decision tree into conditionals and remaining factors. // Separate out decision tree into conditionals and remaining factors.
@ -416,9 +415,6 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
return continuousElimination(factors, frontalKeys); return continuousElimination(factors, frontalKeys);
} else { } else {
// Case 3: We are now in the hybrid land! // Case 3: We are now in the hybrid land!
#ifdef HYBRID_TIMING
tictoc_reset_();
#endif
return hybridElimination(factors, frontalKeys, continuousSeparator, return hybridElimination(factors, frontalKeys, continuousSeparator,
discreteSeparatorSet); discreteSeparatorSet);
} }

View File

@ -57,8 +57,16 @@ Ordering HybridSmoother::getOrdering(
/* ************************************************************************* */ /* ************************************************************************* */
void HybridSmoother::update(HybridGaussianFactorGraph graph, void HybridSmoother::update(HybridGaussianFactorGraph graph,
const Ordering &ordering, std::optional<size_t> maxNrLeaves,
std::optional<size_t> maxNrLeaves) { const std::optional<Ordering> given_ordering) {
Ordering ordering;
// If no ordering provided, then we compute one
if (!given_ordering.has_value()) {
ordering = this->getOrdering(graph);
} else {
ordering = *given_ordering;
}
// Add the necessary conditionals from the previous timestep(s). // Add the necessary conditionals from the previous timestep(s).
std::tie(graph, hybridBayesNet_) = std::tie(graph, hybridBayesNet_) =
addConditionals(graph, hybridBayesNet_, ordering); addConditionals(graph, hybridBayesNet_, ordering);

View File

@ -44,13 +44,14 @@ class HybridSmoother {
* corresponding to the pruned choices. * corresponding to the pruned choices.
* *
* @param graph The new factors, should be linear only * @param graph The new factors, should be linear only
* @param ordering The ordering for elimination, only continuous vars are
* allowed
* @param maxNrLeaves The maximum number of leaves in the new discrete factor, * @param maxNrLeaves The maximum number of leaves in the new discrete factor,
* if applicable * if applicable
* @param given_ordering The (optional) ordering for elimination, only
* continuous variables are allowed
*/ */
void update(HybridGaussianFactorGraph graph, const Ordering& ordering, void update(HybridGaussianFactorGraph graph,
std::optional<size_t> maxNrLeaves = {}); std::optional<size_t> maxNrLeaves = {},
const std::optional<Ordering> given_ordering = {});
Ordering getOrdering(const HybridGaussianFactorGraph& newFactors); Ordering getOrdering(const HybridGaussianFactorGraph& newFactors);
@ -74,4 +75,4 @@ class HybridSmoother {
const HybridBayesNet& hybridBayesNet() const; const HybridBayesNet& hybridBayesNet() const;
}; };
}; // namespace gtsam } // namespace gtsam

View File

@ -46,35 +46,6 @@ using namespace gtsam;
using symbol_shorthand::X; using symbol_shorthand::X;
using symbol_shorthand::Z; using symbol_shorthand::Z;
Ordering getOrdering(HybridGaussianFactorGraph& factors,
const HybridGaussianFactorGraph& newFactors) {
factors.push_back(newFactors);
// Get all the discrete keys from the factors
KeySet allDiscrete = factors.discreteKeySet();
// Create KeyVector with continuous keys followed by discrete keys.
KeyVector newKeysDiscreteLast;
const KeySet newFactorKeys = newFactors.keys();
// Insert continuous keys first.
for (auto& k : newFactorKeys) {
if (!allDiscrete.exists(k)) {
newKeysDiscreteLast.push_back(k);
}
}
// Insert discrete keys at the end
std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast));
const VariableIndex index(factors);
// Get an ordering where the new keys are eliminated last
Ordering ordering = Ordering::ColamdConstrainedLast(
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
true);
return ordering;
}
TEST(HybridEstimation, Full) { TEST(HybridEstimation, Full) {
size_t K = 6; size_t K = 6;
std::vector<double> measurements = {0, 1, 2, 2, 2, 3}; std::vector<double> measurements = {0, 1, 2, 2, 2, 3};
@ -117,7 +88,7 @@ TEST(HybridEstimation, Full) {
/****************************************************************************/ /****************************************************************************/
// Test approximate inference with an additional pruning step. // Test approximate inference with an additional pruning step.
TEST(HybridEstimation, Incremental) { TEST(HybridEstimation, IncrementalSmoother) {
size_t K = 15; size_t K = 15;
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11}; 7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
@ -136,7 +107,6 @@ TEST(HybridEstimation, Incremental) {
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0))); initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
HybridGaussianFactorGraph linearized; HybridGaussianFactorGraph linearized;
HybridGaussianFactorGraph bayesNet;
for (size_t k = 1; k < K; k++) { for (size_t k = 1; k < K; k++) {
// Motion Model // Motion Model
@ -146,11 +116,10 @@ TEST(HybridEstimation, Incremental) {
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k))); initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
bayesNet = smoother.hybridBayesNet();
linearized = *graph.linearize(initial); linearized = *graph.linearize(initial);
Ordering ordering = getOrdering(bayesNet, linearized); Ordering ordering = smoother.getOrdering(linearized);
smoother.update(linearized, ordering, 3); smoother.update(linearized, 3, ordering);
graph.resize(0); graph.resize(0);
} }

View File

@ -41,7 +41,7 @@ namespace gtsam {
/* ************************************************************************ */ /* ************************************************************************ */
VectorValues::VectorValues(const Vector& x, const Dims& dims) { VectorValues::VectorValues(const Vector& x, const Dims& dims) {
size_t j = 0; size_t j = 0;
for (const auto& [key,n] : dims) { for (const auto& [key, n] : dims) {
#ifdef TBB_GREATER_EQUAL_2020 #ifdef TBB_GREATER_EQUAL_2020
values_.emplace(key, x.segment(j, n)); values_.emplace(key, x.segment(j, n));
#else #else
@ -68,7 +68,7 @@ namespace gtsam {
VectorValues VectorValues::Zero(const VectorValues& other) VectorValues VectorValues::Zero(const VectorValues& other)
{ {
VectorValues result; VectorValues result;
for(const auto& [key,value]: other) for (const auto& [key, value] : other)
#ifdef TBB_GREATER_EQUAL_2020 #ifdef TBB_GREATER_EQUAL_2020
result.values_.emplace(key, Vector::Zero(value.size())); result.values_.emplace(key, Vector::Zero(value.size()));
#else #else
@ -79,7 +79,7 @@ namespace gtsam {
/* ************************************************************************ */ /* ************************************************************************ */
VectorValues::iterator VectorValues::insert(const std::pair<Key, Vector>& key_value) { VectorValues::iterator VectorValues::insert(const std::pair<Key, Vector>& key_value) {
std::pair<iterator, bool> result = values_.insert(key_value); const std::pair<iterator, bool> result = values_.insert(key_value);
if(!result.second) if(!result.second)
throw std::invalid_argument( throw std::invalid_argument(
"Requested to insert variable '" + DefaultKeyFormatter(key_value.first) "Requested to insert variable '" + DefaultKeyFormatter(key_value.first)
@ -90,7 +90,7 @@ namespace gtsam {
/* ************************************************************************ */ /* ************************************************************************ */
VectorValues& VectorValues::update(const VectorValues& values) { VectorValues& VectorValues::update(const VectorValues& values) {
iterator hint = begin(); iterator hint = begin();
for (const auto& [key,value] : values) { for (const auto& [key, value] : values) {
// Use this trick to find the value using a hint, since we are inserting // Use this trick to find the value using a hint, since we are inserting
// from another sorted map // from another sorted map
size_t oldSize = values_.size(); size_t oldSize = values_.size();
@ -131,10 +131,10 @@ namespace gtsam {
// Change print depending on whether we are using TBB // Change print depending on whether we are using TBB
#ifdef GTSAM_USE_TBB #ifdef GTSAM_USE_TBB
std::map<Key, Vector> sorted; std::map<Key, Vector> sorted;
for (const auto& [key,value] : v) { for (const auto& [key, value] : v) {
sorted.emplace(key, value); sorted.emplace(key, value);
} }
for (const auto& [key,value] : sorted) for (const auto& [key, value] : sorted)
#else #else
for (const auto& [key,value] : v) for (const auto& [key,value] : v)
#endif #endif
@ -344,14 +344,13 @@ namespace gtsam {
} }
/* ************************************************************************ */ /* ************************************************************************ */
VectorValues operator*(const double a, const VectorValues &v) VectorValues operator*(const double a, const VectorValues& c) {
{
VectorValues result; VectorValues result;
for(const VectorValues::KeyValuePair& key_v: v) for (const auto& [key, value] : c)
#ifdef TBB_GREATER_EQUAL_2020 #ifdef TBB_GREATER_EQUAL_2020
result.values_.emplace(key_v.first, a * key_v.second); result.values_.emplace(key, a * value);
#else #else
result.values_.insert({key_v.first, a * key_v.second}); result.values_.insert({key, a * value});
#endif #endif
return result; return result;
} }

View File

@ -38,7 +38,7 @@ class ConstantVelocityFactor : public NoiseModelFactorN<NavState, NavState> {
public: public:
ConstantVelocityFactor(Key i, Key j, double dt, const SharedNoiseModel &model) ConstantVelocityFactor(Key i, Key j, double dt, const SharedNoiseModel &model)
: NoiseModelFactorN<NavState, NavState>(model, i, j), dt_(dt) {} : NoiseModelFactorN<NavState, NavState>(model, i, j), dt_(dt) {}
~ConstantVelocityFactor() override{}; ~ConstantVelocityFactor() override {}
/** /**
* @brief Caclulate error: (x2 - x1.update(dt))) * @brief Caclulate error: (x2 - x1.update(dt)))

View File

@ -67,9 +67,11 @@ void ManifoldPreintegration::update(const Vector3& measuredAcc,
// Possibly correct for sensor pose // Possibly correct for sensor pose
Matrix3 D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega; Matrix3 D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega;
if (p().body_P_sensor) if (p().body_P_sensor) {
std::tie(acc, omega) = correctMeasurementsBySensorPose(acc, omega, std::tie(acc, omega) = correctMeasurementsBySensorPose(
D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega); acc, omega, D_correctedAcc_acc, D_correctedAcc_omega,
D_correctedOmega_omega);
}
// Save current rotation for updating Jacobians // Save current rotation for updating Jacobians
const Rot3 oldRij = deltaXij_.attitude(); const Rot3 oldRij = deltaXij_.attitude();

View File

@ -27,7 +27,7 @@
namespace gtsam { namespace gtsam {
/** /**
* IMU pre-integration on NavSatet manifold. * IMU pre-integration on NavState manifold.
* This corresponds to the original RSS paper (with one difference: V is rotated) * This corresponds to the original RSS paper (with one difference: V is rotated)
*/ */
class GTSAM_EXPORT ManifoldPreintegration : public PreintegrationBase { class GTSAM_EXPORT ManifoldPreintegration : public PreintegrationBase {

View File

@ -111,9 +111,11 @@ void TangentPreintegration::update(const Vector3& measuredAcc,
// Possibly correct for sensor pose by converting to body frame // Possibly correct for sensor pose by converting to body frame
Matrix3 D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega; Matrix3 D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega;
if (p().body_P_sensor) if (p().body_P_sensor) {
std::tie(acc, omega) = correctMeasurementsBySensorPose(acc, omega, std::tie(acc, omega) = correctMeasurementsBySensorPose(
D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega); acc, omega, D_correctedAcc_acc, D_correctedAcc_omega,
D_correctedOmega_omega);
}
// Do update // Do update
deltaTij_ += dt; deltaTij_ += dt;

View File

@ -198,9 +198,9 @@ if(GTSAM_UNSTABLE_BUILD_PYTHON)
"${GTSAM_UNSTABLE_MODULE_PATH}") "${GTSAM_UNSTABLE_MODULE_PATH}")
# Hack to get python test files copied every time they are modified # Hack to get python test files copied every time they are modified
file(GLOB GTSAM_UNSTABLE_PYTHON_TEST_FILES "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/tests/*.py") file(GLOB GTSAM_UNSTABLE_PYTHON_TEST_FILES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/" "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/tests/*.py")
foreach(test_file ${GTSAM_UNSTABLE_PYTHON_TEST_FILES}) foreach(test_file ${GTSAM_UNSTABLE_PYTHON_TEST_FILES})
configure_file(${test_file} "${GTSAM_UNSTABLE_MODULE_PATH}/tests/${test_file}" COPYONLY) configure_file("${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/${test_file}" "${GTSAM_UNSTABLE_MODULE_PATH}/${test_file}" COPYONLY)
endforeach() endforeach()
# Add gtsam_unstable to the install target # Add gtsam_unstable to the install target