Merge branch 'borglab:develop' into patch-4
commit
5bf11de6cf
|
@ -0,0 +1,8 @@
|
|||
BasedOnStyle: Google
|
||||
|
||||
BinPackArguments: false
|
||||
BinPackParameters: false
|
||||
ColumnLimit: 100
|
||||
DerivePointerAlignment: false
|
||||
IncludeBlocks: Preserve
|
||||
PointerAlignment: Left
|
|
@ -150,7 +150,7 @@ if (NOT CMAKE_VERSION VERSION_LESS 3.8)
|
|||
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||
if (MSVC)
|
||||
# NOTE(jlblanco): seems to be required in addition to the cxx_std_17 above?
|
||||
list_append_cache(GTSAM_COMPILE_OPTIONS_PUBLIC /std:c++latest)
|
||||
list_append_cache(GTSAM_COMPILE_OPTIONS_PUBLIC /std:c++17)
|
||||
endif()
|
||||
else()
|
||||
# Old cmake versions:
|
||||
|
|
|
@ -76,8 +76,7 @@ void save(Archive& ar, const std::optional<T>& t, const unsigned int /*version*/
|
|||
}
|
||||
|
||||
template <class Archive, class T>
|
||||
void load(Archive& ar, std::optional<T>& t, const unsigned int /*version*/
|
||||
) {
|
||||
void load(Archive& ar, std::optional<T>& t, const unsigned int /*version*/) {
|
||||
bool tflag;
|
||||
ar >> boost::serialization::make_nvp("initialized", tflag);
|
||||
if (!tflag) {
|
||||
|
|
|
@ -272,20 +272,21 @@ void tic(size_t id, const char *labelC) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void toc(size_t id, const char *label) {
|
||||
void toc(size_t id, const char *labelC) {
|
||||
// disable anything which refers to TimingOutline as well, for good measure
|
||||
#ifdef GTSAM_USE_BOOST_FEATURES
|
||||
const std::string label(labelC);
|
||||
std::shared_ptr<TimingOutline> current(gCurrentTimer.lock());
|
||||
if (id != current->id_) {
|
||||
gTimingRoot->print();
|
||||
throw std::invalid_argument(
|
||||
"gtsam timing: Mismatched tic/toc: gttoc(\"" + std::string(label) +
|
||||
"gtsam timing: Mismatched tic/toc: gttoc(\"" + label +
|
||||
"\") called when last tic was \"" + current->label_ + "\".");
|
||||
}
|
||||
if (!current->parent_.lock()) {
|
||||
gTimingRoot->print();
|
||||
throw std::invalid_argument(
|
||||
"gtsam timing: Mismatched tic/toc: extra gttoc(\"" + std::string(label) +
|
||||
"gtsam timing: Mismatched tic/toc: extra gttoc(\"" + label +
|
||||
"\"), already at the root");
|
||||
}
|
||||
current->toc();
|
||||
|
|
|
@ -94,7 +94,10 @@ namespace gtsam {
|
|||
for (Key j : f.keys()) cs[j] = f.cardinality(j);
|
||||
// Convert map into keys
|
||||
DiscreteKeys keys;
|
||||
for (const std::pair<const Key, size_t>& key : cs) keys.push_back(key);
|
||||
keys.reserve(cs.size());
|
||||
for (const auto& key : cs) {
|
||||
keys.emplace_back(key);
|
||||
}
|
||||
// apply operand
|
||||
ADT result = ADT::apply(f, op);
|
||||
// Make a new factor
|
||||
|
|
|
@ -111,8 +111,8 @@ Line3 transformTo(const Pose3 &wTc, const Line3 &wL,
|
|||
}
|
||||
if (Dline) {
|
||||
Dline->setIdentity();
|
||||
(*Dline)(0, 3) = -t[2];
|
||||
(*Dline)(1, 2) = t[2];
|
||||
(*Dline)(3, 0) = -t[2];
|
||||
(*Dline)(2, 1) = t[2];
|
||||
}
|
||||
return Line3(cRl, c_ab[0], c_ab[1]);
|
||||
}
|
||||
|
|
|
@ -123,10 +123,10 @@ TEST(Line3, localCoordinatesOfRetract) {
|
|||
// transform from world to camera test
|
||||
TEST(Line3, transformToExpressionJacobians) {
|
||||
Rot3 r = Rot3::Expmap(Vector3(0, M_PI / 3, 0));
|
||||
Vector3 t(0, 0, 0);
|
||||
Vector3 t(-2.0, 2.0, 3.0);
|
||||
Pose3 p(r, t);
|
||||
|
||||
Line3 l_c(r.inverse(), 1, 1);
|
||||
Line3 l_c(r.inverse(), 3, -1);
|
||||
Line3 l_w(Rot3(), 1, 1);
|
||||
EXPECT(l_c.equals(transformTo(p, l_w)));
|
||||
|
||||
|
|
|
@ -248,7 +248,6 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
|
||||
#ifdef HYBRID_TIMING
|
||||
tictoc_print_();
|
||||
tictoc_reset_();
|
||||
#endif
|
||||
|
||||
// Separate out decision tree into conditionals and remaining factors.
|
||||
|
@ -416,9 +415,6 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
|
|||
return continuousElimination(factors, frontalKeys);
|
||||
} else {
|
||||
// Case 3: We are now in the hybrid land!
|
||||
#ifdef HYBRID_TIMING
|
||||
tictoc_reset_();
|
||||
#endif
|
||||
return hybridElimination(factors, frontalKeys, continuousSeparator,
|
||||
discreteSeparatorSet);
|
||||
}
|
||||
|
|
|
@ -57,8 +57,16 @@ Ordering HybridSmoother::getOrdering(
|
|||
|
||||
/* ************************************************************************* */
|
||||
void HybridSmoother::update(HybridGaussianFactorGraph graph,
|
||||
const Ordering &ordering,
|
||||
std::optional<size_t> maxNrLeaves) {
|
||||
std::optional<size_t> maxNrLeaves,
|
||||
const std::optional<Ordering> given_ordering) {
|
||||
Ordering ordering;
|
||||
// If no ordering provided, then we compute one
|
||||
if (!given_ordering.has_value()) {
|
||||
ordering = this->getOrdering(graph);
|
||||
} else {
|
||||
ordering = *given_ordering;
|
||||
}
|
||||
|
||||
// Add the necessary conditionals from the previous timestep(s).
|
||||
std::tie(graph, hybridBayesNet_) =
|
||||
addConditionals(graph, hybridBayesNet_, ordering);
|
||||
|
|
|
@ -44,13 +44,14 @@ class HybridSmoother {
|
|||
* corresponding to the pruned choices.
|
||||
*
|
||||
* @param graph The new factors, should be linear only
|
||||
* @param ordering The ordering for elimination, only continuous vars are
|
||||
* allowed
|
||||
* @param maxNrLeaves The maximum number of leaves in the new discrete factor,
|
||||
* if applicable
|
||||
* @param given_ordering The (optional) ordering for elimination, only
|
||||
* continuous variables are allowed
|
||||
*/
|
||||
void update(HybridGaussianFactorGraph graph, const Ordering& ordering,
|
||||
std::optional<size_t> maxNrLeaves = {});
|
||||
void update(HybridGaussianFactorGraph graph,
|
||||
std::optional<size_t> maxNrLeaves = {},
|
||||
const std::optional<Ordering> given_ordering = {});
|
||||
|
||||
Ordering getOrdering(const HybridGaussianFactorGraph& newFactors);
|
||||
|
||||
|
@ -74,4 +75,4 @@ class HybridSmoother {
|
|||
const HybridBayesNet& hybridBayesNet() const;
|
||||
};
|
||||
|
||||
}; // namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -46,35 +46,6 @@ using namespace gtsam;
|
|||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::Z;
|
||||
|
||||
Ordering getOrdering(HybridGaussianFactorGraph& factors,
|
||||
const HybridGaussianFactorGraph& newFactors) {
|
||||
factors.push_back(newFactors);
|
||||
// Get all the discrete keys from the factors
|
||||
KeySet allDiscrete = factors.discreteKeySet();
|
||||
|
||||
// Create KeyVector with continuous keys followed by discrete keys.
|
||||
KeyVector newKeysDiscreteLast;
|
||||
const KeySet newFactorKeys = newFactors.keys();
|
||||
// Insert continuous keys first.
|
||||
for (auto& k : newFactorKeys) {
|
||||
if (!allDiscrete.exists(k)) {
|
||||
newKeysDiscreteLast.push_back(k);
|
||||
}
|
||||
}
|
||||
|
||||
// Insert discrete keys at the end
|
||||
std::copy(allDiscrete.begin(), allDiscrete.end(),
|
||||
std::back_inserter(newKeysDiscreteLast));
|
||||
|
||||
const VariableIndex index(factors);
|
||||
|
||||
// Get an ordering where the new keys are eliminated last
|
||||
Ordering ordering = Ordering::ColamdConstrainedLast(
|
||||
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
|
||||
true);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
TEST(HybridEstimation, Full) {
|
||||
size_t K = 6;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 3};
|
||||
|
@ -117,7 +88,7 @@ TEST(HybridEstimation, Full) {
|
|||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, Incremental) {
|
||||
TEST(HybridEstimation, IncrementalSmoother) {
|
||||
size_t K = 15;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
|
@ -136,7 +107,6 @@ TEST(HybridEstimation, Incremental) {
|
|||
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
|
||||
|
||||
HybridGaussianFactorGraph linearized;
|
||||
HybridGaussianFactorGraph bayesNet;
|
||||
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
// Motion Model
|
||||
|
@ -146,11 +116,10 @@ TEST(HybridEstimation, Incremental) {
|
|||
|
||||
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
|
||||
|
||||
bayesNet = smoother.hybridBayesNet();
|
||||
linearized = *graph.linearize(initial);
|
||||
Ordering ordering = getOrdering(bayesNet, linearized);
|
||||
Ordering ordering = smoother.getOrdering(linearized);
|
||||
|
||||
smoother.update(linearized, ordering, 3);
|
||||
smoother.update(linearized, 3, ordering);
|
||||
graph.resize(0);
|
||||
}
|
||||
|
||||
|
|
|
@ -41,7 +41,7 @@ namespace gtsam {
|
|||
/* ************************************************************************ */
|
||||
VectorValues::VectorValues(const Vector& x, const Dims& dims) {
|
||||
size_t j = 0;
|
||||
for (const auto& [key,n] : dims) {
|
||||
for (const auto& [key, n] : dims) {
|
||||
#ifdef TBB_GREATER_EQUAL_2020
|
||||
values_.emplace(key, x.segment(j, n));
|
||||
#else
|
||||
|
@ -68,7 +68,7 @@ namespace gtsam {
|
|||
VectorValues VectorValues::Zero(const VectorValues& other)
|
||||
{
|
||||
VectorValues result;
|
||||
for(const auto& [key,value]: other)
|
||||
for (const auto& [key, value] : other)
|
||||
#ifdef TBB_GREATER_EQUAL_2020
|
||||
result.values_.emplace(key, Vector::Zero(value.size()));
|
||||
#else
|
||||
|
@ -79,7 +79,7 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************ */
|
||||
VectorValues::iterator VectorValues::insert(const std::pair<Key, Vector>& key_value) {
|
||||
std::pair<iterator, bool> result = values_.insert(key_value);
|
||||
const std::pair<iterator, bool> result = values_.insert(key_value);
|
||||
if(!result.second)
|
||||
throw std::invalid_argument(
|
||||
"Requested to insert variable '" + DefaultKeyFormatter(key_value.first)
|
||||
|
@ -90,7 +90,7 @@ namespace gtsam {
|
|||
/* ************************************************************************ */
|
||||
VectorValues& VectorValues::update(const VectorValues& values) {
|
||||
iterator hint = begin();
|
||||
for (const auto& [key,value] : values) {
|
||||
for (const auto& [key, value] : values) {
|
||||
// Use this trick to find the value using a hint, since we are inserting
|
||||
// from another sorted map
|
||||
size_t oldSize = values_.size();
|
||||
|
@ -131,10 +131,10 @@ namespace gtsam {
|
|||
// Change print depending on whether we are using TBB
|
||||
#ifdef GTSAM_USE_TBB
|
||||
std::map<Key, Vector> sorted;
|
||||
for (const auto& [key,value] : v) {
|
||||
for (const auto& [key, value] : v) {
|
||||
sorted.emplace(key, value);
|
||||
}
|
||||
for (const auto& [key,value] : sorted)
|
||||
for (const auto& [key, value] : sorted)
|
||||
#else
|
||||
for (const auto& [key,value] : v)
|
||||
#endif
|
||||
|
@ -344,14 +344,13 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
VectorValues operator*(const double a, const VectorValues &v)
|
||||
{
|
||||
VectorValues operator*(const double a, const VectorValues& c) {
|
||||
VectorValues result;
|
||||
for(const VectorValues::KeyValuePair& key_v: v)
|
||||
for (const auto& [key, value] : c)
|
||||
#ifdef TBB_GREATER_EQUAL_2020
|
||||
result.values_.emplace(key_v.first, a * key_v.second);
|
||||
result.values_.emplace(key, a * value);
|
||||
#else
|
||||
result.values_.insert({key_v.first, a * key_v.second});
|
||||
result.values_.insert({key, a * value});
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -38,7 +38,7 @@ class ConstantVelocityFactor : public NoiseModelFactorN<NavState, NavState> {
|
|||
public:
|
||||
ConstantVelocityFactor(Key i, Key j, double dt, const SharedNoiseModel &model)
|
||||
: NoiseModelFactorN<NavState, NavState>(model, i, j), dt_(dt) {}
|
||||
~ConstantVelocityFactor() override{};
|
||||
~ConstantVelocityFactor() override {}
|
||||
|
||||
/**
|
||||
* @brief Caclulate error: (x2 - x1.update(dt)))
|
||||
|
|
|
@ -67,9 +67,11 @@ void ManifoldPreintegration::update(const Vector3& measuredAcc,
|
|||
|
||||
// Possibly correct for sensor pose
|
||||
Matrix3 D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega;
|
||||
if (p().body_P_sensor)
|
||||
std::tie(acc, omega) = correctMeasurementsBySensorPose(acc, omega,
|
||||
D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega);
|
||||
if (p().body_P_sensor) {
|
||||
std::tie(acc, omega) = correctMeasurementsBySensorPose(
|
||||
acc, omega, D_correctedAcc_acc, D_correctedAcc_omega,
|
||||
D_correctedOmega_omega);
|
||||
}
|
||||
|
||||
// Save current rotation for updating Jacobians
|
||||
const Rot3 oldRij = deltaXij_.attitude();
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* IMU pre-integration on NavSatet manifold.
|
||||
* IMU pre-integration on NavState manifold.
|
||||
* This corresponds to the original RSS paper (with one difference: V is rotated)
|
||||
*/
|
||||
class GTSAM_EXPORT ManifoldPreintegration : public PreintegrationBase {
|
||||
|
|
|
@ -111,9 +111,11 @@ void TangentPreintegration::update(const Vector3& measuredAcc,
|
|||
|
||||
// Possibly correct for sensor pose by converting to body frame
|
||||
Matrix3 D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega;
|
||||
if (p().body_P_sensor)
|
||||
std::tie(acc, omega) = correctMeasurementsBySensorPose(acc, omega,
|
||||
D_correctedAcc_acc, D_correctedAcc_omega, D_correctedOmega_omega);
|
||||
if (p().body_P_sensor) {
|
||||
std::tie(acc, omega) = correctMeasurementsBySensorPose(
|
||||
acc, omega, D_correctedAcc_acc, D_correctedAcc_omega,
|
||||
D_correctedOmega_omega);
|
||||
}
|
||||
|
||||
// Do update
|
||||
deltaTij_ += dt;
|
||||
|
|
|
@ -198,9 +198,9 @@ if(GTSAM_UNSTABLE_BUILD_PYTHON)
|
|||
"${GTSAM_UNSTABLE_MODULE_PATH}")
|
||||
|
||||
# Hack to get python test files copied every time they are modified
|
||||
file(GLOB GTSAM_UNSTABLE_PYTHON_TEST_FILES "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/tests/*.py")
|
||||
file(GLOB GTSAM_UNSTABLE_PYTHON_TEST_FILES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/" "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/tests/*.py")
|
||||
foreach(test_file ${GTSAM_UNSTABLE_PYTHON_TEST_FILES})
|
||||
configure_file(${test_file} "${GTSAM_UNSTABLE_MODULE_PATH}/tests/${test_file}" COPYONLY)
|
||||
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/gtsam_unstable/${test_file}" "${GTSAM_UNSTABLE_MODULE_PATH}/${test_file}" COPYONLY)
|
||||
endforeach()
|
||||
|
||||
# Add gtsam_unstable to the install target
|
||||
|
|
Loading…
Reference in New Issue