diff --git a/examples/Hybrid_City10000.cpp b/examples/Hybrid_City10000.cpp index 8ba495940..e963e75e2 100644 --- a/examples/Hybrid_City10000.cpp +++ b/examples/Hybrid_City10000.cpp @@ -119,7 +119,6 @@ void SmootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph, const Values& initial, size_t maxNrHypotheses, Values* result) { HybridGaussianFactorGraph linearized = *graph.linearize(initial); - // std::cout << "index: " << index << std::endl; smoother.update(linearized, maxNrHypotheses); graph.resize(0); // HybridValues delta = smoother.hybridBayesNet().optimize(); diff --git a/examples/plot_city10000.m b/examples/plot_city10000.m index 6d6a4637c..3c6b1cfdd 100644 --- a/examples/plot_city10000.m +++ b/examples/plot_city10000.m @@ -2,8 +2,10 @@ clear; gt = dlmread('Data/ISAM2_GT_city10000.txt'); +% Generate by running `make ISAM2_City10000.run` eh_poses = dlmread('../build/examples/ISAM2_city10000.txt'); +% Generate by running `make Hybrid_City10000.run` h_poses = dlmread('../build/examples/HybridISAM_city10000.txt'); % Plot the same number of GT poses as estimated ones @@ -16,13 +18,18 @@ figure(1) hold on; axis equal; axis([-65 65 -75 60]) +title('City10000 result with Hybrid Factor Graphs'); plot(gt(:,1), gt(:,2), '--', 'LineWidth', 4, 'color', [0.1 0.7 0.1 0.5]); -% hold off; - -% figure(2) -% hold on; -% axis equal; -% axis([-65 65 -75 60]) -plot(eh_poses(:,1), eh_poses(:,2), '-', 'LineWidth', 2, 'color', [0.9 0.1 0. 0.4]); plot(h_poses(:,1), h_poses(:,2), '-', 'LineWidth', 2, 'color', [0.1 0.1 0.9 0.4]); +legend('Ground truth', 'Hybrid Factor Graphs'); +hold off; + +figure(2) +hold on; +axis equal; +axis([-65 65 -75 60]) +title('City10000 result with ISAM2'); +plot(gt(:,1), gt(:,2), '--', 'LineWidth', 4, 'color', [0.1 0.7 0.1 0.5]); +plot(eh_poses(:,1), eh_poses(:,2), '-', 'LineWidth', 2, 'color', [0.9 0.1 0. 0.4]); +legend('Ground truth', 'ISAM2'); hold off;