Merge pull request #556 from johnwlambert/add_python_sfm_example_bal

Add python equivalent for  SFMExample_bal.cpp
release/4.3a0
Frank Dellaert 2020-10-19 14:28:56 -04:00 committed by GitHub
commit 5adf4dc50a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 126 additions and 6 deletions

View File

@ -2068,7 +2068,7 @@ class NonlinearFactorGraph {
gtsam::KeySet keys() const;
gtsam::KeyVector keyVector() const;
template<T = {Vector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::SO3, gtsam::SO4, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, gtsam::imuBias::ConstantBias}>
template<T = {Vector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::SO3, gtsam::SO4, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::imuBias::ConstantBias}>
void addPrior(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
// NonlinearFactorGraph
@ -2162,7 +2162,7 @@ class Values {
void insert(size_t j, const gtsam::Cal3Bundler& cal3bundler);
void insert(size_t j, const gtsam::EssentialMatrix& essential_matrix);
void insert(size_t j, const gtsam::PinholeCameraCal3_S2& simple_camera);
// void insert(size_t j, const gtsam::PinholeCameraCal3Bundler& camera);
void insert(size_t j, const gtsam::PinholeCamera<gtsam::Cal3Bundler>& camera);
void insert(size_t j, const gtsam::imuBias::ConstantBias& constant_bias);
void insert(size_t j, const gtsam::NavState& nav_state);
@ -2180,13 +2180,13 @@ class Values {
void update(size_t j, const gtsam::Cal3Bundler& cal3bundler);
void update(size_t j, const gtsam::EssentialMatrix& essential_matrix);
void update(size_t j, const gtsam::PinholeCameraCal3_S2& simple_camera);
// void update(size_t j, const gtsam::PinholeCameraCal3Bundler& camera);
void update(size_t j, const gtsam::PinholeCamera<gtsam::Cal3Bundler>& camera);
void update(size_t j, const gtsam::imuBias::ConstantBias& constant_bias);
void update(size_t j, const gtsam::NavState& nav_state);
void update(size_t j, Vector vector);
void update(size_t j, Matrix matrix);
template<T = {gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Pose2, gtsam::SO3, gtsam::SO4, gtsam::SOn, gtsam::Rot3, gtsam::Pose3, gtsam::Cal3_S2, gtsam::Cal3DS2, gtsam::Cal3Bundler, gtsam::EssentialMatrix, gtsam::PinholeCameraCal3_S2, gtsam::imuBias::ConstantBias, gtsam::NavState, Vector, Matrix}>
template<T = {gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Pose2, gtsam::SO3, gtsam::SO4, gtsam::SOn, gtsam::Rot3, gtsam::Pose3, gtsam::Cal3_S2, gtsam::Cal3DS2, gtsam::Cal3Bundler, gtsam::EssentialMatrix, gtsam::PinholeCameraCal3_S2, gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::imuBias::ConstantBias, gtsam::NavState, Vector, Matrix}>
T at(size_t j);
/// version for double
@ -2490,7 +2490,8 @@ class ISAM2 {
template <VALUE = {gtsam::Point2, gtsam::Rot2, gtsam::Pose2, gtsam::Point3,
gtsam::Rot3, gtsam::Pose3, gtsam::Cal3_S2, gtsam::Cal3DS2,
gtsam::Cal3Bundler, gtsam::EssentialMatrix,
gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, Vector, Matrix}>
gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, gtsam::PinholeCamera<gtsam::Cal3Bundler>,
Vector, Matrix}>
VALUE calculateEstimate(size_t key) const;
gtsam::Values calculateBestEstimate() const;
Matrix marginalCovariance(size_t key) const;
@ -2528,7 +2529,7 @@ class NonlinearISAM {
#include <gtsam/geometry/StereoPoint2.h>
#include <gtsam/nonlinear/PriorFactor.h>
template<T = {Vector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::SO3, gtsam::SO4, gtsam::SOn, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, gtsam::imuBias::ConstantBias}>
template<T = {Vector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::SO3, gtsam::SO4, gtsam::SOn, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2,gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::PinholeCameraCal3_S2, gtsam::imuBias::ConstantBias, gtsam::PinholeCamera<gtsam::Cal3Bundler>}>
virtual class PriorFactor : gtsam::NoiseModelFactor {
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
T prior() const;
@ -2673,6 +2674,7 @@ virtual class GeneralSFMFactor : gtsam::NoiseModelFactor {
typedef gtsam::GeneralSFMFactor<gtsam::PinholeCameraCal3_S2, gtsam::Point3> GeneralSFMFactorCal3_S2;
//TODO (Issue 237) due to lack of jacobians of Cal3DS2_Base::calibrate, GeneralSFMFactor does not apply to Cal3DS2
//typedef gtsam::GeneralSFMFactor<gtsam::PinholeCameraCal3DS2, gtsam::Point3> GeneralSFMFactorCal3DS2;
typedef gtsam::GeneralSFMFactor<gtsam::PinholeCamera<gtsam::Cal3Bundler>, gtsam::Point3> GeneralSFMFactorCal3Bundler;
template<CALIBRATION = {gtsam::Cal3_S2}>
virtual class GeneralSFMFactor2 : gtsam::NoiseModelFactor {

View File

@ -0,0 +1,118 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Solve a structure-from-motion problem from a "Bundle Adjustment in the Large" file
Author: Frank Dellaert (Python: Akshay Krishnan, John Lambert)
"""
import argparse
import logging
import sys
import matplotlib.pyplot as plt
import numpy as np
import gtsam
from gtsam import (
GeneralSFMFactorCal3Bundler,
PinholeCameraCal3Bundler,
PriorFactorPinholeCameraCal3Bundler,
readBal,
symbol_shorthand
)
C = symbol_shorthand.C
P = symbol_shorthand.P
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
def run(args):
""" Run LM optimization with BAL input data and report resulting error """
input_file = gtsam.findExampleDataFile(args.input_file)
# Load the SfM data from file
scene_data = readBal(input_file)
logging.info(f"read {scene_data.number_tracks()} tracks on {scene_data.number_cameras()} cameras\n")
# Create a factor graph
graph = gtsam.NonlinearFactorGraph()
# We share *one* noiseModel between all projection factors
noise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Add measurements to the factor graph
j = 0
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx) # SfmTrack
# retrieve the SfmMeasurement objects
for m_idx in range(track.number_measurements()):
# i represents the camera index, and uv is the 2d measurement
i, uv = track.measurement(m_idx)
# note use of shorthand symbols C and P
graph.add(GeneralSFMFactorCal3Bundler(uv, noise, C(i), P(j)))
j += 1
# Add a prior on pose x1. This indirectly specifies where the origin is.
graph.push_back(
gtsam.PriorFactorPinholeCameraCal3Bundler(
C(0), scene_data.camera(0), gtsam.noiseModel.Isotropic.Sigma(9, 0.1)
)
)
# Also add a prior on the position of the first landmark to fix the scale
graph.push_back(
gtsam.PriorFactorPoint3(
P(0), scene_data.track(0).point3(), gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
)
)
# Create initial estimate
initial = gtsam.Values()
i = 0
# add each PinholeCameraCal3Bundler
for cam_idx in range(scene_data.number_cameras()):
camera = scene_data.camera(cam_idx)
initial.insert(C(i), camera)
i += 1
j = 0
# add each SfmTrack
for t_idx in range(scene_data.number_tracks()):
track = scene_data.track(t_idx)
initial.insert(P(j), track.point3())
j += 1
# Optimize the graph and print results
try:
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("ERROR")
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = lm.optimize()
except Exception as e:
logging.exception("LM Optimization failed")
return
# Error drops from ~2764.22 to ~0.046
logging.info(f"final error: {graph.error(result)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input_file',
type=str,
default="dubrovnik-3-7-pre",
help='Read SFM data from the specified BAL file'
'The data format is described here: https://grail.cs.washington.edu/projects/bal/.'
'BAL files contain (nrPoses, nrPoints, nrObservations), followed by (i,j,u,v) tuples, '
'then (wx,wy,wz,tx,ty,tz,f,k1,k1) as Bundler camera calibrations w/ Rodrigues vector'
'and (x,y,z) 3d point initializations.'
)
run(parser.parse_args())