new iSAM2 alg, still failing...
							parent
							
								
									89061cd953
								
							
						
					
					
						commit
						5a2e620520
					
				| 
						 | 
					@ -279,7 +279,6 @@ namespace gtsam {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	/*
 | 
					 | 
				
			||||||
	template<class Conditional, class Config>
 | 
						template<class Conditional, class Config>
 | 
				
			||||||
	void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
 | 
						void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -289,7 +288,7 @@ namespace gtsam {
 | 
				
			||||||
		// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
 | 
							// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
 | 
				
			||||||
		// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
 | 
							// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
 | 
				
			||||||
		const list<Symbol> newKeys = newFactors.keys();
 | 
							const list<Symbol> newKeys = newFactors.keys();
 | 
				
			||||||
		Cliques& orphans;
 | 
							Cliques orphans;
 | 
				
			||||||
		BayesNet<GaussianConditional> affectedBayesNet;
 | 
							BayesNet<GaussianConditional> affectedBayesNet;
 | 
				
			||||||
		this->removeTop(newKeys, affectedBayesNet, orphans);
 | 
							this->removeTop(newKeys, affectedBayesNet, orphans);
 | 
				
			||||||
		FactorGraph<GaussianFactor> factors(affectedBayesNet);
 | 
							FactorGraph<GaussianFactor> factors(affectedBayesNet);
 | 
				
			||||||
| 
						 | 
					@ -331,7 +330,23 @@ namespace gtsam {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// Output: BayesTree(this)
 | 
							// Output: BayesTree(this)
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
	*/
 | 
					
 | 
				
			||||||
 | 
						template<class Conditional, class Config>
 | 
				
			||||||
 | 
						void ISAM2<Conditional, Config>::find_all(sharedClique clique, list<Symbol>& keys, const list<Symbol>& marked) {
 | 
				
			||||||
 | 
							// does the separator contain any of the variables?
 | 
				
			||||||
 | 
							bool found = false;
 | 
				
			||||||
 | 
							BOOST_FOREACH(const Symbol& key, clique->separator_) {
 | 
				
			||||||
 | 
								if (find(marked.begin(), marked.end(), key) != marked.end())
 | 
				
			||||||
 | 
									found = true;
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							if (found) {
 | 
				
			||||||
 | 
								// then add this clique
 | 
				
			||||||
 | 
								keys.push_back(clique->keys().front());
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
							BOOST_FOREACH(const sharedClique& child, clique->children_) {
 | 
				
			||||||
 | 
								find_all(child, keys, marked);
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	template<class Conditional, class Config>
 | 
						template<class Conditional, class Config>
 | 
				
			||||||
	void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
 | 
						void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
 | 
				
			||||||
| 
						 | 
					@ -339,7 +354,7 @@ namespace gtsam {
 | 
				
			||||||
		// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
 | 
							// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
 | 
							// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
 | 
				
			||||||
		std::list<Symbol> marked;
 | 
						  list<Symbol> marked;
 | 
				
			||||||
		VectorConfig deltaMarked;
 | 
							VectorConfig deltaMarked;
 | 
				
			||||||
		for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
 | 
							for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
 | 
				
			||||||
			Symbol key = it->first;
 | 
								Symbol key = it->first;
 | 
				
			||||||
| 
						 | 
					@ -355,10 +370,55 @@ namespace gtsam {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
 | 
							// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// mark all cliques that involve marked variables
 | 
				
			||||||
 | 
							list<Symbol> affectedSymbols(marked); // add all marked
 | 
				
			||||||
 | 
							find_all(this->root(), affectedSymbols, marked); // add other cliques that have the marked ones in the separator
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// 4. From the leaves to the top, if a clique is marked:
 | 
							// 4. From the leaves to the top, if a clique is marked:
 | 
				
			||||||
		//    re-linearize the original factors in \Factors associated with the clique,
 | 
							//    re-linearize the original factors in \Factors associated with the clique,
 | 
				
			||||||
		//    add the cached marginal factors from its children, and re-eliminate.
 | 
							//    add the cached marginal factors from its children, and re-eliminate.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// todo: for simplicity, currently simply remove the top and recreate it using the original ordering
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							Cliques orphans;
 | 
				
			||||||
 | 
							BayesNet<GaussianConditional> affectedBayesNet;
 | 
				
			||||||
 | 
							this->removeTop(affectedSymbols, affectedBayesNet, orphans);
 | 
				
			||||||
 | 
							// remember original ordering
 | 
				
			||||||
 | 
					//		Ordering original_ordering = affectedBayesNet.ordering();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							boost::shared_ptr<GaussianFactorGraph> factors;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// ordering provides all keys in conditionals, there cannot be others because path to root included
 | 
				
			||||||
 | 
							set<Symbol> affectedKeys;
 | 
				
			||||||
 | 
							list<Symbol> tmp = affectedBayesNet.ordering();
 | 
				
			||||||
 | 
							affectedKeys.insert(tmp.begin(), tmp.end());
 | 
				
			||||||
 | 
							factors = relinearizeAffectedFactors(affectedKeys);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							Ordering original_ordering = factors->getOrdering(); // todo - hack
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// add the cached intermediate results from the boundary of the orphans ...
 | 
				
			||||||
 | 
							FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
 | 
				
			||||||
 | 
							factors->push_back(cachedBoundary);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// eliminate into a Bayes net
 | 
				
			||||||
 | 
							BayesNet<Conditional> bayesNet = _eliminate(*factors, cached_, original_ordering);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// Create Index from ordering
 | 
				
			||||||
 | 
							IndexTable<Symbol> index(original_ordering);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// insert conditionals back in, straight into the topless bayesTree
 | 
				
			||||||
 | 
							typename BayesNet<Conditional>::const_reverse_iterator rit;
 | 
				
			||||||
 | 
							for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
 | 
				
			||||||
 | 
								this->insert(*rit, index);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							// add orphans to the bottom of the new tree
 | 
				
			||||||
 | 
							BOOST_FOREACH(sharedClique orphan, orphans) {
 | 
				
			||||||
 | 
								Symbol parentRepresentative = findParentClique(orphan->separator_, index);
 | 
				
			||||||
 | 
								sharedClique parent = (*this)[parentRepresentative];
 | 
				
			||||||
 | 
								parent->children_ += orphan;
 | 
				
			||||||
 | 
								orphan->parent_ = parent; // set new parent!
 | 
				
			||||||
 | 
							}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// Output: updated Bayes tree (this), updated linearization point theta_
 | 
							// Output: updated Bayes tree (this), updated linearization point theta_
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
| 
						 | 
					@ -372,29 +432,48 @@ namespace gtsam {
 | 
				
			||||||
		// old algorithm:
 | 
							// old algorithm:
 | 
				
			||||||
		Cliques orphans;
 | 
							Cliques orphans;
 | 
				
			||||||
		this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold, relinearize);
 | 
							this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold, relinearize);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							delta_.print();
 | 
				
			||||||
 | 
							this->print();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#else
 | 
					#else
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							printf("**1\n");fflush(stdout);
 | 
				
			||||||
		// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
 | 
							// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
 | 
				
			||||||
		nonlinearFactors_.push_back(newFactors);
 | 
							nonlinearFactors_.push_back(newFactors);
 | 
				
			||||||
 | 
							printf("**2\n");fflush(stdout);
 | 
				
			||||||
		// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
 | 
							// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
 | 
				
			||||||
		theta_.insert(newTheta);
 | 
							theta_.insert(newTheta);
 | 
				
			||||||
 | 
							printf("**3\n");fflush(stdout);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// 3. Linearize new factor
 | 
							// 3. Linearize new factor
 | 
				
			||||||
		FactorGraph<GaussianFactor> linearFactors = newFactors.linearize(theta_);
 | 
							boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
 | 
				
			||||||
 | 
							printf("**4\n");fflush(stdout);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// 4. Linear iSAM step (alg 3)
 | 
							// 4. Linear iSAM step (alg 3)
 | 
				
			||||||
		linear_update(linearFactors); // in: this
 | 
							linear_update(*linearFactors); // in: this
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							printf("**5\n");fflush(stdout);
 | 
				
			||||||
		// 5. Calculate Delta (alg 0)
 | 
							// 5. Calculate Delta (alg 0)
 | 
				
			||||||
		delta_ = optimize2(*this, wildfire_threshold);
 | 
							delta_ = optimize2(*this, wildfire_threshold);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							printf("**6\n");fflush(stdout);
 | 
				
			||||||
		// 6. Iterate Algorithm 4 until no more re-linearizations occur
 | 
							// 6. Iterate Algorithm 4 until no more re-linearizations occur
 | 
				
			||||||
		if (relinearize)
 | 
					//		if (relinearize)
 | 
				
			||||||
			fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
 | 
					//			fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							printf("**7\n");fflush(stdout);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		// todo: linearization point and delta_ do not fit... have to update delta again
 | 
							// todo: linearization point and delta_ do not fit... have to update delta again
 | 
				
			||||||
		delta_ = optimize2(*this, wildfire_threshold);
 | 
							delta_ = optimize2(*this, wildfire_threshold);
 | 
				
			||||||
 | 
							printf("**8\n");fflush(stdout);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							delta_.print();
 | 
				
			||||||
 | 
							this->print();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							printf("**9\n");fflush(stdout);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
	}
 | 
						}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue