constrained reordering, significant performance improvement
parent
39d18328e6
commit
59cee45022
|
@ -14,6 +14,7 @@ install-exec-hook:
|
|||
install -d $(prefix)/include && \
|
||||
install -d $(prefix)/include/colamd && \
|
||||
cp -f colamd/colamd.h $(prefix)/include/colamd/ && \
|
||||
cp -f colamd/ccolamd.h $(prefix)/include/colamd/ && \
|
||||
cp -f colamd/UFconfig.h $(prefix)/include/colamd/ && \
|
||||
cp -f colamd/libcolamd.a $(prefix)/lib/ && \
|
||||
install -d $(prefix)/include/ldl && \
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
extern "C" {
|
||||
#include <colamd/colamd.h>
|
||||
#include <colamd/ccolamd.h>
|
||||
}
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
|
@ -180,37 +181,57 @@ std::pair<FactorGraph<Factor>, set<Symbol> > FactorGraph<Factor>::removeSingleto
|
|||
* @param n_row colamd arg 2: number of columns in A
|
||||
* @param nrNonZeros number of non-zero entries in A
|
||||
* @param columns map from keys to a sparse column of non-zero row indices
|
||||
* @param lastKeys set of keys that should appear last in the ordering
|
||||
*/
|
||||
template <class Key>
|
||||
void colamd(int n_col, int n_row, int nrNonZeros, const map<Key, vector<int> >& columns, Ordering& ordering) {
|
||||
void colamd(int n_col, int n_row, int nrNonZeros, const map<Key, vector<int> >& columns,
|
||||
Ordering& ordering, const set<Symbol>& lastKeys) {
|
||||
|
||||
// Convert to compressed column major format colamd wants it in (== MATLAB format!)
|
||||
vector<Key> initialOrder;
|
||||
int Alen = nrNonZeros*30; /* colamd arg 3: size of the array A TODO: use Tim's function ! */
|
||||
// int Alen = nrNonZeros*30; /* colamd arg 3: size of the array A TODO: use Tim's function ! */
|
||||
int Alen = ccolamd_recommended(nrNonZeros, n_row, n_col); /* colamd arg 3: size of the array A */
|
||||
int * A = new int[Alen]; /* colamd arg 4: row indices of A, of size Alen */
|
||||
int * p = new int[n_col + 1]; /* colamd arg 5: column pointers of A, of size n_col+1 */
|
||||
int * cmember = new int[n_col]; /* Constraint set of A, of size n_col */
|
||||
|
||||
p[0] = 0;
|
||||
int j = 1;
|
||||
int count = 0;
|
||||
typedef typename map<Key, vector<int> >::const_iterator iterator;
|
||||
bool front_exists = false;
|
||||
for(iterator it = columns.begin(); it != columns.end(); it++) {
|
||||
const Key& key = it->first;
|
||||
const vector<int>& column = it->second;
|
||||
initialOrder.push_back(key);
|
||||
BOOST_FOREACH(int i, column) A[count++] = i; // copy sparse column
|
||||
p[j] = count; // column j (base 1) goes from A[j-1] to A[j]-1
|
||||
if (lastKeys.find(key)==lastKeys.end()) {
|
||||
cmember[j-1] = 0;
|
||||
front_exists = true;
|
||||
} else {
|
||||
cmember[j-1] = 1; // force lastKeys to be at the end
|
||||
}
|
||||
j+=1;
|
||||
}
|
||||
if (!front_exists) { // if only 1 entries, set everything to 0...
|
||||
for(int j = 0; j < n_col; j++)
|
||||
cmember[j] = 0;
|
||||
}
|
||||
|
||||
double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */
|
||||
int stats[COLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */
|
||||
|
||||
// call colamd, result will be in p *************************************************
|
||||
/* TODO: returns (1) if successful, (0) otherwise*/
|
||||
#if 0
|
||||
::colamd(n_row, n_col, Alen, A, p, knobs, stats);
|
||||
#else
|
||||
::ccolamd(n_row, n_col, Alen, A, p, knobs, stats, cmember);
|
||||
#endif
|
||||
// **********************************************************************************
|
||||
delete [] A; // delete symbolic A
|
||||
delete [] cmember;
|
||||
|
||||
// Convert elimination ordering in p to an ordering
|
||||
for(int j = 0; j < n_col; j++)
|
||||
|
@ -220,7 +241,8 @@ void colamd(int n_col, int n_row, int nrNonZeros, const map<Key, vector<int> >&
|
|||
|
||||
/* ************************************************************************* */
|
||||
template<class Factor>
|
||||
void FactorGraph<Factor>::getOrdering(Ordering& ordering, boost::optional<const set<Symbol>&> interested) const{
|
||||
void FactorGraph<Factor>::getOrdering(Ordering& ordering, const set<Symbol>& lastKeys,
|
||||
boost::optional<const set<Symbol>&> interested) const {
|
||||
|
||||
// A factor graph is really laid out in row-major format, each factor a row
|
||||
// Below, we compute a symbolic matrix stored in sparse columns.
|
||||
|
@ -246,7 +268,7 @@ void FactorGraph<Factor>::getOrdering(Ordering& ordering, boost::optional<const
|
|||
}
|
||||
int n_col = (int)(columns.size()); /* colamd arg 2: number of columns in A */
|
||||
if(n_col != 0)
|
||||
colamd(n_col, n_row, nrNonZeros, columns, ordering);
|
||||
colamd(n_col, n_row, nrNonZeros, columns, ordering, lastKeys);
|
||||
}
|
||||
|
||||
|
||||
|
@ -254,7 +276,8 @@ void FactorGraph<Factor>::getOrdering(Ordering& ordering, boost::optional<const
|
|||
template<class Factor>
|
||||
boost::shared_ptr<Ordering> FactorGraph<Factor>::getOrdering_() const{
|
||||
boost::shared_ptr<Ordering> ordering(new Ordering);
|
||||
getOrdering(*ordering);
|
||||
set<Symbol> lastKeys;
|
||||
getOrdering(*ordering, lastKeys);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
|
@ -262,7 +285,8 @@ boost::shared_ptr<Ordering> FactorGraph<Factor>::getOrdering_() const{
|
|||
template<class Factor>
|
||||
Ordering FactorGraph<Factor>::getOrdering() const {
|
||||
Ordering ordering;
|
||||
getOrdering(ordering);
|
||||
set<Symbol> lastKeys;
|
||||
getOrdering(ordering, lastKeys);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
|
@ -270,7 +294,15 @@ Ordering FactorGraph<Factor>::getOrdering() const {
|
|||
template<class Factor>
|
||||
Ordering FactorGraph<Factor>::getOrdering(const set<Symbol>& interested) const {
|
||||
Ordering ordering;
|
||||
getOrdering(ordering, interested);
|
||||
set<Symbol> lastKeys;
|
||||
getOrdering(ordering, lastKeys, interested);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
template<class Factor>
|
||||
Ordering FactorGraph<Factor>::getConstrainedOrdering(const set<Symbol>& lastKeys) const {
|
||||
Ordering ordering;
|
||||
getOrdering(ordering, lastKeys);
|
||||
return ordering;
|
||||
}
|
||||
|
||||
|
|
|
@ -106,9 +106,10 @@ namespace gtsam {
|
|||
/**
|
||||
* Compute colamd ordering, including I/O and shared pointer version
|
||||
*/
|
||||
void getOrdering(Ordering& ordering, boost::optional<const std::set<Symbol>&> interested = boost::none) const;
|
||||
void getOrdering(Ordering& ordering, const std::set<Symbol>& lastKeys, boost::optional<const std::set<Symbol>&> interested = boost::none) const;
|
||||
Ordering getOrdering() const;
|
||||
Ordering getOrdering(const std::set<Symbol>& interested) const;
|
||||
Ordering getConstrainedOrdering(const std::set<Symbol>& lastKeys) const;
|
||||
boost::shared_ptr<Ordering> getOrdering_() const;
|
||||
|
||||
/**
|
||||
|
|
|
@ -226,7 +226,10 @@ namespace gtsam {
|
|||
//// 8 - eliminate and add orphans back in
|
||||
|
||||
// create an ordering for the new and contaminated factors
|
||||
Ordering ordering = factors->getOrdering();
|
||||
// newKeys are passed in: those variables will be forced to the end in the ordering
|
||||
set<Symbol> newKeysSet;
|
||||
newKeysSet.insert(newKeys.begin(), newKeys.end());
|
||||
Ordering ordering = factors->getConstrainedOrdering(newKeysSet);
|
||||
|
||||
// eliminate into a Bayes net
|
||||
BayesNet<Conditional> bayesNet = _eliminate(*factors, cached_, ordering);
|
||||
|
|
Loading…
Reference in New Issue