Merge branch 'TriangulationResult' into feature/SmartFactors3

release/4.3a0
dellaert 2015-03-02 08:54:54 -08:00
commit 59ab204f9d
10 changed files with 528 additions and 572 deletions

View File

@ -1309,6 +1309,7 @@
</target>
<target name="testSimulated2DOriented.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated2DOriented.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1348,6 +1349,7 @@
</target>
<target name="testSimulated2D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated2D.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1355,6 +1357,7 @@
</target>
<target name="testSimulated3D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated3D.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1458,7 +1461,6 @@
</target>
<target name="testErrors.run" path="linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testErrors.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1536,10 +1538,10 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testImplicitSchurFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testRegularImplicitSchurFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testImplicitSchurFactor.run</buildTarget>
<buildArguments>-j4</buildArguments>
<buildTarget>testRegularImplicitSchurFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
@ -1793,7 +1795,6 @@
</target>
<target name="Generate DEB Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G DEB</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1801,7 +1802,6 @@
</target>
<target name="Generate RPM Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G RPM</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1809,7 +1809,6 @@
</target>
<target name="Generate TGZ Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G TGZ</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1817,7 +1816,6 @@
</target>
<target name="Generate TGZ Source Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>--config CPackSourceConfig.cmake</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2009,6 +2007,7 @@
</target>
<target name="tests/testGaussianISAM2" path="build/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testGaussianISAM2</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2160,7 +2159,6 @@
</target>
<target name="tests/testBayesTree.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testBayesTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2168,7 +2166,6 @@
</target>
<target name="testBinaryBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testBinaryBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2216,7 +2213,6 @@
</target>
<target name="testSymbolicBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2224,7 +2220,6 @@
</target>
<target name="tests/testSymbolicFactor.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testSymbolicFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2232,7 +2227,6 @@
</target>
<target name="testSymbolicFactorGraph.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2248,7 +2242,6 @@
</target>
<target name="tests/testBayesTree" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testBayesTree</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -3392,7 +3385,6 @@
</target>
<target name="testGraph.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -3400,7 +3392,6 @@
</target>
<target name="testJunctionTree.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testJunctionTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -3408,7 +3399,6 @@
</target>
<target name="testSymbolicBayesNetB.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesNetB.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>

View File

@ -129,7 +129,7 @@ TEST(PinholeSet, Pinhole) {
// Instantiate triangulateSafe
TriangulationParameters params;
TriangulationResult actual = set.triangulateSafe(z,params);
CHECK(actual.degenerate);
CHECK(actual.degenerate());
}
/* ************************************************************************* */

View File

@ -316,12 +316,57 @@ struct TriangulationParameters {
_landmarkDistanceThreshold), dynamicOutlierRejectionThreshold(
_dynamicOutlierRejectionThreshold) {
}
// stream to output
friend std::ostream &operator<<(std::ostream &os,
const TriangulationParameters& p) {
os << "rankTolerance = " << p.rankTolerance << std::endl;
os << "enableEPI = " << p.enableEPI << std::endl;
os << "landmarkDistanceThreshold = " << p.landmarkDistanceThreshold
<< std::endl;
os << "dynamicOutlierRejectionThreshold = "
<< p.dynamicOutlierRejectionThreshold << std::endl;
return os;
}
};
struct TriangulationResult {
Point3 point;
bool degenerate;
bool cheiralityException;
/**
* TriangulationResult is an optional point, along with the reasons why it is invalid.
*/
class TriangulationResult: public boost::optional<Point3> {
enum Status {
VALID, DEGENERATE, BEHIND_CAMERA
};
Status status_;
TriangulationResult(Status s) :
status_(s) {
}
public:
TriangulationResult(const Point3& p) :
status_(VALID) {
reset(p);
}
static TriangulationResult Degenerate() {
return TriangulationResult(DEGENERATE);
}
static TriangulationResult BehindCamera() {
return TriangulationResult(BEHIND_CAMERA);
}
bool degenerate() const {
return status_ == DEGENERATE;
}
bool behindCamera() const {
return status_ == BEHIND_CAMERA;
}
// stream to output
friend std::ostream &operator<<(std::ostream &os,
const TriangulationResult& result) {
if (result)
os << "point = " << *result << std::endl;
else
os << "no point, status = " << result.status_ << std::endl;
return os;
}
};
/// triangulateSafe: extensive checking of the outcome
@ -330,62 +375,53 @@ TriangulationResult triangulateSafe(const std::vector<CAMERA>& cameras,
const std::vector<Point2>& measured,
const TriangulationParameters& params) {
TriangulationResult result;
size_t m = cameras.size();
// if we have a single pose the corresponding factor is uninformative
if (m < 2) {
result.degenerate = true;
return result;
}
if (m < 2)
return TriangulationResult::Degenerate();
else
// We triangulate the 3D position of the landmark
try {
Point3 point = triangulatePoint3<CAMERA>(cameras, measured,
params.rankTolerance, params.enableEPI);
// We triangulate the 3D position of the landmark
try {
// std::cout << "triangulatePoint3 i \n" << rankTolerance << std::endl;
result.point = triangulatePoint3<CAMERA>(cameras, measured,
params.rankTolerance, params.enableEPI);
result.degenerate = false;
result.cheiralityException = false;
// Check landmark distance and reprojection errors to avoid outliers
size_t i = 0;
double totalReprojError = 0.0;
BOOST_FOREACH(const CAMERA& camera, cameras) {
// we discard smart factors corresponding to points that are far away
Point3 cameraTranslation = camera.pose().translation();
if (cameraTranslation.distance(point) > params.landmarkDistanceThreshold)
return TriangulationResult::Degenerate();
// Also flag if point is behind any of the cameras
try {
const Point2& zi = measured.at(i);
Point2 reprojectionError(camera.project(point) - zi);
totalReprojError += reprojectionError.vector().norm();
} catch (CheiralityException) {
return TriangulationResult::BehindCamera();
}
i += 1;
}
// we discard smart factors that have large reprojection error
if (params.dynamicOutlierRejectionThreshold > 0
&& totalReprojError / m > params.dynamicOutlierRejectionThreshold)
return TriangulationResult::Degenerate();
// Check landmark distance and reprojection errors to avoid outliers
double totalReprojError = 0.0;
size_t i = 0;
BOOST_FOREACH(const CAMERA& camera, cameras) {
Point3 cameraTranslation = camera.pose().translation();
// we discard smart factors corresponding to points that are far away
if (cameraTranslation.distance(result.point)
> params.landmarkDistanceThreshold) {
result.degenerate = true;
break;
}
const Point2& zi = measured.at(i);
try {
Point2 reprojectionError(camera.project(result.point) - zi);
totalReprojError += reprojectionError.vector().norm();
} catch (CheiralityException) {
result.cheiralityException = true;
}
i += 1;
// all good!
return TriangulationResult(point);
} catch (TriangulationUnderconstrainedException&) {
// if TriangulationUnderconstrainedException can be
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
// in the second case we want to use a rotation-only smart factor
return TriangulationResult::Degenerate();
} catch (TriangulationCheiralityException&) {
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
// we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
return TriangulationResult::BehindCamera();
}
// we discard smart factors that have large reprojection error
if (params.dynamicOutlierRejectionThreshold > 0
&& totalReprojError / m > params.dynamicOutlierRejectionThreshold)
result.degenerate = true;
} catch (TriangulationUnderconstrainedException&) {
// if TriangulationUnderconstrainedException can be
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
// in the second case we want to use a rotation-only smart factor
result.degenerate = true;
result.cheiralityException = false;
} catch (TriangulationCheiralityException&) {
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
// we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
result.cheiralityException = true;
}
return result;
}
} // \namespace gtsam

View File

@ -9,6 +9,7 @@
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/base/SymmetricBlockMatrix.h>
#include <boost/foreach.hpp>
#include <iosfwd>
@ -17,7 +18,7 @@ namespace gtsam {
/**
* RegularImplicitSchurFactor
*/
template<size_t D> //
template<size_t D, size_t Z = 2> //
class RegularImplicitSchurFactor: public GaussianFactor {
public:
@ -26,12 +27,12 @@ public:
protected:
typedef Eigen::Matrix<double, 2, D> Matrix2D; ///< type of an F block
typedef Eigen::Matrix<double, Z, D> Matrix2D; ///< type of an F block
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera hessian
typedef std::pair<Key, Matrix2D> KeyMatrix2D; ///< named F block
const std::vector<KeyMatrix2D> Fblocks_; ///< All 2*D F blocks (one for each camera)
const Matrix3 PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (2*2 if degenerate)
const std::vector<KeyMatrix2D> Fblocks_; ///< All Z*D F blocks (one for each camera)
const Matrix3 PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (Z*Z if degenerate)
const Matrix E_; ///< The 2m*3 E Jacobian with respect to the point
const Vector b_; ///< 2m-dimensional RHS vector
@ -122,15 +123,141 @@ public:
"RegularImplicitSchurFactor::jacobian non implemented");
return std::make_pair(Matrix(), Vector());
}
virtual Matrix augmentedInformation() const {
throw std::runtime_error(
"RegularImplicitSchurFactor::augmentedInformation non implemented");
return Matrix();
/**
* Do Schur complement, given Jacobian as F,E,P, return SymmetricBlockMatrix
* Fast version - works on with sparsity
*/
static void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) {
// Schur complement trick
// G = F' * F - F' * E * P * E' * F
// g = F' * (b - E * P * E' * b)
// a single point is observed in m cameras
size_t m = Fblocks.size();
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera
const Matrix2D& Fi = Fblocks.at(i).second;
const Matrix23 Ei_P = E.block<Z, 3>(Z * i, 0) * P;
// D = (Dx2) * (Z)
augmentedHessian(i, m) = Fi.transpose() * b.segment<Z>(Z * i) // F' * b
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian(i, i) = Fi.transpose()
* (Fi - Ei_P * E.block<Z, 3>(Z * i, 0).transpose() * Fi);
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Matrix2D& Fj = Fblocks.at(j).second;
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian(i, j) = -Fi.transpose()
* (Ei_P * E.block<Z, 3>(Z * j, 0).transpose() * Fj);
}
} // end of for over cameras
}
/**
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
*/
static void updateSparseSchurComplement(
const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
const Matrix3& P /*Point Covariance*/, const Vector& b, const double f,
const FastVector<Key>& allKeys, const FastVector<Key>& keys,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) {
FastMap<Key, size_t> KeySlotMap;
for (size_t slot = 0; slot < allKeys.size(); slot++)
KeySlotMap.insert(std::make_pair(allKeys[slot], slot));
// Schur complement trick
// G = F' * F - F' * E * P * E' * F
// g = F' * (b - E * P * E' * b)
MatrixDD matrixBlock;
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
// a single point is observed in m cameras
size_t m = Fblocks.size(); // cameras observing current point
size_t aug_m = (augmentedHessian.rows() - 1) / D; // all cameras in the group
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera in the current factor
const Matrix2D& Fi = Fblocks.at(i).second;
const Matrix23 Ei_P = E.block<Z, 3>(Z * i, 0) * P;
// D = (DxZDim) * (Z)
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
// Key cameraKey_i = this->keys_[i];
DenseIndex aug_i = KeySlotMap.at(keys[i]);
// information vector - store previous vector
// vectorBlock = augmentedHessian(aug_i, aug_m).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i, aug_m) =
augmentedHessian(aug_i, aug_m).knownOffDiagonal()
+ Fi.transpose() * b.segment<Z>(Z * i) // F' * b
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
// main block diagonal - store previous block
matrixBlock = augmentedHessian(aug_i, aug_i);
// add contribution of current factor
augmentedHessian(aug_i, aug_i) = matrixBlock
+ (Fi.transpose()
* (Fi - Ei_P * E.block<Z, 3>(Z * i, 0).transpose() * Fi));
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Matrix2D& Fj = Fblocks.at(j).second;
//Key cameraKey_j = this->keys_[j];
DenseIndex aug_j = KeySlotMap.at(keys[j]);
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
// off diagonal block - store previous block
// matrixBlock = augmentedHessian(aug_i, aug_j).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i, aug_j) =
augmentedHessian(aug_i, aug_j).knownOffDiagonal()
- Fi.transpose()
* (Ei_P * E.block<Z, 3>(Z * j, 0).transpose() * Fj);
}
} // end of for over cameras
augmentedHessian(aug_m, aug_m)(0, 0) += f;
}
/// *Compute* full augmented information matrix
virtual Matrix augmentedInformation() const {
// Create a SymmetricBlockMatrix
int m = this->keys_.size();
size_t M1 = D * m + 1;
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, D);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
// Do the Schur complement
sparseSchurComplement(Fblocks_, E_, PointCovariance_, b_, augmentedHessian);
return augmentedHessian.matrix();
}
/// *Compute* full information matrix
virtual Matrix information() const {
throw std::runtime_error(
"RegularImplicitSchurFactor::information non implemented");
return Matrix();
Matrix augmented = augmentedInformation();
int m = this->keys_.size();
size_t M = D * m;
return augmented.block(0,0,M,M);
}
/// Return the diagonal of the Hessian for this factor
@ -142,10 +269,10 @@ public:
Key j = keys_[pos];
// Calculate Fj'*Ej for the current camera (observing a single point)
// D x 3 = (D x 2) * (2 x 3)
// D x 3 = (D x Z) * (Z x 3)
const Matrix2D& Fj = Fblocks_[pos].second;
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
* E_.block<2, 3>(2 * pos, 0);
* E_.block<Z, 3>(Z * pos, 0);
Eigen::Matrix<double, D, 1> dj;
for (size_t k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
@ -174,10 +301,10 @@ public:
Key j = keys_[pos];
// Calculate Fj'*Ej for the current camera (observing a single point)
// D x 3 = (D x 2) * (2 x 3)
// D x 3 = (D x Z) * (Z x 3)
const Matrix2D& Fj = Fblocks_[pos].second;
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
* E_.block<2, 3>(2 * pos, 0);
* E_.block<Z, 3>(Z * pos, 0);
DVector dj;
for (size_t k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
@ -195,28 +322,28 @@ public:
// F'*(I - E*P*E')*F
for (size_t pos = 0; pos < size(); ++pos) {
Key j = keys_[pos];
// F'*F - F'*E*P*E'*F (9*2)*(2*9) - (9*2)*(2*3)*(3*3)*(3*2)*(2*9)
// F'*F - F'*E*P*E'*F e.g. (9*2)*(2*9) - (9*2)*(2*3)*(3*3)*(3*2)*(2*9)
const Matrix2D& Fj = Fblocks_[pos].second;
// Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
// * E_.block<2, 3>(2 * pos, 0);
// * E_.block<Z, 3>(Z * pos, 0);
// blocks[j] = Fj.transpose() * Fj
// - FtE * PointCovariance_ * FtE.transpose();
const Matrix23& Ej = E_.block<2, 3>(2 * pos, 0);
const Matrix23& Ej = E_.block<Z, 3>(Z * pos, 0);
blocks[j] = Fj.transpose()
* (Fj - Ej * PointCovariance_ * Ej.transpose() * Fj);
// F'*(I - E*P*E')*F, TODO: this should work, but it does not :-(
// static const Eigen::Matrix<double, 2, 2> I2 = eye(2);
// static const Eigen::Matrix<double, Z, Z> I2 = eye(Z);
// Matrix2 Q = //
// I2 - E_.block<2, 3>(2 * pos, 0) * PointCovariance_ * E_.block<2, 3>(2 * pos, 0).transpose();
// I2 - E_.block<Z, 3>(Z * pos, 0) * PointCovariance_ * E_.block<Z, 3>(Z * pos, 0).transpose();
// blocks[j] = Fj.transpose() * Q * Fj;
}
return blocks;
}
virtual GaussianFactor::shared_ptr clone() const {
return boost::make_shared<RegularImplicitSchurFactor<D> >(Fblocks_,
return boost::make_shared<RegularImplicitSchurFactor<D, Z> >(Fblocks_,
PointCovariance_, E_, b_);
throw std::runtime_error(
"RegularImplicitSchurFactor::clone non implemented");
@ -226,7 +353,7 @@ public:
}
virtual GaussianFactor::shared_ptr negate() const {
return boost::make_shared<RegularImplicitSchurFactor<D> >(Fblocks_,
return boost::make_shared<RegularImplicitSchurFactor<D, Z> >(Fblocks_,
PointCovariance_, E_, b_);
throw std::runtime_error(
"RegularImplicitSchurFactor::negate non implemented");
@ -247,23 +374,23 @@ public:
typedef std::vector<Vector2> Error2s;
/**
* @brief Calculate corrected error Q*(e-2*b) = (I - E*P*E')*(e-2*b)
* @brief Calculate corrected error Q*(e-Z*b) = (I - E*P*E')*(e-Z*b)
*/
void projectError2(const Error2s& e1, Error2s& e2) const {
// d1 = E.transpose() * (e1-2*b) = (3*2m)*2m
// d1 = E.transpose() * (e1-Z*b) = (3*2m)*2m
Vector3 d1;
d1.setZero();
for (size_t k = 0; k < size(); k++)
d1 += E_.block<2, 3>(2 * k, 0).transpose()
* (e1[k] - 2 * b_.segment<2>(k * 2));
d1 += E_.block<Z, 3>(Z * k, 0).transpose()
* (e1[k] - Z * b_.segment<Z>(k * Z));
// d2 = E.transpose() * e1 = (3*2m)*2m
Vector3 d2 = PointCovariance_ * d1;
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
for (size_t k = 0; k < size(); k++)
e2[k] = e1[k] - 2 * b_.segment<2>(k * 2) - E_.block<2, 3>(2 * k, 0) * d2;
e2[k] = e1[k] - Z * b_.segment<Z>(k * Z) - E_.block<Z, 3>(Z * k, 0) * d2;
}
/*
@ -305,7 +432,7 @@ public:
// e1 = F * x - b = (2m*dm)*dm
for (size_t k = 0; k < size(); ++k)
e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment<2>(k * 2);
e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment<Z>(k * Z);
projectError(e1, e2);
double result = 0;
@ -324,14 +451,14 @@ public:
Vector3 d1;
d1.setZero();
for (size_t k = 0; k < size(); k++)
d1 += E_.block<2, 3>(2 * k, 0).transpose() * e1[k];
d1 += E_.block<Z, 3>(Z * k, 0).transpose() * e1[k];
// d2 = E.transpose() * e1 = (3*2m)*2m
Vector3 d2 = PointCovariance_ * d1;
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
for (size_t k = 0; k < size(); k++)
e2[k] = e1[k] - E_.block<2, 3>(2 * k, 0) * d2;
e2[k] = e1[k] - E_.block<Z, 3>(Z * k, 0) * d2;
}
/// Scratch space for multiplyHessianAdd
@ -426,7 +553,7 @@ public:
e1.resize(size());
e2.resize(size());
for (size_t k = 0; k < size(); k++)
e1[k] = b_.segment<2>(2 * k);
e1[k] = b_.segment<Z>(Z * k);
projectError(e1, e2);
// g = F.transpose()*e2
@ -453,7 +580,7 @@ public:
e1.resize(size());
e2.resize(size());
for (size_t k = 0; k < size(); k++)
e1[k] = b_.segment<2>(2 * k);
e1[k] = b_.segment<Z>(Z * k);
projectError(e1, e2);
for (size_t k = 0; k < size(); ++k) { // for each camera in the factor
@ -472,8 +599,8 @@ public:
// end class RegularImplicitSchurFactor
// traits
template<size_t D> struct traits<RegularImplicitSchurFactor<D> > : public Testable<
RegularImplicitSchurFactor<D> > {
template<size_t Z, size_t D> struct traits<RegularImplicitSchurFactor<D, Z> > : public Testable<
RegularImplicitSchurFactor<D, Z> > {
};
}

View File

@ -337,14 +337,14 @@ public:
double f = computeJacobians(Fblocks, E, b, cameras, point);
Matrix3 P = PointCov(E, lambda, diagonalDamping);
// we create directly a SymmetricBlockMatrix
// Create a SymmetricBlockMatrix
size_t M1 = Dim * m + 1;
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, Dim);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
// build augmented hessian
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
sparseSchurComplement(Fblocks, E, P, b, augmentedHessian);
augmentedHessian(m, m)(0, 0) = f;
@ -352,121 +352,6 @@ public:
augmentedHessian);
}
/**
* Do Schur complement, given Jacobian as F,E,P, return SymmetricBlockMatrix
* Fast version - works on with sparsity
*/
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
// Schur complement trick
// Gs = F' * F - F' * E * P * E' * F
// gs = F' * (b - E * P * E' * b)
// a single point is observed in numKeys cameras
size_t numKeys = this->keys_.size();
// Blockwise Schur complement
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
// Dim = (Dx2) * (2)
// (augmentedHessian.matrix()).block<Dim,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
augmentedHessian(i1, numKeys) = Fi1.transpose()
* b.segment<ZDim>(ZDim * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // Dim = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian(i1, i1) = Fi1.transpose()
* (Fi1 - Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1);
// upper triangular part of the hessian
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
const Matrix2D& Fi2 = Fblocks.at(i2).second;
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian(i1, i2) = -Fi1.transpose()
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
}
} // end of for over cameras
}
/**
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
*/
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
const double f, const FastVector<Key> allKeys,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
// Schur complement trick
// Gs = F' * F - F' * E * P * E' * F
// gs = F' * (b - E * P * E' * b)
MatrixDD matrixBlock;
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
FastMap<Key, size_t> KeySlotMap;
for (size_t slot = 0; slot < allKeys.size(); slot++)
KeySlotMap.insert(std::make_pair(allKeys[slot], slot));
// a single point is observed in numKeys cameras
size_t numKeys = this->keys_.size(); // cameras observing current point
size_t aug_numKeys = (augmentedHessian.rows() - 1) / Dim; // all cameras in the group
// Blockwise Schur complement
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor
const Matrix2D& Fi1 = Fblocks.at(i1).second;
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
// Dim = (DxZDim) * (ZDim)
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
// Key cameraKey_i1 = this->keys_[i1];
DenseIndex aug_i1 = KeySlotMap[this->keys_[i1]];
// information vector - store previous vector
// vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i1, aug_numKeys) = augmentedHessian(aug_i1,
aug_numKeys).knownOffDiagonal()
+ Fi1.transpose() * b.segment<ZDim>(ZDim * i1) // F' * b
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // Dim = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
// main block diagonal - store previous block
matrixBlock = augmentedHessian(aug_i1, aug_i1);
// add contribution of current factor
augmentedHessian(aug_i1, aug_i1) =
matrixBlock
+ (Fi1.transpose()
* (Fi1
- Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1));
// upper triangular part of the hessian
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
const Matrix2D& Fi2 = Fblocks.at(i2).second;
//Key cameraKey_i2 = this->keys_[i2];
DenseIndex aug_i2 = KeySlotMap[this->keys_[i2]];
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
// off diagonal block - store previous block
// matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i1, aug_i2) =
augmentedHessian(aug_i1, aug_i2).knownOffDiagonal()
- Fi1.transpose()
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
}
} // end of for over cameras
augmentedHessian(aug_numKeys, aug_numKeys)(0, 0) += f;
}
/**
* Add the contribution of the smart factor to a pre-allocated Hessian,
* using sparse linear algebra. More efficient than the creation of the
@ -476,33 +361,38 @@ public:
const double lambda, bool diagonalDamping,
SymmetricBlockMatrix& augmentedHessian,
const FastVector<Key> allKeys) const {
// int numKeys = this->keys_.size();
std::vector<KeyMatrix2D> Fblocks;
Matrix E;
Vector b;
std::vector<KeyMatrix2D> Fblocks;
double f = computeJacobians(Fblocks, E, b, cameras, point);
Matrix3 P = PointCov(E, lambda, diagonalDamping);
updateSparseSchurComplement(Fblocks, E, P, b, f, allKeys, augmentedHessian); // augmentedHessian.matrix().block<Dim,Dim> (i1,i2) = ...
RegularImplicitSchurFactor<Dim, ZDim>::updateSparseSchurComplement(Fblocks,
E, P, b, f, allKeys, keys_, augmentedHessian);
}
/// Whiten the Jacobians computed by computeJacobians using noiseModel_
void whitenJacobians(std::vector<KeyMatrix2D>& F, Matrix& E,
Vector& b) const {
noiseModel_->WhitenSystem(E, b);
// TODO make WhitenInPlace work with any dense matrix type
BOOST_FOREACH(KeyMatrix2D& Fblock,F)
Fblock.second = noiseModel_->Whiten(Fblock.second);
}
/**
* Return Jacobians as RegularImplicitSchurFactor with raw access
*/
boost::shared_ptr<RegularImplicitSchurFactor<Dim> > createRegularImplicitSchurFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0,
bool diagonalDamping = false) const {
std::vector<KeyMatrix2D> F;
boost::shared_ptr<RegularImplicitSchurFactor<Dim, ZDim> > //
createRegularImplicitSchurFactor(const Cameras& cameras, const Point3& point,
double lambda = 0.0, bool diagonalDamping = false) const {
Matrix E;
Vector b;
std::vector<KeyMatrix2D> F;
computeJacobians(F, E, b, cameras, point);
noiseModel_->WhitenSystem(E, b);
whitenJacobians(F, E, b);
Matrix3 P = PointCov(E, lambda, diagonalDamping);
// TODO make WhitenInPlace work with any dense matrix type
BOOST_FOREACH(KeyMatrix2D& Fblock,F)
Fblock.second = noiseModel_->Whiten(Fblock.second);
return boost::make_shared<RegularImplicitSchurFactor<Dim> >(F, E, P, b);
return boost::make_shared<RegularImplicitSchurFactor<Dim, ZDim> >(F, E, P,
b);
}
/**
@ -511,12 +401,11 @@ public:
boost::shared_ptr<JacobianFactorQ<Dim, ZDim> > createJacobianQFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0,
bool diagonalDamping = false) const {
std::vector<KeyMatrix2D> F;
Matrix E;
Vector b;
std::vector<KeyMatrix2D> F;
computeJacobians(F, E, b, cameras, point);
const size_t M = b.size();
std::cout << M << std::endl;
Matrix3 P = PointCov(E, lambda, diagonalDamping);
SharedIsotropic n = noiseModel::Isotropic::Sigma(M, noiseModel_->sigma());
return boost::make_shared<JacobianFactorQ<Dim, ZDim> >(F, E, P, b, n);

View File

@ -15,6 +15,7 @@
* @author Luca Carlone
* @author Chris Beall
* @author Zsolt Kira
* @author Frank Dellaert
*/
#pragma once

View File

@ -35,14 +35,8 @@ namespace gtsam {
* Structure for storing some state memory, used to speed up optimization
* @addtogroup SLAM
*/
class SmartProjectionFactorState {
struct SmartProjectionFactorState {
protected:
public:
SmartProjectionFactorState() {
}
// Hessian representation (after Schur complement)
bool calculatedHessian;
Matrix H;
@ -68,38 +62,31 @@ private:
protected:
// Some triangulation parameters
const double rankTolerance_; ///< threshold to decide whether triangulation is degenerate_
/// @name Caching triangulation
/// @{
const TriangulationParameters parameters_;
mutable TriangulationResult result_; ///< result from triangulateSafe
const double retriangulationThreshold_; ///< threshold to decide whether to re-triangulate
mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses
/// @}
/// @name Parameters governing how triangulation result is treated
/// @{
const bool manageDegeneracy_; ///< if set to true will use the rotation-only version for degenerate cases
const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
/// @}
const bool enableEPI_; ///< if set to true, will refine triangulation using LM
/// @name Caching linearization
/// @{
/// shorthand for smart projection factor state variable
typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr;
SmartFactorStatePtr state_; ///< cached linearization
const double linearizationThreshold_; ///< threshold to decide whether to re-linearize
mutable std::vector<Pose3> cameraPosesLinearization_; ///< current linearization poses
mutable Point3 point_; ///< Current estimate of the 3D point
mutable bool degenerate_;
mutable bool cheiralityException_;
// verbosity handling for Cheirality Exceptions
const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
boost::shared_ptr<SmartProjectionFactorState> state_;
/// shorthand for smart projection factor state variable
typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr;
double landmarkDistanceThreshold_; // if the landmark is triangulated at a
// distance larger than that the factor is considered degenerate
double dynamicOutlierRejectionThreshold_; // if this is nonnegative the factor will check if the
// average reprojection error is smaller than this threshold after triangulation,
// and the factor is disregarded if the error is large
/// @}
public:
@ -117,17 +104,18 @@ public:
* otherwise the factor is simply neglected
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
*/
SmartProjectionFactor(const double rankTol, const double linThreshold,
SmartProjectionFactor(const double rankTolerance, const double linThreshold,
const bool manageDegeneracy, const bool enableEPI,
double landmarkDistanceThreshold = 1e10,
double dynamicOutlierRejectionThreshold = -1, SmartFactorStatePtr state =
SmartFactorStatePtr(new SmartProjectionFactorState())) :
rankTolerance_(rankTol), retriangulationThreshold_(1e-5), manageDegeneracy_(
manageDegeneracy), enableEPI_(enableEPI), linearizationThreshold_(
linThreshold), degenerate_(false), cheiralityException_(false), throwCheirality_(
false), verboseCheirality_(false), state_(state), landmarkDistanceThreshold_(
landmarkDistanceThreshold), dynamicOutlierRejectionThreshold_(
dynamicOutlierRejectionThreshold) {
parameters_(rankTolerance, enableEPI, landmarkDistanceThreshold,
dynamicOutlierRejectionThreshold), //
result_(TriangulationResult::Degenerate()), //
retriangulationThreshold_(1e-5), //
manageDegeneracy_(manageDegeneracy), //
throwCheirality_(false), verboseCheirality_(false), //
state_(state), linearizationThreshold_(linThreshold) {
}
/** Virtual destructor */
@ -141,24 +129,23 @@ public:
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "SmartProjectionFactor, z = \n";
std::cout << "rankTolerance_ = " << rankTolerance_ << std::endl;
std::cout << "degenerate_ = " << degenerate_ << std::endl;
std::cout << "cheiralityException_ = " << cheiralityException_ << std::endl;
std::cout << s << "SmartProjectionFactor\n";
std::cout << "triangulationParameters:\n" << parameters_ << std::endl;
std::cout << "result:\n" << result_ << std::endl;
Base::print("", keyFormatter);
}
/// Check if the new linearization point_ is the same as the one used for previous triangulation
/// Check if the new linearization point is the same as the one used for previous triangulation
bool decideIfTriangulate(const Cameras& cameras) const {
// several calls to linearize will be done from the same linearization point_, hence it is not needed to re-triangulate
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point_
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
size_t m = cameras.size();
bool retriangulate = false;
// if we do not have a previous linearization point_ or the new linearization point_ includes more poses
// if we do not have a previous linearization point or the new linearization point includes more poses
if (cameraPosesTriangulation_.empty()
|| cameras.size() != cameraPosesTriangulation_.size())
retriangulate = true;
@ -181,19 +168,19 @@ public:
cameraPosesTriangulation_.push_back(cameras[i].pose());
}
return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation
return retriangulate; // if we arrive to this point all poses are the same and we don't need re-triangulation
}
/// This function checks if the new linearization point_ is 'close' to the previous one used for linearization
/// This function checks if the new linearization point is 'close' to the previous one used for linearization
bool decideIfLinearize(const Cameras& cameras) const {
// "selective linearization"
// The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
// (we only care about the "rigidity" of the poses, not about their absolute pose)
if (this->linearizationThreshold_ < 0) //by convention if linearizationThreshold is negative we always relinearize
if (linearizationThreshold_ < 0) //by convention if linearizationThreshold is negative we always relinearize
return true;
// if we do not have a previous linearization point_ or the new linearization point_ includes more poses
// if we do not have a previous linearization point or the new linearization point includes more poses
if (cameraPosesLinearization_.empty()
|| (cameras.size() != cameraPosesLinearization_.size()))
return true;
@ -211,100 +198,29 @@ public:
Pose3 localCameraPose = firstCameraPose.between(cameras[i].pose());
Pose3 localCameraPoseOld = firstCameraPoseOld.between(
cameraPosesLinearization_[i]);
if (!localCameraPose.equals(localCameraPoseOld,
this->linearizationThreshold_))
if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold_))
return true; // at least two "relative" poses are different, hence we re-linearize
}
return false; // if we arrive to this point_ all poses are the same and we don't need re-linearize
return false; // if we arrive to this point all poses are the same and we don't need re-linearize
}
/// triangulateSafe
size_t triangulateSafe(const Values& values) const {
return triangulateSafe(this->cameras(values));
}
/// triangulateSafe
size_t triangulateSafe(const Cameras& cameras) const {
TriangulationResult triangulateSafe(const Cameras& cameras) const {
size_t m = cameras.size();
if (m < 2) { // if we have a single pose the corresponding factor is uninformative
degenerate_ = true;
return m;
}
if (m < 2) // if we have a single pose the corresponding factor is uninformative
return TriangulationResult::Degenerate();
bool retriangulate = decideIfTriangulate(cameras);
if (retriangulate) {
// We triangulate the 3D position of the landmark
try {
// std::cout << "triangulatePoint3 i \n" << rankTolerance << std::endl;
point_ = triangulatePoint3<CAMERA>(cameras, this->measured_,
rankTolerance_, enableEPI_);
degenerate_ = false;
cheiralityException_ = false;
// Check landmark distance and reprojection errors to avoid outliers
double totalReprojError = 0.0;
size_t i = 0;
BOOST_FOREACH(const CAMERA& camera, cameras) {
Point3 cameraTranslation = camera.pose().translation();
// we discard smart factors corresponding to points that are far away
if (cameraTranslation.distance(point_) > landmarkDistanceThreshold_) {
degenerate_ = true;
break;
}
const Point2& zi = this->measured_.at(i);
try {
Point2 reprojectionError(camera.project(point_) - zi);
totalReprojError += reprojectionError.vector().norm();
} catch (CheiralityException) {
cheiralityException_ = true;
}
i += 1;
}
// we discard smart factors that have large reprojection error
if (dynamicOutlierRejectionThreshold_ > 0
&& totalReprojError / m > dynamicOutlierRejectionThreshold_)
degenerate_ = true;
} catch (TriangulationUnderconstrainedException&) {
// if TriangulationUnderconstrainedException can be
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
// in the second case we want to use a rotation-only smart factor
degenerate_ = true;
cheiralityException_ = false;
} catch (TriangulationCheiralityException&) {
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
// we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
cheiralityException_ = true;
}
}
return m;
if (retriangulate)
result_ = gtsam::triangulateSafe(cameras, this->measured_, parameters_);
return result_;
}
/// triangulate
bool triangulateForLinearize(const Cameras& cameras) const {
bool isDebug = false;
size_t nrCameras = this->triangulateSafe(cameras);
if (nrCameras < 2
|| (!this->manageDegeneracy_
&& (this->cheiralityException_ || this->degenerate_))) {
if (isDebug) {
std::cout
<< "createRegularImplicitSchurFactor: degenerate configuration"
<< std::endl;
}
return false;
} else {
// instead, if we want to manage the exception..
if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
this->degenerate_ = true;
}
return true;
}
triangulateSafe(cameras); // imperative, might reset result_
return (manageDegeneracy_ || result_);
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
@ -324,12 +240,10 @@ public:
exit(1);
}
this->triangulateSafe(cameras);
triangulateSafe(cameras);
if (numKeys < 2
|| (!this->manageDegeneracy_
&& (this->cheiralityException_ || this->degenerate_))) {
// std::cout << "In linearize: exception" << std::endl;
if (!manageDegeneracy_ && !result_) {
// put in "empty" Hessian
BOOST_FOREACH(Matrix& m, Gs)
m = zeros(Base::Dim, Base::Dim);
BOOST_FOREACH(Vector& v, gs)
@ -338,23 +252,19 @@ public:
Gs, gs, 0.0);
}
// instead, if we want to manage the exception..
if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
this->degenerate_ = true;
}
// decide whether to re-linearize
bool doLinearize = this->decideIfLinearize(cameras);
if (this->linearizationThreshold_ >= 0 && doLinearize) // if we apply selective relinearization and we need to relinearize
if (linearizationThreshold_ >= 0 && doLinearize) // if we apply selective relinearization and we need to relinearize
for (size_t i = 0; i < cameras.size(); i++)
this->cameraPosesLinearization_[i] = cameras[i].pose();
if (!doLinearize) { // return the previous Hessian factor
std::cout << "=============================" << std::endl;
std::cout << "doLinearize " << doLinearize << std::endl;
std::cout << "this->linearizationThreshold_ "
<< this->linearizationThreshold_ << std::endl;
std::cout << "this->degenerate_ " << this->degenerate_ << std::endl;
std::cout << "linearizationThreshold_ " << linearizationThreshold_
<< std::endl;
std::cout << "valid: " << isValid() << std::endl;
std::cout
<< "something wrong in SmartProjectionHessianFactor: selective relinearization should be disabled"
<< std::endl;
@ -370,6 +280,7 @@ public:
{
std::vector<typename Base::KeyMatrix2D> Fblocks;
f = computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
Base::whitenJacobians(Fblocks,E,b);
Base::FillDiagonalF(Fblocks, F); // expensive !
}
@ -404,7 +315,7 @@ public:
}
}
// ==================================================================
if (this->linearizationThreshold_ >= 0) { // if we do not use selective relinearization we don't need to store these variables
if (linearizationThreshold_ >= 0) { // if we do not use selective relinearization we don't need to store these variables
this->state_->Gs = Gs;
this->state_->gs = gs;
this->state_->f = f;
@ -417,7 +328,7 @@ public:
boost::shared_ptr<RegularImplicitSchurFactor<Base::Dim> > createRegularImplicitSchurFactor(
const Cameras& cameras, double lambda) const {
if (triangulateForLinearize(cameras))
return Base::createRegularImplicitSchurFactor(cameras, point_, lambda);
return Base::createRegularImplicitSchurFactor(cameras, *result_, lambda);
else
return boost::shared_ptr<RegularImplicitSchurFactor<Base::Dim> >();
}
@ -426,7 +337,7 @@ public:
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
const Cameras& cameras, double lambda) const {
if (triangulateForLinearize(cameras))
return Base::createJacobianQFactor(cameras, point_, lambda);
return Base::createJacobianQFactor(cameras, *result_, lambda);
else
return boost::make_shared<JacobianFactorQ<Base::Dim, 2> >(this->keys_);
}
@ -434,63 +345,27 @@ public:
/// Create a factor, takes values
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
const Values& values, double lambda) const {
Cameras cameras;
// TODO triangulate twice ??
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
if (nonDegenerate)
return createJacobianQFactor(cameras, lambda);
else
return boost::make_shared<JacobianFactorQ<Base::Dim, 2> >(this->keys_);
return createJacobianQFactor(this->cameras(values), lambda);
}
/// different (faster) way to compute Jacobian factor
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
const Cameras& cameras, double lambda) const {
if (triangulateForLinearize(cameras))
return Base::createJacobianSVDFactor(cameras, point_, lambda);
return Base::createJacobianSVDFactor(cameras, *result_, lambda);
else
return boost::make_shared<JacobianFactorSVD<Base::Dim, 2> >(this->keys_);
}
/// Returns true if nonDegenerate
bool computeCamerasAndTriangulate(const Values& values,
Cameras& cameras) const {
Values valuesFactor;
// Select only the cameras
BOOST_FOREACH(const Key key, this->keys_)
valuesFactor.insert(key, values.at(key));
cameras = this->cameras(valuesFactor);
size_t nrCameras = this->triangulateSafe(cameras);
if (nrCameras < 2
|| (!this->manageDegeneracy_
&& (this->cheiralityException_ || this->degenerate_)))
return false;
// instead, if we want to manage the exception..
if (this->cheiralityException_ || this->degenerate_) // if we want to manage the exceptions with rotation-only factors
this->degenerate_ = true;
if (this->degenerate_) {
std::cout << "SmartProjectionFactor: this is not ready" << std::endl;
std::cout << "this->cheiralityException_ " << this->cheiralityException_
<< std::endl;
std::cout << "this->degenerate_ " << this->degenerate_ << std::endl;
}
return true;
}
/**
* Triangulate and compute derivative of error with respect to point
* @return whether triangulation worked
*/
bool triangulateAndComputeE(Matrix& E, const Values& values) const {
Cameras cameras;
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
Cameras cameras = this->cameras(values);
bool nonDegenerate = triangulateForLinearize(cameras);
if (nonDegenerate)
cameras.project2(point_, boost::none, E);
cameras.project2(*result_, boost::none, E);
return nonDegenerate;
}
@ -501,31 +376,18 @@ public:
std::vector<typename Base::KeyMatrix2D>& Fblocks, Matrix& E, Vector& b,
const Cameras& cameras) const {
if (this->degenerate_) {
std::cout << "manage degeneracy " << manageDegeneracy_ << std::endl;
std::cout << "point " << point_ << std::endl;
std::cout
<< "SmartProjectionFactor: Management of degeneracy is disabled - not ready to be used"
<< std::endl;
if (Base::Dim > 6) {
std::cout
<< "Management of degeneracy is not yet ready when one also optimizes for the calibration "
<< std::endl;
}
if (!result_) {
// TODO Luca clarify whether this works or not
result_ = TriangulationResult(
cameras[0].backprojectPointAtInfinity(this->measured_.at(0)));
// TODO replace all this by Call to CameraSet
int m = this->keys_.size();
E = zeros(2 * m, 2);
b = zero(2 * m);
double f = 0;
for (size_t i = 0; i < this->measured_.size(); i++) {
if (i == 0) { // first pose
this->point_ = cameras[i].backprojectPointAtInfinity(
this->measured_.at(i));
// 3D parametrization of point at infinity: [px py 1]
}
Matrix Fi, Ei;
Vector bi = -(cameras[i].projectPointAtInfinity(this->point_, Fi, Ei)
Vector bi = -(cameras[i].projectPointAtInfinity(*result_, Fi, Ei)
- this->measured_.at(i)).vector();
f += bi.squaredNorm();
@ -535,17 +397,17 @@ public:
}
return f;
} else {
// nondegenerate: just return Base version
return Base::computeJacobians(Fblocks, E, b, cameras, point_);
} // end else
// valid result: just return Base version
return Base::computeJacobians(Fblocks, E, b, cameras, *result_);
}
}
/// Version that takes values, and creates the point
bool triangulateAndComputeJacobians(
std::vector<typename Base::KeyMatrix2D>& Fblocks, Matrix& E, Vector& b,
const Values& values) const {
Cameras cameras;
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
Cameras cameras = this->cameras(values);
bool nonDegenerate = triangulateForLinearize(cameras);
if (nonDegenerate)
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
return nonDegenerate;
@ -555,19 +417,19 @@ public:
bool triangulateAndComputeJacobiansSVD(
std::vector<typename Base::KeyMatrix2D>& Fblocks, Matrix& Enull,
Vector& b, const Values& values) const {
typename Base::Cameras cameras;
double good = computeCamerasAndTriangulate(values, cameras);
if (good)
Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, point_);
return true;
Cameras cameras = this->cameras(values);
bool nonDegenerate = triangulateForLinearize(cameras);
if (nonDegenerate)
Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, *result_);
return nonDegenerate;
}
/// Calculate vector of re-projection errors, before applying noise model
Vector reprojectionErrorAfterTriangulation(const Values& values) const {
Cameras cameras;
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
Cameras cameras = this->cameras(values);
bool nonDegenerate = triangulateForLinearize(cameras);
if (nonDegenerate)
return Base::reprojectionError(cameras, point_);
return Base::reprojectionError(cameras, *result_);
else
return zero(cameras.size() * 2);
}
@ -581,65 +443,61 @@ public:
double totalReprojectionError(const Cameras& cameras,
boost::optional<Point3> externalPoint = boost::none) const {
size_t nrCameras;
if (externalPoint) {
nrCameras = this->keys_.size();
point_ = *externalPoint;
degenerate_ = false;
cheiralityException_ = false;
} else {
nrCameras = this->triangulateSafe(cameras);
}
if (externalPoint)
result_ = TriangulationResult(*externalPoint);
else
result_ = triangulateSafe(cameras);
if (nrCameras < 2
|| (!this->manageDegeneracy_
&& (this->cheiralityException_ || this->degenerate_))) {
// if we don't want to manage the exceptions we discard the factor
// std::cout << "In error evaluation: exception" << std::endl;
// if we don't want to manage the exceptions we discard the factor
if (!manageDegeneracy_ && !result_)
return 0.0;
}
if (this->cheiralityException_) { // if we want to manage the exceptions with rotation-only factors
if (isPointBehindCamera()) { // if we want to manage the exceptions with rotation-only factors
std::cout
<< "SmartProjectionHessianFactor: cheirality exception (this should not happen if CheiralityException is disabled)!"
<< std::endl;
this->degenerate_ = true;
}
if (this->degenerate_) {
if (isDegenerate()) {
// return 0.0; // TODO: this maybe should be zero?
std::cout
<< "SmartProjectionHessianFactor: trying to manage degeneracy (this should not happen is manageDegeneracy is disabled)!"
<< std::endl;
// 3D parameterization of point at infinity
const Point2& zi = this->measured_.at(0);
this->point_ = cameras.front().backprojectPointAtInfinity(zi);
return Base::totalReprojectionErrorAtInfinity(cameras, this->point_);
const Point2& z0 = this->measured_.at(0);
result_ = TriangulationResult(
cameras.front().backprojectPointAtInfinity(z0));
return Base::totalReprojectionErrorAtInfinity(cameras, *result_);
} else {
// Just use version in base class
return Base::totalReprojectionError(cameras, point_);
return Base::totalReprojectionError(cameras, *result_);
}
}
/** return the landmark */
boost::optional<Point3> point() const {
return point_;
TriangulationResult point() const {
return result_;
}
/** COMPUTE the landmark */
boost::optional<Point3> point(const Values& values) const {
triangulateSafe(values);
return point_;
TriangulationResult point(const Values& values) const {
Cameras cameras = this->cameras(values);
return triangulateSafe(cameras);
}
/// Is result valid?
inline bool isValid() const {
return result_;
}
/** return the degenerate state */
inline bool isDegenerate() const {
return (cheiralityException_ || degenerate_);
return result_.degenerate();
}
/** return the cheirality status flag */
inline bool isPointBehindCamera() const {
return cheiralityException_;
return result_.behindCamera();
}
/** return cheirality verbosity */

View File

@ -255,6 +255,18 @@ TEST(regularImplicitSchurFactor, hessianDiagonal)
EXPECT(assert_equal(F0t*(I2-E0*P*E0.transpose())*F0,actualBD[0]));
EXPECT(assert_equal(F1.transpose()*F1-FtE1*P*FtE1.transpose(),actualBD[1]));
EXPECT(assert_equal(F3.transpose()*F3-FtE3*P*FtE3.transpose(),actualBD[3]));
// augmentedInformation (test just checks diagonals)
Matrix actualInfo = factor.augmentedInformation();
EXPECT(assert_equal(actualBD[0],actualInfo.block<6,6>(0,0)));
EXPECT(assert_equal(actualBD[1],actualInfo.block<6,6>(6,6)));
EXPECT(assert_equal(actualBD[3],actualInfo.block<6,6>(12,12)));
// information (test just checks diagonals)
Matrix actualInfo2 = factor.information();
EXPECT(assert_equal(actualBD[0],actualInfo2.block<6,6>(0,0)));
EXPECT(assert_equal(actualBD[1],actualInfo2.block<6,6>(6,6)));
EXPECT(assert_equal(actualBD[3],actualInfo2.block<6,6>(12,12)));
}
/* ************************************************************************* */

View File

@ -15,6 +15,7 @@
* @author Chris Beall
* @author Luca Carlone
* @author Zsolt Kira
* @author Frank Dellaert
* @date Sept 2013
*/
@ -133,9 +134,8 @@ TEST( SmartProjectionCameraFactor, noisy ) {
using namespace vanilla;
// 1. Project two landmarks into two cameras and triangulate
Point2 pixelError(0.2, 0.2);
Point2 level_uv = level_camera.project(landmark1) + pixelError;
// Project one landmark into two cameras and add noise on first
Point2 level_uv = level_camera.project(landmark1) + Point2(0.2, 0.2);
Point2 level_uv_right = level_camera_right.project(landmark1);
Values values;
@ -147,7 +147,24 @@ TEST( SmartProjectionCameraFactor, noisy ) {
factor1->add(level_uv, c1, unit2);
factor1->add(level_uv_right, c2, unit2);
// Point is now uninitialized before a triangulation event
EXPECT(!factor1->point());
double expectedError = 58640;
double actualError1 = factor1->error(values);
EXPECT_DOUBLES_EQUAL(expectedError, actualError1, 1);
// Check triangulated point
CHECK(factor1->point());
EXPECT(assert_equal(Point3(13.7587, 1.43851, -1.14274),*factor1->point(), 1e-4));
// Check whitened errors
Vector expected(4);
expected << -7, 235, 58, -242;
SmartFactor::Cameras cameras1 = factor1->cameras(values);
Point3 point1 = *factor1->point();
Vector actual = factor1->whitenedErrors(cameras1, point1);
EXPECT(assert_equal(expected, actual, 1));
SmartFactor::shared_ptr factor2(new SmartFactor());
vector<Point2> measurements;
@ -165,8 +182,7 @@ TEST( SmartProjectionCameraFactor, noisy ) {
factor2->add(measurements, views, noises);
double actualError2 = factor2->error(values);
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1);
}
/* *************************************************************************/
@ -174,57 +190,81 @@ TEST( SmartProjectionCameraFactor, perturbPoseAndOptimize ) {
using namespace vanilla;
// Project three landmarks into three cameras
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// 1. Project three landmarks into three cameras and triangulate
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create and fill smartfactors
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
vector<Key> views;
views.push_back(c1);
views.push_back(c2);
views.push_back(c3);
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
smartFactor1->add(measurements_cam1, views, unit2);
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
smartFactor2->add(measurements_cam2, views, unit2);
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
smartFactor3->add(measurements_cam3, views, unit2);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6 + 5, 1e-5);
// Create factor graph and add priors on two cameras
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6 + 5, 1e-5);
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
Values values;
values.insert(c1, cam1);
values.insert(c2, cam2);
values.insert(c3, perturbCameraPose(cam3));
// Create initial estimate
Values initial;
initial.insert(c1, cam1);
initial.insert(c2, cam2);
initial.insert(c3, perturbCameraPose(cam3));
if (isDebugTest)
values.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
initial.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
// Points are now uninitialized before a triangulation event
EXPECT(!smartFactor1->point());
EXPECT(!smartFactor2->point());
EXPECT(!smartFactor3->point());
EXPECT_DOUBLES_EQUAL(75711, smartFactor1->error(initial), 1);
EXPECT_DOUBLES_EQUAL(58524, smartFactor2->error(initial), 1);
EXPECT_DOUBLES_EQUAL(77564, smartFactor3->error(initial), 1);
// Error should trigger this and initialize the points, abort if not so
CHECK(smartFactor1->point());
CHECK(smartFactor2->point());
CHECK(smartFactor3->point());
EXPECT(assert_equal(Point3(2.57696, -0.182566, 1.04085),*smartFactor1->point(), 1e-4));
EXPECT(assert_equal(Point3(2.80114, -0.702153, 1.06594),*smartFactor2->point(), 1e-4));
EXPECT(assert_equal(Point3(1.82593, -0.289569, 2.13438),*smartFactor3->point(), 1e-4));
// Check whitened errors
Vector expected(6);
expected << 256, 29, -26, 29, -206, -202;
SmartFactor::Cameras cameras1 = smartFactor1->cameras(initial);
Point3 point1 = *smartFactor1->point();
Vector actual = smartFactor1->whitenedErrors(cameras1, point1);
EXPECT(assert_equal(expected, actual, 1));
// Optimize
LevenbergMarquardtParams params;
if (isDebugTest)
if (isDebugTest) {
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
if (isDebugTest)
params.verbosity = NonlinearOptimizerParams::ERROR;
}
LevenbergMarquardtOptimizer optimizer(graph, initial, params);
Values result = optimizer.optimize();
Values result;
gttic_(SmartProjectionCameraFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionCameraFactor);
tictoc_finishedIteration_();
EXPECT(assert_equal(landmark1,*smartFactor1->point(), 1e-7));
EXPECT(assert_equal(landmark2,*smartFactor2->point(), 1e-7));
EXPECT(assert_equal(landmark3,*smartFactor3->point(), 1e-7));
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(initial);
// VectorValues delta = GFG->optimize();
if (isDebugTest)
@ -243,8 +283,8 @@ TEST( SmartProjectionCameraFactor, perturbPoseAndOptimizeFromSfM_tracks ) {
using namespace vanilla;
// Project three landmarks into three cameras
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// 1. Project three landmarks into three cameras and triangulate
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
@ -300,11 +340,8 @@ TEST( SmartProjectionCameraFactor, perturbPoseAndOptimizeFromSfM_tracks ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_(SmartProjectionCameraFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionCameraFactor);
tictoc_finishedIteration_();
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
// VectorValues delta = GFG->optimize();
@ -383,11 +420,8 @@ TEST( SmartProjectionCameraFactor, perturbCamerasAndOptimize ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_(SmartProjectionCameraFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionCameraFactor);
tictoc_finishedIteration_();
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
// VectorValues delta = GFG->optimize();
@ -465,11 +499,8 @@ TEST( SmartProjectionCameraFactor, Cal3Bundler ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_(SmartProjectionCameraFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionCameraFactor);
tictoc_finishedIteration_();
if (isDebugTest)
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");
@ -544,11 +575,8 @@ TEST( SmartProjectionCameraFactor, Cal3Bundler2 ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_(SmartProjectionCameraFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionCameraFactor);
tictoc_finishedIteration_();
if (isDebugTest)
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");

View File

@ -15,6 +15,7 @@
* @author Chris Beall
* @author Luca Carlone
* @author Zsolt Kira
* @author Frank Dellaert
* @date Sept 2013
*/
@ -38,7 +39,7 @@ static const bool manageDegeneracy = true;
// Create a noise model for the pixel error
static const double sigma = 0.1;
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(2, sigma));
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
// Convenience for named keys
using symbol_shorthand::X;
@ -289,7 +290,7 @@ TEST( SmartProjectionPoseFactor, Factors ) {
cameras.push_back(cam2);
// Make sure triangulation works
LONGS_EQUAL(2, smartFactor1->triangulateSafe(cameras));
CHECK(smartFactor1->triangulateSafe(cameras));
CHECK(!smartFactor1->isDegenerate());
CHECK(!smartFactor1->isPointBehindCamera());
boost::optional<Point3> p = smartFactor1->point();
@ -298,8 +299,11 @@ TEST( SmartProjectionPoseFactor, Factors ) {
// After eliminating the point, A1 and A2 contain 2-rank information on cameras:
Matrix16 A1, A2;
A1 << -1000, 0, 0, 0, 100, 0;
A2 << 1000, 0, 100, 0, -100, 0;
A1 << -10, 0, 0, 0, 1, 0;
A2 << 10, 0, 1, 0, -1, 0;
A1 *= 10. / sigma;
A2 *= 10. / sigma;
Matrix expectedInformation; // filled below
{
// createHessianFactor
Matrix66 G11 = 0.5 * A1.transpose() * A1;
@ -314,10 +318,11 @@ TEST( SmartProjectionPoseFactor, Factors ) {
double f = 0;
RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
expectedInformation = expected.information();
boost::shared_ptr<RegularHessianFactor<6> > actual =
smartFactor1->createHessianFactor(cameras, 0.0);
EXPECT(assert_equal(expected.information(), actual->information(), 1e-8));
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-8));
EXPECT(assert_equal(expected, *actual, 1e-8));
}
@ -336,36 +341,45 @@ TEST( SmartProjectionPoseFactor, Factors ) {
F2(1, 0) = 100;
F2(1, 2) = 10;
F2(1, 4) = -10;
Matrix43 E;
Matrix E(4, 3);
E.setZero();
E(0, 0) = 100;
E(1, 1) = 100;
E(2, 0) = 100;
E(2, 2) = 10;
E(3, 1) = 100;
const vector<pair<Key, Matrix26> > Fblocks = list_of<pair<Key, Matrix> > //
E(0, 0) = 10;
E(1, 1) = 10;
E(2, 0) = 10;
E(2, 2) = 1;
E(3, 1) = 10;
vector<pair<Key, Matrix26> > Fblocks = list_of<pair<Key, Matrix> > //
(make_pair(x1, F1))(make_pair(x2, F2));
Matrix3 P = (E.transpose() * E).inverse();
Vector4 b;
Vector b(4);
b.setZero();
// createJacobianQFactor
SharedIsotropic n = noiseModel::Isotropic::Sigma(4, sigma);
Matrix3 P = (E.transpose() * E).inverse();
JacobianFactorQ<6, 2> expectedQ(Fblocks, E, P, b, n);
EXPECT(assert_equal(expectedInformation, expectedQ.information(), 1e-8));
boost::shared_ptr<JacobianFactorQ<6, 2> > actualQ =
smartFactor1->createJacobianQFactor(cameras, 0.0);
CHECK(actualQ);
EXPECT(assert_equal(expectedInformation, actualQ->information(), 1e-8));
EXPECT(assert_equal(expectedQ, *actualQ));
// Whiten for RegularImplicitSchurFactor (does not have noise model)
model->WhitenSystem(E, b);
Matrix3 whiteP = (E.transpose() * E).inverse();
BOOST_FOREACH(SmartFactor::KeyMatrix2D& Fblock,Fblocks)
Fblock.second = model->Whiten(Fblock.second);
// createRegularImplicitSchurFactor
RegularImplicitSchurFactor<6> expected(Fblocks, E, P, b);
RegularImplicitSchurFactor<6> expected(Fblocks, E, whiteP, b);
boost::shared_ptr<RegularImplicitSchurFactor<6> > actual =
smartFactor1->createRegularImplicitSchurFactor(cameras, 0.0);
CHECK(actual);
EXPECT(assert_equal(expectedInformation, expected.information(), 1e-8));
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-8));
EXPECT(assert_equal(expected, *actual));
// createJacobianQFactor
SharedIsotropic n = noiseModel::Isotropic::Sigma(4, sigma);
JacobianFactorQ<6, 2> expectedQ(Fblocks, E, P, b, n);
boost::shared_ptr<JacobianFactorQ<6, 2> > actualQ =
smartFactor1->createJacobianQFactor(cameras, 0.0);
CHECK(actual);
EXPECT(assert_equal(expectedQ.information(), actualQ->information(), 1e-8));
EXPECT(assert_equal(expectedQ, *actualQ));
}
{
@ -374,11 +388,12 @@ TEST( SmartProjectionPoseFactor, Factors ) {
b.setZero();
double s = sin(M_PI_4);
JacobianFactor expected(x1, s * A1, x2, s * A2, b);
EXPECT(assert_equal(expectedInformation, expected.information(), 1e-8));
boost::shared_ptr<JacobianFactor> actual =
smartFactor1->createJacobianSVDFactor(cameras, 0.0);
CHECK(actual);
EXPECT(assert_equal(expected.information(), actual->information(), 1e-8));
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-8));
EXPECT(assert_equal(expected, *actual));
}
}
@ -976,7 +991,7 @@ TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor )
values.insert(x1, cam2);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose,sharedK));
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
if (isDebugTest)
values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
@ -1070,9 +1085,9 @@ TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
rotValues.insert(x1, Camera(poseDrift.compose(level_pose),sharedK));
rotValues.insert(x2, Camera(poseDrift.compose(pose_right),sharedK));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above),sharedK));
rotValues.insert(x1, Camera(poseDrift.compose(level_pose), sharedK));
rotValues.insert(x2, Camera(poseDrift.compose(pose_right), sharedK));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above), sharedK));
boost::shared_ptr<GaussianFactor> hessianFactorRot =
smartFactorInstance->linearize(rotValues);
@ -1086,9 +1101,9 @@ TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
Point3(10, -4, 5));
Values tranValues;
tranValues.insert(x1, Camera(poseDrift2.compose(level_pose),sharedK));
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right),sharedK));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above),sharedK));
tranValues.insert(x1, Camera(poseDrift2.compose(level_pose), sharedK));
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right), sharedK));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above), sharedK));
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
smartFactorInstance->linearize(tranValues);
@ -1130,9 +1145,9 @@ TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
rotValues.insert(x1, Camera(poseDrift.compose(level_pose),sharedK2));
rotValues.insert(x2, Camera(poseDrift.compose(pose_right),sharedK2));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above),sharedK2));
rotValues.insert(x1, Camera(poseDrift.compose(level_pose), sharedK2));
rotValues.insert(x2, Camera(poseDrift.compose(pose_right), sharedK2));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above), sharedK2));
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
rotValues);
@ -1148,9 +1163,9 @@ TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
Point3(10, -4, 5));
Values tranValues;
tranValues.insert(x1, Camera(poseDrift2.compose(level_pose),sharedK2));
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right),sharedK2));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above),sharedK2));
tranValues.insert(x1, Camera(poseDrift2.compose(level_pose), sharedK2));
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right), sharedK2));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above), sharedK2));
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
smartFactor->linearize(tranValues);
@ -1230,7 +1245,7 @@ TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
values.insert(x1, cam2);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose,sharedBundlerK));
values.insert(x3, Camera(pose_above * noise_pose, sharedBundlerK));
if (isDebugTest)
values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
@ -1336,7 +1351,7 @@ TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
values.insert(x1, cam2);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose,sharedBundlerK));
values.insert(x3, Camera(pose_above * noise_pose, sharedBundlerK));
if (isDebugTest)
values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");