Added a nonlinear factor to approximate a linear factor from MastSLAM

release/4.3a0
Alex Cunningham 2010-08-10 16:59:22 +00:00
parent 16d283d1e1
commit 5991d1edfd
4 changed files with 159 additions and 1 deletions

112
slam/LinearApproxFactor.h Normal file
View File

@ -0,0 +1,112 @@
/*
* @file LinearApproxFactor.h
* @brief A dummy factor that allows a linear factor to act as a nonlinear factor
* @author Alex Cunningham
*/
#pragma once
#include <vector>
#include <iostream>
#include <boost/foreach.hpp>
#include "NonlinearFactor.h"
#include "VectorConfig.h"
#include "Matrix.h"
namespace gtsam {
/**
* A dummy factor that takes a linearized factor and inserts it into
* a nonlinear graph. This version uses exactly one type of variable.
*/
template <class Config, class Key, class X>
class LinearApproxFactor : public NonlinearFactor<Config> {
public:
/** base type */
typedef NonlinearFactor<Config> Base;
/** shared pointer for convenience */
typedef boost::shared_ptr<LinearApproxFactor<Config,Key,X> > shared_ptr;
/** typedefs for key vectors */
typedef std::vector<Key> KeyVector;
protected:
/** hold onto the factor itself */
GaussianFactor::shared_ptr lin_factor_;
/** linearization points for error calculation */
Config lin_points_;
/** keep keys for the factor */
KeyVector nonlinearKeys_;
/**
* use this for derived classes with keys that don't copy easily
*/
LinearApproxFactor(size_t dim, const Config& lin_points)
: Base(noiseModel::Unit::Create(dim)), lin_points_(lin_points) {}
public:
/** use this constructor when starting with nonlinear keys */
LinearApproxFactor(GaussianFactor::shared_ptr lin_factor, const Config& lin_points)
: Base(noiseModel::Unit::Create(lin_factor->get_model()->dim())),
lin_factor_(lin_factor), lin_points_(lin_points)
{
// create the keys and store them
BOOST_FOREACH(Symbol key, lin_factor->keys()) {
nonlinearKeys_.push_back(Key(key.index()));
this->keys_.push_back(key);
}
}
virtual ~LinearApproxFactor() {}
/** Vector of errors, unwhitened ! */
virtual Vector unwhitenedError(const Config& c) const {
// extract the points in the new config
VectorConfig delta;
BOOST_FOREACH(const Key& key, nonlinearKeys_) {
X newPt = c[key], linPt = lin_points_[key];
Vector d = logmap(linPt, newPt);
delta.insert(key, d);
}
return lin_factor_->unweighted_error(delta);
}
/**
* linearize to a GaussianFactor
* Just returns a copy of the existing factor
* NOTE: copies to avoid actual factor getting destroyed
* during elimination
*/
virtual boost::shared_ptr<GaussianFactor>
linearize(const Config& c) const {
Vector b = lin_factor_->get_b();
SharedDiagonal model = lin_factor_->get_model();
std::vector<std::pair<Symbol, Matrix> > terms;
BOOST_FOREACH(Symbol key, lin_factor_->keys()) {
terms.push_back(std::make_pair(key, lin_factor_->get_A(key)));
}
return boost::shared_ptr<GaussianFactor>(
new GaussianFactor(terms, b, model));
}
/** get access to nonlinear keys */
KeyVector nonlinearKeys() const { return nonlinearKeys_; }
/** override print function */
virtual void print(const std::string& s="") const {
Base::print(s);
lin_factor_->print();
}
/** access to b vector of gaussian */
Vector get_b() const { return lin_factor_->get_b(); }
};
} // \namespace gtsam

View File

@ -30,6 +30,9 @@ headers += BetweenFactor.h PriorFactor.h
# General constraints
headers += BetweenConstraint.h BoundingConstraint.h TransformConstraint.h
# Utility factors
headers += LinearApproxFactor.h
# 2D Pose SLAM
sources += pose2SLAM.cpp Pose2SLAMOptimizer.cpp dataset.cpp
check_PROGRAMS += tests/testPose2Factor tests/testPose2Config tests/testPose2SLAM tests/testPose2Prior

View File

@ -11,7 +11,7 @@ check_PROGRAMS += testNonlinearEquality testNonlinearFactor testNonlinearFactorG
check_PROGRAMS += testNonlinearOptimizer testSubgraphPreconditioner
check_PROGRAMS += testSymbolicBayesNet testSymbolicFactorGraph testTupleConfig
check_PROGRAMS += testNonlinearEqualityConstraint testBoundingConstraint
check_PROGRAMS += testTransformConstraint
check_PROGRAMS += testTransformConstraint testLinearApproxFactor
if USE_LDL
check_PROGRAMS += testConstraintOptimizer

View File

@ -0,0 +1,43 @@
/*
* @file testLinearApproxFactor.cpp
* @brief tests for dummy factor that contains a linear factor
* @author Alex Cunningham
*/
#include <iostream>
#include <CppUnitLite/TestHarness.h>
#include <TestableAssertions.h> // allow assert_equal() for vectors
#include <GaussianFactor.h>
#include <planarSLAM.h>
#include <LinearApproxFactor.h>
using namespace std;
using namespace gtsam;
typedef LinearApproxFactor<planarSLAM::Config,planarSLAM::PointKey,Point2> ApproxFactor;
/* ************************************************************************* */
TEST ( LinearApproxFactor, basic ) {
Symbol key1('x', 1);
Matrix A1 = eye(2);
Vector b = repeat(2, 1.2);
SharedDiagonal model = noiseModel::Unit::Create(2);
GaussianFactor::shared_ptr lin_factor(new GaussianFactor(key1, A1, b, model));
planarSLAM::Config lin_points;
ApproxFactor f1(lin_factor, lin_points);
EXPECT(f1.size() == 1);
ApproxFactor::KeyVector expKeyVec;
expKeyVec.push_back(planarSLAM::PointKey(key1.index()));
EXPECT(assert_equal(expKeyVec, f1.nonlinearKeys()));
planarSLAM::Config config; // doesn't really need to have any data
GaussianFactor::shared_ptr actual = f1.linearize(config);
// Check the linearization
CHECK(assert_equal(*lin_factor, *actual));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */