function to run smoother update

release/4.3a0
Varun Agrawal 2025-01-24 12:30:10 -05:00
parent 3e828f0a46
commit 59539ffe6c
1 changed files with 24 additions and 29 deletions

View File

@ -75,6 +75,17 @@ void write_results(const Values& results, size_t num_poses,
std::cout << "output written to " << filename << std::endl;
}
void SmootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph,
const Values& initial, size_t maxNrHypotheses,
Values* results) {
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
// std::cout << "index: " << index << std::endl;
smoother.update(linearized, maxNrHypotheses);
graph.resize(0);
HybridValues delta = smoother.hybridBayesNet().optimize();
results->insert_or_assign(initial.retract(delta.continuous()));
}
/* ************************************************************************* */
int main(int argc, char* argv[]) {
ifstream in(findExampleDataFile("T1_city10000_04.txt"));
@ -107,12 +118,7 @@ int main(int argc, char* argv[]) {
graph.push_back(PriorFactor<Pose2>(X(0), prior_pose, prior_noise_model));
HybridGaussianFactorGraph linearized = *graph.linearize(init_values);
smoother.update(linearized, maxNrHypotheses);
graph.resize(0);
HybridValues delta = smoother.hybridBayesNet().optimize();
results.insert_or_assign(init_values.retract(delta.continuous()));
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
size_t key_s, key_t;
@ -137,12 +143,15 @@ int main(int argc, char* argv[]) {
// Take the first one as the initial estimate
Pose2 odom_pose = pose_array[0];
if (key_s == key_t - 1) { // new X(key)
init_values.insert(X(key_t), results.at<Pose2>(X(key_s)) * odom_pose);
init_values.insert(X(key_t), init_values.at<Pose2>(X(key_s)) * odom_pose);
} else { // loop
// index++;
}
// Flag if we should run smoother update
bool smoother_update = false;
if (num_measurements == 2) {
// Add hybrid factor which considers both measurements
DiscreteKey m(M(discrete_count), num_measurements);
@ -159,23 +168,22 @@ int main(int argc, char* argv[]) {
HybridNonlinearFactor mixtureFactor(m, {f0, f1});
graph.push_back(mixtureFactor);
smoother_update = true;
} else {
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
pose_noise_model));
}
HybridGaussianFactorGraph linearized = *graph.linearize(init_values);
// std::cout << "index: " << index << std::endl;
smoother.update(linearized, maxNrHypotheses);
graph.resize(0);
delta = smoother.hybridBayesNet().optimize();
results.insert_or_assign(init_values.retract(delta.continuous()));
if (smoother_update) {
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
}
// Print loop index and time taken in processor clock ticks
if (index % 50 == 0 && key_s != key_t - 1) {
std::cout << "index: " << index << std::endl;
std::cout << "acc_time: " << time_list.back() << std::endl;
delta.discrete().print("The Discrete Assignment");
// delta.discrete().print("The Discrete Assignment");
tictoc_finishedIteration_();
tictoc_print_();
}
@ -185,24 +193,11 @@ int main(int argc, char* argv[]) {
time_list.push_back(cur_time - start_time);
}
if (time_list.size() % 100 == 0 && (key_s == key_t - 1)) {
string step_file_idx = std::to_string(100000 + time_list.size());
ofstream step_outfile;
string step_file_name =
"step_files/HybridISAM_city10000_S" + step_file_idx;
step_outfile.open(step_file_name + ".txt");
for (size_t i = 0; i < (key_t + 1); ++i) {
Pose2 out_pose = results.at<Pose2>(X(i));
step_outfile << out_pose.x() << " " << out_pose.y() << " "
<< out_pose.theta() << endl;
}
step_outfile.close();
}
index += 1;
}
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
clock_t end_time = clock();
clock_t total_time = end_time - start_time;
cout << "total_time: " << total_time / CLOCKS_PER_SEC << " seconds" << endl;