Derivative of Rot3.rotate now verified with fancy math :-)

release/4.3a0
Frank Dellaert 2010-02-28 22:27:55 +00:00
parent 03e8641a61
commit 58f50ee10b
1 changed files with 290 additions and 174 deletions

View File

@ -58,6 +58,10 @@ Frank Dellaert
Review of Lie Groups
\end_layout
\begin_layout Subsection
A Manifold and a Group
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\xhat}{\hat{x}}
@ -137,7 +141,91 @@ that maps elements in G to an element in
\end_inset
.
For
\end_layout
\begin_layout Subsection
Lie Algebra
\end_layout
\begin_layout Standard
The Lie Algebra
\begin_inset Formula $\gg$
\end_inset
is called an algebra because it is endowed with a binary operation, the
Lie bracket
\begin_inset Formula $[X,Y]$
\end_inset
, the properties of which are closely related to the group operation of
\begin_inset Formula $G$
\end_inset
.
For example, in matrix Lie groups, the Lie bracket is given by
\begin_inset Formula $[A,B]\define AB-BA$
\end_inset
.
The Lie bracket does not mimick the group operation, as in non-commutative
Lie groups we do not have the usual simplification
\begin_inset Formula \[
e^{Z}=e^{X}e^{Y}\neq e^{X+Y}\]
\end_inset
where
\begin_inset Formula $X$
\end_inset
,
\begin_inset Formula $Y$
\end_inset
, and
\begin_inset Formula $Z$
\end_inset
elements of the Lie algebra
\begin_inset Formula $\gg$
\end_inset
.
Instead,
\begin_inset Formula $Z$
\end_inset
can be calculated using the Baker-Campbell-Hausdorff (BCH) formula:
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
http://en.wikipedia.org/wiki/BakerCampbellHausdorff_formula
\end_layout
\end_inset
\begin_inset Formula \[
Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots\]
\end_inset
For commutative groups the bracket is zero and we recover
\begin_inset Formula $Z=X+Y$
\end_inset
.
For non-commutative groups we can use the BCH formula to approximate it.
\end_layout
\begin_layout Subsection
Exponential Coordinates
\end_layout
\begin_layout Standard
For
\begin_inset Formula $n$
\end_inset
@ -149,7 +237,7 @@ that maps elements in G to an element in
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
, and we can define the map
, and we can define the mapping
\begin_inset Formula \[
\hat{}:\mathbb{R}^{n}\rightarrow\gg\]
@ -190,7 +278,34 @@ which maps
\begin_inset Formula $n\times n$
\end_inset
matrices.
matrices, and the map is given by
\begin_inset Formula \begin{equation}
\xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}\end{equation}
\end_inset
where the
\begin_inset Formula $G^{i}$
\end_inset
are
\begin_inset Formula $n\times n$
\end_inset
matrices known as the Lie group generators.
The meaning of the map
\begin_inset Formula $x\rightarrow\xhat$
\end_inset
will depend on the group
\begin_inset Formula $G$
\end_inset
and will be very intuitive.
\end_layout
\begin_layout Subsection
The Adjoint Map
\end_layout
\begin_layout Standard
@ -385,10 +500,6 @@ e^{\yhat} & =ge^{-\xhat}g^{-1}=e^{\Ad g\left(-\xhat\right)}\nonumber \\
\end_inset
\end_layout
\begin_layout Standard
In other words, and this is very intuitive in hindsight, the inverse is
just negation of
\begin_inset Formula $\xhat$
@ -512,6 +623,13 @@ Hence, now we undo
\begin_layout Section
Derivatives of Actions
\begin_inset CommandInset label
LatexCommand label
name "sec:Derivatives-of-Actions"
\end_inset
\end_layout
\begin_layout Standard
@ -536,70 +654,129 @@ Derivatives of Actions
\end_layout
\begin_layout Standard
When a Lie group
The (usual) action of an
\begin_inset Formula $n$
\end_inset
-dimensional matrix group
\begin_inset Formula $G$
\end_inset
acts on a vector space
\begin_inset Formula $V$
is matrix-vector multiplication on
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
, we are interested in the derivatives of
,
\begin_inset Formula \[
f_{1}\left(g\right)=gv\mbox{ and }f_{2}(v)=gv\]
q=Tp\]
\end_inset
with
\begin_inset Formula $f_{1}:G\rightarrow V$
\begin_inset Formula $p,q\in\mathbb{R}^{n}$
\end_inset
and
\begin_inset Formula $f_{2}:V\rightarrow V$
\begin_inset Formula $T\in GL(n)$
\end_inset
.
The brilliance of Lie group theory is that we only need to know how the
generators of the group act around the group's identity element
\begin_inset Formula $g=id$
Let us first do away with the derivative in
\begin_inset Formula $p$
\end_inset
, and then we can use the Adjoint map to effectuate that action in the correct
frame of reference.
Specifically, if
, which is easy:
\begin_inset Formula \[
H_{v}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \ldots & \frac{\partial f_{1}}{\partial x_{n}}\end{array}\right]\rvert_{g=id}\]
\deriv{\left(Tp\right)}p=T\]
\end_inset
is the
\begin_inset Formula $m\times n$
We would now like to know what an incremental action
\begin_inset Formula $\xhat$
\end_inset
Jacobian of the group action on
\begin_inset Formula $\mbox{v\in}V$
\end_inset
with respect to an incremental change
\begin_inset Formula $x$
\end_inset
, we have
would do, through the exponential map
\begin_inset Formula \[
\Jac{f_{1}}xg=H_{v}\Ad g\]
q(x)=Te^{\xhat}p\]
\end_inset
The meaning of
\begin_inset Formula $H$
with derivative
\begin_inset Formula \[
\deriv{q(x)}x=T\deriv{}x\left(e^{\xhat}p\right)\]
\end_inset
will depend on the group
\begin_inset Formula $G$
Since the matrix exponential is given by the series
\begin_inset Formula \[
e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots\]
\end_inset
and will be very intuitive!
we have, to first order
\begin_inset Formula \[
e^{\xhat}p=p+\xhat p+\ldots\]
\end_inset
and the derivative of an incremental action x at the origin is
\begin_inset Formula \[
H_{p}\define\deriv{e^{\xhat}p}x=\deriv{\left(\xhat p\right)}x\]
\end_inset
Recalling the definition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:generators"
\end_inset
of the map
\begin_inset Formula $x\rightarrow\xhat$
\end_inset
, we can calculate
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\xhat p$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
as (using tensor notation)
\begin_inset Formula \[
\left(\xhat p\right)_{jk}=G_{jk}^{i}x_{i}p^{k}\]
\end_inset
and hence the derivative is
\begin_inset Formula \[
\left(H_{p}\right)_{j}^{i}=G_{jk}^{i}p^{k}\]
\end_inset
and the final derivative becomes
\begin_inset Formula \[
\deriv{q(x)}x=TH_{p}\]
\end_inset
\end_layout
\begin_layout Section
@ -707,10 +884,62 @@ which maps 3-vectors
\Skew{\omega}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y}\\
\omega_{z} & 0 & -\omega_{x}\\
-\omega_{y} & \omega_{x} & 0\end{array}\right]\]
-\omega_{y} & \omega_{x} & 0\end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}\]
\end_inset
where the
\begin_inset Formula $G^{i}$
\end_inset
are the generators for
\begin_inset Formula $\SOthree$
\end_inset
,
\begin_inset Formula \[
G^{x}=\left(\begin{array}{ccc}
0 & 0 & 0\\
0 & 0 & -1\\
0 & 1 & 0\end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc}
0 & 0 & 1\\
0 & 0 & 0\\
-1 & 0 & 0\end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc}
0 & -1 & 0\\
1 & 0 & 0\\
0 & 0 & 0\end{array}\right)\]
\end_inset
corresponding to a rotation around
\begin_inset Formula $X$
\end_inset
,
\begin_inset Formula $Y$
\end_inset
, and
\begin_inset Formula $Z$
\end_inset
, respectively.
The Lie bracket
\begin_inset Formula $[x,y]$
\end_inset
corresponds to the cross product
\begin_inset Formula $x\times y$
\end_inset
in
\begin_inset Formula $\Rthree$
\end_inset
.
\end_layout
\begin_layout Standard
For every
\begin_inset Formula $3-$
\end_inset
@ -941,9 +1170,7 @@ Derivatives of Actions
\end_layout
\begin_layout Standard
The beauty of Lie group theory comes in play when we talk about the derivative
of a group action.
In the case of
In the case of
\begin_inset Formula $\SOthree$
\end_inset
@ -962,153 +1189,42 @@ We would now like to know what an incremental rotation parameterized by
\begin_inset Formula $\omega$
\end_inset
would do
would do:
\begin_inset Formula \[
\deriv q{\omega}=\deriv{}{\omega}\left(Rp\right)=\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)\]
q(\omega)=Re^{\Skew{\omega}}p\]
\end_inset
Since
hence the derivative (following the exposition in Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Derivatives-of-Actions"
\end_inset
):
\begin_inset Formula \[
e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots\]
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=RH_{p}\]
\end_inset
and derivative is linear and we are only interested in first order we have
\begin_inset Formula \[
\deriv{e^{\Skew{\omega}}}{\omega}=\deriv{\Skew{\omega}}{\omega}=\omega_{x}G_{1}+\omega_{y}G_{2}+\omega_{z}G_{3}\]
\end_inset
Specifically, the generators for
\begin_inset Formula $\SOthree$
\end_inset
are
\begin_inset Formula \[
G_{1}=\left(\begin{array}{ccc}
0 & 0 & 0\\
0 & 0 & -1\\
0 & 1 & 0\end{array}\right)\mbox{}G_{2}=\left(\begin{array}{ccc}
0 & 0 & 1\\
0 & 0 & 0\\
-1 & 0 & 0\end{array}\right)\mbox{ }G_{1}=\left(\begin{array}{ccc}
0 & -1 & 0\\
1 & 0 & 0\\
0 & 0 & 0\end{array}\right)\]
\end_inset
corresponding to a rotation around
\begin_inset Formula $X$
\end_inset
,
\begin_inset Formula $Y$
\end_inset
, and
\begin_inset Formula $Z$
\end_inset
, respectively.
When given an incremental angular velocity
\begin_inset Formula $\omega$
\end_inset
, we obtain the effect of the group action around the identity:
\begin_inset Formula \[
H\omega=\omega_{x}G_{1}+\omega_{y}G_{2}+\omega_{z}G_{3}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y}\\
\omega_{z} & 0 & -\omega_{x}\\
-\omega_{y} & \omega_{x} & 0\end{array}\right]=\Skew{\omega}\]
\end_inset
Hence, at the origin, the effect of an incremental action
\begin_inset Formula $\omega$
\end_inset
on a point
\begin_inset Formula $p$
\end_inset
is a velocity
\begin_inset Formula \[
\Skew{\omega}p=\omega\times p\]
\end_inset
We can write this as a
\begin_inset Formula $3\times3$
\end_inset
Jacobian
To calculate
\begin_inset Formula $H_{p}$
\end_inset
that is multipled with
\begin_inset Formula $\omega$
\end_inset
,
we make use of
\begin_inset Formula \[
\omega\times p=-p\times\omega=-\Skew p\omega=H_{p}\omega\]
\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega\]
\end_inset
Now, if we want to apply this in a frame
\begin_inset Formula $R$
\end_inset
, we need to do something quite similar to the Adjoint map: (a) transform
the point
\begin_inset Formula $p$
\end_inset
to the origin using
\begin_inset Formula $R$
\end_inset
, apply the action
\begin_inset Formula $\Skew{\omega}$
\end_inset
, and transform back with
\begin_inset Formula $R^{T}$
\end_inset
.
In short
Hence, the final derivative of an action in its first argument is
\begin_inset Formula \[
q=R^{T}e^{\Skew{\omega}}Rp=\exp\left(\Ad{R^{T}}\Skew{\omega}\right)p=\exp\left(\Skew{R^{T}\omega}\right)p\]
\deriv{q(\omega)}{\omega}=RH_{p}=R\Skew{-p}\]
\end_inset
and hence the velocity becomes
\begin_inset Formula \[
\Skew{R^{T}\omega}\times p=-\Skew pR^{T}\omega=-R^{T}R\Skew pR^{T}\omega=-R^{T}\Skew{Rp}\omega=R^{T}H_{Rp}\omega\]
\end_inset
This is quite intuitive in hindsight: we transform
\begin_inset Formula $p$
\end_inset
to
\begin_inset Formula $Rp$
\end_inset
, calculate the velocity by
\begin_inset Formula $H_{Rp}$
\end_inset
, and transform back by the rotation
\begin_inset Formula $R^{T}$
\end_inset
.
\end_layout
\begin_layout Section
@ -1117,25 +1233,25 @@ This is quite intuitive in hindsight: we transform
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
\renewcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
{\mathfrak{\mathbb{R}^{6}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\SEthree}{SE(3)}
\renewcommand{\SEthree}{SE(3)}
{SE(3)}
\end_inset
\begin_inset FormulaMacro
\newcommand{\sethree}{\mathfrak{se(3)}}
\renewcommand{\sethree}{\mathfrak{se(3)}}
{\mathfrak{se(3)}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\xihat}{\hat{\xi}}
\renewcommand{\xihat}{\hat{\xi}}
{\hat{\xi}}
\end_inset