need to clean up templates and remove 2 redundant lines

release/4.3a0
lcarlone 2021-03-29 22:58:29 -04:00
parent 2e1ed2c852
commit 5677bdb6c1
3 changed files with 16 additions and 46 deletions

View File

@ -449,10 +449,10 @@ public:
/** /**
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan) * This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
*/ */
template<int D, int ZD> // D: camera dim, ZD: measurement dim
void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const { boost::optional<Matrix&> E = boost::none) const override
{
// when using stereo cameras, some of the measurements might be missing: // when using stereo cameras, some of the measurements might be missing:
for(size_t i=0; i < cameras.size(); i++){ for(size_t i=0; i < cameras.size(); i++){
const StereoPoint2& z = measured_.at(i); const StereoPoint2& z = measured_.at(i);
@ -460,28 +460,18 @@ public:
{ {
if(Fs){ // delete influence of right point on jacobian Fs if(Fs){ // delete influence of right point on jacobian Fs
MatrixZD& Fi = Fs->at(i); MatrixZD& Fi = Fs->at(i);
for(size_t ii=0; ii<D; ii++) for(size_t ii=0; ii<Dim; ii++)
Fi(1,ii) = 0.0; Fi(1,ii) = 0.0;
} }
if(E) // delete influence of right point on jacobian E if(E) // delete influence of right point on jacobian E
E->row(ZD * i + 1) = Matrix::Zero(1, E->cols()); E->row(ZDim * i + 1) = Matrix::Zero(1, E->cols());
// set the corresponding entry of vector ue to zero // set the corresponding entry of vector ue to zero
ue(ZD * i + 1) = 0.0; ue(ZDim * i + 1) = 0.0;
} }
} }
} }
/**
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
* This is class implementation that directly uses the measurement and camera size without templates.
*/
void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const override {
correctForMissingMeasurements<Dim,ZDim>(cameras, ue, Fs, E);
}
/** return the landmark */ /** return the landmark */
TriangulationResult point() const { TriangulationResult point() const {
return result_; return result_;

View File

@ -152,7 +152,7 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
/// Compute F, E only (called below in both vanilla and SVD versions) /// Compute F, E only (called below in both vanilla and SVD versions)
/// Assumes the point has been computed /// Assumes the point has been computed
/// Note E can be 2m*3 or 2m*2, in case point is degenerate /// Note E can be 2m*3 or 2m*2, in case point is degenerate
void computeJacobiansWithTriangulatedPoint( void computeJacobiansAndCorrectForMissingMeasurements(
FBlocks& Fs, FBlocks& Fs,
Matrix& E, Vector& b, const Values& values) const { Matrix& E, Vector& b, const Values& values) const {
if (!result_) { if (!result_) {
@ -168,23 +168,20 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i)); Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
StereoCamera camera(w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt), K_all_[i]); StereoCamera camera(w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt), K_all_[i]);
StereoPoint2 reprojectionError = StereoPoint2(camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i)); StereoPoint2 reprojectionError = StereoPoint2(camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i));
// std::cout << "H0 \n" << dPoseCam_dPoseBody << std::endl;
// std::cout << "H1 \n" << dProject_dPoseCam << std::endl;
// std::cout << "H3 \n" << Ei << std::endl;
// std::cout << "H02 \n" << dPoseCam_dPoseExt << std::endl;
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12 Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
// std::cout << "H1 * H0 \n" << dProject_dPoseCam * dPoseCam_dPoseBody << std::endl;
// std::cout << "H1 * H02 \n" << dProject_dPoseCam * dPoseCam_dPoseExt << std::endl;
J.block<ZDim,6>(0,0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6) J.block<ZDim,6>(0,0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6)
J.block<ZDim,6>(0,6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6) J.block<ZDim,6>(0,6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6)
// std::cout << "J \n" << J << std::endl; if(std::isnan(measured_.at(i).uR())) // if the right pixel is invalid
{
J.block<1,12>(1,0) = Matrix::Zero(1,12);
Ei.block<1,3>(1,0) = Matrix::Zero(1,3);
reprojectionError = StereoPoint2(reprojectionError.uL(), 0.0, reprojectionError.v() );
}
Fs.push_back(J); Fs.push_back(J);
size_t row = 3*i; size_t row = 3*i;
b.segment<ZDim>(row) = - reprojectionError.vector(); b.segment<ZDim>(row) = - reprojectionError.vector();
E.block<3,3>(row,0) = Ei; E.block<3,3>(row,0) = Ei;
} }
// correct for monocular measurements, where the right pixel measurement is nan
//Base::CorrectForMissingMeasurements(measured_, cameras, b, Fs, E);
} }
} }
@ -204,11 +201,9 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->" throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
"measured_.size() inconsistent with input"); "measured_.size() inconsistent with input");
std::cout << "triangulate" << std::endl;
triangulateSafe(cameras(values)); triangulateSafe(cameras(values));
if (!result_) { if (!result_) {
std::cout << "degenerate" << std::endl;
// failed: return"empty" Hessian // failed: return"empty" Hessian
for(Matrix& m: Gs) for(Matrix& m: Gs)
m = Matrix::Zero(DimPose,DimPose); m = Matrix::Zero(DimPose,DimPose);
@ -218,12 +213,11 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
Gs, gs, 0.0); Gs, gs, 0.0);
} }
std::cout << "params_.degeneracyMode" << params_.degeneracyMode << std::endl;
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols(). // Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
FBlocks Fs; FBlocks Fs;
Matrix F, E; Matrix F, E;
Vector b; Vector b;
computeJacobiansWithTriangulatedPoint(Fs, E, b, values); computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
// Whiten using noise model // Whiten using noise model
noiseModel_->WhitenSystem(E, b); noiseModel_->WhitenSystem(E, b);
@ -266,16 +260,6 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
keyToSlotMap[keys_[k]] = k; keyToSlotMap[keys_[k]] = k;
} }
std::cout << "linearize" << std::endl;
// for(size_t i=0; i<nrUniqueKeys;i++){
// std::cout <<"key: " << DefaultKeyFormatter(keys_[i]);
// std::cout <<" key slot: " << keyToSlotMap[keys_[i]] << std::endl;
// }
// for(size_t i=0; i<nrNonuniqueKeys;i++){
// std::cout <<"key: " << DefaultKeyFormatter(nonuniqueKeys[i]);
// std::cout <<" key slot: " << keyToSlotMap[nonuniqueKeys[i]] << std::endl;
// }
// initialize matrix to zero // initialize matrix to zero
augmentedHessianUniqueKeys = SymmetricBlockMatrix(dims, Matrix::Zero(6*nrUniqueKeys+1,6*nrUniqueKeys+1)); augmentedHessianUniqueKeys = SymmetricBlockMatrix(dims, Matrix::Zero(6*nrUniqueKeys+1,6*nrUniqueKeys+1));
@ -309,13 +293,9 @@ class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
} }
} }
augmentedHessianUniqueKeys.updateDiagonalBlock(nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys)); augmentedHessianUniqueKeys.updateDiagonalBlock(nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
//std::cout << "Matrix \n " << Matrix(augmentedHessianUniqueKeys.selfadjointView()) <<std::endl;
//std::cout << "sq norm " << b.squaredNorm() << std::endl;
} }
return boost::make_shared<RegularHessianFactor<DimPose> >(keys_, augmentedHessianUniqueKeys); return boost::make_shared<RegularHessianFactor<DimPose> >(keys_, augmentedHessianUniqueKeys);
//std::cout << "Matrix(augmentedHessian.selfadjointView()) \n" << Matrix(augmentedHessian.selfadjointView()) <<std::endl;
} }
/** /**

View File

@ -862,7 +862,7 @@ TEST( SmartStereoProjectionFactorPP, 3poses_optimization_sameExtrinsicKey ) {
EXPECT(assert_equal(expected, delta, 1e-4)); EXPECT(assert_equal(expected, delta, 1e-4));
} }
/* ************************************************************************* /* *************************************************************************/
TEST( SmartStereoProjectionFactorPP, monocular_multipleExtrinsicKeys ){ TEST( SmartStereoProjectionFactorPP, monocular_multipleExtrinsicKeys ){
// make a realistic calibration matrix // make a realistic calibration matrix
double fov = 60; // degrees double fov = 60; // degrees
@ -979,7 +979,7 @@ TEST( SmartStereoProjectionFactorPP, monocular_multipleExtrinsicKeys ){
tictoc_finishedIteration_(); tictoc_finishedIteration_();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5); EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
EXPECT(assert_equal(sensor_to_body,result.at<Pose3>(body_P_cam_key))); EXPECT(assert_equal(sensor_to_body,result.at<Pose3>(body_P_cam_key), 1e-1));
} }
/* *************************************************************************/ /* *************************************************************************/