Formatting to default BORG format
parent
674794d387
commit
56456a2396
|
@ -29,242 +29,236 @@ using namespace std;
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
FastMap<Key, size_t> Ordering::invert() const
|
FastMap<Key, size_t> Ordering::invert() const {
|
||||||
{
|
FastMap<Key, size_t> inverted;
|
||||||
FastMap<Key, size_t> inverted;
|
for (size_t pos = 0; pos < this->size(); ++pos)
|
||||||
for(size_t pos = 0; pos < this->size(); ++pos)
|
inverted.insert(make_pair((*this)[pos], pos));
|
||||||
inverted.insert(make_pair((*this)[pos], pos));
|
return inverted;
|
||||||
return inverted;
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Ordering Ordering::colamd(const VariableIndex& variableIndex) {
|
||||||
|
// Call constrained version with all groups set to zero
|
||||||
|
vector<int> dummy_groups(variableIndex.size(), 0);
|
||||||
|
return Ordering::colamdConstrained(variableIndex, dummy_groups);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Ordering Ordering::colamdConstrained(const VariableIndex& variableIndex,
|
||||||
|
std::vector<int>& cmember) {
|
||||||
|
gttic(Ordering_COLAMDConstrained);
|
||||||
|
|
||||||
|
gttic(Prepare);
|
||||||
|
size_t nEntries = variableIndex.nEntries(), nFactors =
|
||||||
|
variableIndex.nFactors(), nVars = variableIndex.size();
|
||||||
|
// Convert to compressed column major format colamd wants it in (== MATLAB format!)
|
||||||
|
size_t Alen = ccolamd_recommended((int) nEntries, (int) nFactors,
|
||||||
|
(int) nVars); /* colamd arg 3: size of the array A */
|
||||||
|
vector<int> A = vector<int>(Alen); /* colamd arg 4: row indices of A, of size Alen */
|
||||||
|
vector<int> p = vector<int>(nVars + 1); /* colamd arg 5: column pointers of A, of size n_col+1 */
|
||||||
|
|
||||||
|
// Fill in input data for COLAMD
|
||||||
|
p[0] = 0;
|
||||||
|
int count = 0;
|
||||||
|
vector<Key> keys(nVars); // Array to store the keys in the order we add them so we can retrieve them in permuted order
|
||||||
|
size_t index = 0;
|
||||||
|
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex) {
|
||||||
|
// Arrange factor indices into COLAMD format
|
||||||
|
const VariableIndex::Factors& column = key_factors.second;
|
||||||
|
size_t lastFactorId = numeric_limits<size_t>::max();
|
||||||
|
BOOST_FOREACH(size_t factorIndex, column) {
|
||||||
|
if (lastFactorId != numeric_limits<size_t>::max())
|
||||||
|
assert(factorIndex > lastFactorId);
|
||||||
|
A[count++] = (int) factorIndex; // copy sparse column
|
||||||
|
}
|
||||||
|
p[index + 1] = count; // column j (base 1) goes from A[j-1] to A[j]-1
|
||||||
|
// Store key in array and increment index
|
||||||
|
keys[index] = key_factors.first;
|
||||||
|
++index;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
assert((size_t)count == variableIndex.nEntries());
|
||||||
Ordering Ordering::colamd(const VariableIndex& variableIndex)
|
|
||||||
{
|
//double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */
|
||||||
// Call constrained version with all groups set to zero
|
double knobs[CCOLAMD_KNOBS];
|
||||||
vector<int> dummy_groups(variableIndex.size(), 0);
|
ccolamd_set_defaults(knobs);
|
||||||
return Ordering::colamdConstrained(variableIndex, dummy_groups);
|
knobs[CCOLAMD_DENSE_ROW] = -1;
|
||||||
|
knobs[CCOLAMD_DENSE_COL] = -1;
|
||||||
|
|
||||||
|
int stats[CCOLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */
|
||||||
|
|
||||||
|
gttoc(Prepare);
|
||||||
|
|
||||||
|
// call colamd, result will be in p
|
||||||
|
/* returns (1) if successful, (0) otherwise*/
|
||||||
|
if (nVars > 0) {
|
||||||
|
gttic(ccolamd);
|
||||||
|
int rv = ccolamd((int) nFactors, (int) nVars, (int) Alen, &A[0], &p[0],
|
||||||
|
knobs, stats, &cmember[0]);
|
||||||
|
if (rv != 1)
|
||||||
|
throw runtime_error(
|
||||||
|
(boost::format("ccolamd failed with return value %1%") % rv).str());
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
// ccolamd_report(stats);
|
||||||
Ordering Ordering::colamdConstrained(
|
|
||||||
const VariableIndex& variableIndex, std::vector<int>& cmember)
|
|
||||||
{
|
|
||||||
gttic(Ordering_COLAMDConstrained);
|
|
||||||
|
|
||||||
gttic(Prepare);
|
gttic(Fill_Ordering);
|
||||||
size_t nEntries = variableIndex.nEntries(), nFactors = variableIndex.nFactors(), nVars = variableIndex.size();
|
// Convert elimination ordering in p to an ordering
|
||||||
// Convert to compressed column major format colamd wants it in (== MATLAB format!)
|
Ordering result;
|
||||||
size_t Alen = ccolamd_recommended((int)nEntries, (int)nFactors, (int)nVars); /* colamd arg 3: size of the array A */
|
result.resize(nVars);
|
||||||
vector<int> A = vector<int>(Alen); /* colamd arg 4: row indices of A, of size Alen */
|
for (size_t j = 0; j < nVars; ++j)
|
||||||
vector<int> p = vector<int>(nVars + 1); /* colamd arg 5: column pointers of A, of size n_col+1 */
|
result[j] = keys[p[j]];
|
||||||
|
gttoc(Fill_Ordering);
|
||||||
|
|
||||||
// Fill in input data for COLAMD
|
return result;
|
||||||
p[0] = 0;
|
}
|
||||||
int count = 0;
|
|
||||||
vector<Key> keys(nVars); // Array to store the keys in the order we add them so we can retrieve them in permuted order
|
|
||||||
size_t index = 0;
|
|
||||||
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex) {
|
|
||||||
// Arrange factor indices into COLAMD format
|
|
||||||
const VariableIndex::Factors& column = key_factors.second;
|
|
||||||
size_t lastFactorId = numeric_limits<size_t>::max();
|
|
||||||
BOOST_FOREACH(size_t factorIndex, column) {
|
|
||||||
if(lastFactorId != numeric_limits<size_t>::max())
|
|
||||||
assert(factorIndex > lastFactorId);
|
|
||||||
A[count++] = (int)factorIndex; // copy sparse column
|
|
||||||
}
|
|
||||||
p[index+1] = count; // column j (base 1) goes from A[j-1] to A[j]-1
|
|
||||||
// Store key in array and increment index
|
|
||||||
keys[index] = key_factors.first;
|
|
||||||
++ index;
|
|
||||||
}
|
|
||||||
|
|
||||||
assert((size_t)count == variableIndex.nEntries());
|
/* ************************************************************************* */
|
||||||
|
Ordering Ordering::colamdConstrainedLast(const VariableIndex& variableIndex,
|
||||||
|
const std::vector<Key>& constrainLast, bool forceOrder) {
|
||||||
|
gttic(Ordering_COLAMDConstrainedLast);
|
||||||
|
|
||||||
//double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */
|
size_t n = variableIndex.size();
|
||||||
double knobs[CCOLAMD_KNOBS];
|
std::vector<int> cmember(n, 0);
|
||||||
ccolamd_set_defaults(knobs);
|
|
||||||
knobs[CCOLAMD_DENSE_ROW]=-1;
|
|
||||||
knobs[CCOLAMD_DENSE_COL]=-1;
|
|
||||||
|
|
||||||
int stats[CCOLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */
|
// Build a mapping to look up sorted Key indices by Key
|
||||||
|
FastMap<Key, size_t> keyIndices;
|
||||||
|
size_t j = 0;
|
||||||
|
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex)
|
||||||
|
keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++));
|
||||||
|
|
||||||
gttoc(Prepare);
|
// If at least some variables are not constrained to be last, constrain the
|
||||||
|
// ones that should be constrained.
|
||||||
|
int group = (constrainLast.size() != n ? 1 : 0);
|
||||||
|
BOOST_FOREACH(Key key, constrainLast) {
|
||||||
|
cmember[keyIndices.at(key)] = group;
|
||||||
|
if (forceOrder)
|
||||||
|
++group;
|
||||||
|
}
|
||||||
|
|
||||||
// call colamd, result will be in p
|
return Ordering::colamdConstrained(variableIndex, cmember);
|
||||||
/* returns (1) if successful, (0) otherwise*/
|
}
|
||||||
if(nVars > 0) {
|
|
||||||
gttic(ccolamd);
|
|
||||||
int rv = ccolamd((int)nFactors, (int)nVars, (int)Alen, &A[0], &p[0], knobs, stats, &cmember[0]);
|
|
||||||
if(rv != 1)
|
|
||||||
throw runtime_error((boost::format("ccolamd failed with return value %1%")%rv).str());
|
|
||||||
}
|
|
||||||
|
|
||||||
// ccolamd_report(stats);
|
/* ************************************************************************* */
|
||||||
|
Ordering Ordering::colamdConstrainedFirst(const VariableIndex& variableIndex,
|
||||||
|
const std::vector<Key>& constrainFirst, bool forceOrder) {
|
||||||
|
gttic(Ordering_COLAMDConstrainedFirst);
|
||||||
|
|
||||||
gttic(Fill_Ordering);
|
const int none = -1;
|
||||||
// Convert elimination ordering in p to an ordering
|
size_t n = variableIndex.size();
|
||||||
Ordering result;
|
std::vector<int> cmember(n, none);
|
||||||
result.resize(nVars);
|
|
||||||
for(size_t j = 0; j < nVars; ++j)
|
|
||||||
result[j] = keys[p[j]];
|
|
||||||
gttoc(Fill_Ordering);
|
|
||||||
|
|
||||||
|
// Build a mapping to look up sorted Key indices by Key
|
||||||
|
FastMap<Key, size_t> keyIndices;
|
||||||
|
size_t j = 0;
|
||||||
|
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex)
|
||||||
|
keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++));
|
||||||
|
|
||||||
|
// If at least some variables are not constrained to be last, constrain the
|
||||||
|
// ones that should be constrained.
|
||||||
|
int group = 0;
|
||||||
|
BOOST_FOREACH(Key key, constrainFirst) {
|
||||||
|
cmember[keyIndices.at(key)] = group;
|
||||||
|
if (forceOrder)
|
||||||
|
++group;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!forceOrder && !constrainFirst.empty())
|
||||||
|
++group;
|
||||||
|
BOOST_FOREACH(int& c, cmember)
|
||||||
|
if (c == none)
|
||||||
|
c = group;
|
||||||
|
|
||||||
|
return Ordering::colamdConstrained(variableIndex, cmember);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Ordering Ordering::colamdConstrained(const VariableIndex& variableIndex,
|
||||||
|
const FastMap<Key, int>& groups) {
|
||||||
|
gttic(Ordering_COLAMDConstrained);
|
||||||
|
size_t n = variableIndex.size();
|
||||||
|
std::vector<int> cmember(n, 0);
|
||||||
|
|
||||||
|
// Build a mapping to look up sorted Key indices by Key
|
||||||
|
FastMap<Key, size_t> keyIndices;
|
||||||
|
size_t j = 0;
|
||||||
|
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex)
|
||||||
|
keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++));
|
||||||
|
|
||||||
|
// Assign groups
|
||||||
|
typedef FastMap<Key, int>::value_type key_group;
|
||||||
|
BOOST_FOREACH(const key_group& p, groups) {
|
||||||
|
// FIXME: check that no groups are skipped
|
||||||
|
cmember[keyIndices.at(p.first)] = p.second;
|
||||||
|
}
|
||||||
|
|
||||||
|
return Ordering::colamdConstrained(variableIndex, cmember);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
Ordering Ordering::metis(const MetisIndex& met) {
|
||||||
|
gttic(Ordering_METIS);
|
||||||
|
|
||||||
|
vector<idx_t> xadj = met.xadj();
|
||||||
|
vector<idx_t> adj = met.adj();
|
||||||
|
vector<idx_t> perm, iperm;
|
||||||
|
|
||||||
|
idx_t size = met.nValues();
|
||||||
|
for (idx_t i = 0; i < size; i++) {
|
||||||
|
perm.push_back(0);
|
||||||
|
iperm.push_back(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
int outputError;
|
||||||
|
|
||||||
|
outputError = METIS_NodeND(&size, &xadj[0], &adj[0], NULL, NULL, &perm[0],
|
||||||
|
&iperm[0]);
|
||||||
|
Ordering result;
|
||||||
|
|
||||||
|
if (outputError != METIS_OK) {
|
||||||
|
std::cout << "METIS failed during Nested Dissection ordering!\n";
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
result.resize(size);
|
||||||
Ordering Ordering::colamdConstrainedLast(
|
for (size_t j = 0; j < (size_t) size; ++j) {
|
||||||
const VariableIndex& variableIndex, const std::vector<Key>& constrainLast, bool forceOrder)
|
// We have to add the minKey value back to obtain the original key in the Values
|
||||||
{
|
result[j] = met.intToKey(perm[j]);
|
||||||
gttic(Ordering_COLAMDConstrainedLast);
|
|
||||||
|
|
||||||
size_t n = variableIndex.size();
|
|
||||||
std::vector<int> cmember(n, 0);
|
|
||||||
|
|
||||||
// Build a mapping to look up sorted Key indices by Key
|
|
||||||
FastMap<Key, size_t> keyIndices;
|
|
||||||
size_t j = 0;
|
|
||||||
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex)
|
|
||||||
keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++));
|
|
||||||
|
|
||||||
// If at least some variables are not constrained to be last, constrain the
|
|
||||||
// ones that should be constrained.
|
|
||||||
int group = (constrainLast.size() != n ? 1 : 0);
|
|
||||||
BOOST_FOREACH(Key key, constrainLast) {
|
|
||||||
cmember[keyIndices.at(key)] = group;
|
|
||||||
if(forceOrder)
|
|
||||||
++ group;
|
|
||||||
}
|
|
||||||
|
|
||||||
return Ordering::colamdConstrained(variableIndex, cmember);
|
|
||||||
}
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
Ordering Ordering::colamdConstrainedFirst(
|
void Ordering::print(const std::string& str,
|
||||||
const VariableIndex& variableIndex, const std::vector<Key>& constrainFirst, bool forceOrder)
|
const KeyFormatter& keyFormatter) const {
|
||||||
{
|
cout << str;
|
||||||
gttic(Ordering_COLAMDConstrainedFirst);
|
// Print ordering in index order
|
||||||
|
// Print the ordering with varsPerLine ordering entries printed on each line,
|
||||||
const int none = -1;
|
// for compactness.
|
||||||
size_t n = variableIndex.size();
|
static const size_t varsPerLine = 10;
|
||||||
std::vector<int> cmember(n, none);
|
bool endedOnNewline = false;
|
||||||
|
for (size_t i = 0; i < size(); ++i) {
|
||||||
// Build a mapping to look up sorted Key indices by Key
|
if (i % varsPerLine == 0)
|
||||||
FastMap<Key, size_t> keyIndices;
|
cout << "Position " << i << ": ";
|
||||||
size_t j = 0;
|
if (i % varsPerLine != 0)
|
||||||
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex)
|
cout << ", ";
|
||||||
keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++));
|
cout << keyFormatter(at(i));
|
||||||
|
if (i % varsPerLine == varsPerLine - 1) {
|
||||||
// If at least some variables are not constrained to be last, constrain the
|
|
||||||
// ones that should be constrained.
|
|
||||||
int group = 0;
|
|
||||||
BOOST_FOREACH(Key key, constrainFirst) {
|
|
||||||
cmember[keyIndices.at(key)] = group;
|
|
||||||
if(forceOrder)
|
|
||||||
++ group;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(!forceOrder && !constrainFirst.empty())
|
|
||||||
++ group;
|
|
||||||
BOOST_FOREACH(int& c, cmember)
|
|
||||||
if(c == none)
|
|
||||||
c = group;
|
|
||||||
|
|
||||||
return Ordering::colamdConstrained(variableIndex, cmember);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
Ordering Ordering::colamdConstrained(const VariableIndex& variableIndex,
|
|
||||||
const FastMap<Key, int>& groups)
|
|
||||||
{
|
|
||||||
gttic(Ordering_COLAMDConstrained);
|
|
||||||
size_t n = variableIndex.size();
|
|
||||||
std::vector<int> cmember(n, 0);
|
|
||||||
|
|
||||||
// Build a mapping to look up sorted Key indices by Key
|
|
||||||
FastMap<Key, size_t> keyIndices;
|
|
||||||
size_t j = 0;
|
|
||||||
BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex)
|
|
||||||
keyIndices.insert(keyIndices.end(), make_pair(key_factors.first, j++));
|
|
||||||
|
|
||||||
// Assign groups
|
|
||||||
typedef FastMap<Key, int>::value_type key_group;
|
|
||||||
BOOST_FOREACH(const key_group& p, groups) {
|
|
||||||
// FIXME: check that no groups are skipped
|
|
||||||
cmember[keyIndices.at(p.first)] = p.second;
|
|
||||||
}
|
|
||||||
|
|
||||||
return Ordering::colamdConstrained(variableIndex, cmember);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
Ordering Ordering::metis(const MetisIndex& met)
|
|
||||||
{
|
|
||||||
gttic(Ordering_METIS);
|
|
||||||
|
|
||||||
vector<idx_t> xadj = met.xadj();
|
|
||||||
vector<idx_t> adj = met.adj();
|
|
||||||
vector<idx_t> perm, iperm;
|
|
||||||
|
|
||||||
idx_t size = met.nValues();
|
|
||||||
for (idx_t i = 0; i < size; i++)
|
|
||||||
{
|
|
||||||
perm.push_back(0);
|
|
||||||
iperm.push_back(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
int outputError;
|
|
||||||
|
|
||||||
outputError = METIS_NodeND(&size, &xadj[0], &adj[0], NULL, NULL, &perm[0], &iperm[0]);
|
|
||||||
Ordering result;
|
|
||||||
|
|
||||||
if (outputError != METIS_OK)
|
|
||||||
{
|
|
||||||
std::cout << "METIS failed during Nested Dissection ordering!\n";
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
result.resize(size);
|
|
||||||
for (size_t j = 0; j < (size_t)size; ++j){
|
|
||||||
// We have to add the minKey value back to obtain the original key in the Values
|
|
||||||
result[j] = met.intToKey(perm[j]);
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
|
||||||
void Ordering::print(const std::string& str, const KeyFormatter& keyFormatter) const
|
|
||||||
{
|
|
||||||
cout << str;
|
|
||||||
// Print ordering in index order
|
|
||||||
// Print the ordering with varsPerLine ordering entries printed on each line,
|
|
||||||
// for compactness.
|
|
||||||
static const size_t varsPerLine = 10;
|
|
||||||
bool endedOnNewline = false;
|
|
||||||
for(size_t i = 0; i < size(); ++i) {
|
|
||||||
if(i % varsPerLine == 0)
|
|
||||||
cout << "Position " << i << ": ";
|
|
||||||
if(i % varsPerLine != 0)
|
|
||||||
cout << ", ";
|
|
||||||
cout << keyFormatter(at(i));
|
|
||||||
if(i % varsPerLine == varsPerLine - 1) {
|
|
||||||
cout << "\n";
|
|
||||||
endedOnNewline = true;
|
|
||||||
} else {
|
|
||||||
endedOnNewline = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if(!endedOnNewline)
|
|
||||||
cout << "\n";
|
cout << "\n";
|
||||||
cout.flush();
|
endedOnNewline = true;
|
||||||
|
} else {
|
||||||
|
endedOnNewline = false;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
if (!endedOnNewline)
|
||||||
|
cout << "\n";
|
||||||
|
cout.flush();
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
bool Ordering::equals(const Ordering& other, double tol) const
|
bool Ordering::equals(const Ordering& other, double tol) const {
|
||||||
{
|
return (*this) == other;
|
||||||
return (*this) == other;
|
}
|
||||||
}
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -30,192 +30,210 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
class Ordering : public std::vector<Key> {
|
class Ordering: public std::vector<Key> {
|
||||||
protected:
|
protected:
|
||||||
typedef std::vector<Key> Base;
|
typedef std::vector<Key> Base;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
/// Type of ordering to use
|
/// Type of ordering to use
|
||||||
enum OrderingType {
|
enum OrderingType {
|
||||||
COLAMD, METIS, CUSTOM
|
COLAMD, METIS, CUSTOM
|
||||||
};
|
|
||||||
|
|
||||||
typedef Ordering This; ///< Typedef to this class
|
|
||||||
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
|
|
||||||
|
|
||||||
/// Create an empty ordering
|
|
||||||
GTSAM_EXPORT Ordering() {}
|
|
||||||
|
|
||||||
/// Create from a container
|
|
||||||
template<typename KEYS>
|
|
||||||
explicit Ordering(const KEYS& keys) : Base(keys.begin(), keys.end()) {}
|
|
||||||
|
|
||||||
/// Create an ordering using iterators over keys
|
|
||||||
template<typename ITERATOR>
|
|
||||||
Ordering(ITERATOR firstKey, ITERATOR lastKey) : Base(firstKey, lastKey) {}
|
|
||||||
|
|
||||||
/// Add new variables to the ordering as ordering += key1, key2, ... Equivalent to calling
|
|
||||||
/// push_back.
|
|
||||||
boost::assign::list_inserter<boost::assign_detail::call_push_back<This> >
|
|
||||||
operator+=(Key key) {
|
|
||||||
return boost::assign::make_list_inserter(boost::assign_detail::call_push_back<This>(*this))(key);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Invert (not reverse) the ordering - returns a map from key to order position
|
|
||||||
FastMap<Key, size_t> invert() const;
|
|
||||||
|
|
||||||
/// @name Fill-reducing Orderings @{
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using COLAMD from a factor graph (see details for note on
|
|
||||||
/// performance). This internally builds a VariableIndex so if you already have a VariableIndex,
|
|
||||||
/// it is faster to use COLAMD(const VariableIndex&)
|
|
||||||
template<class FACTOR>
|
|
||||||
static Ordering colamd(const FactorGraph<FACTOR>& graph) {
|
|
||||||
return colamd(VariableIndex(graph)); }
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using COLAMD from a VariableIndex.
|
|
||||||
static GTSAM_EXPORT Ordering colamd(const VariableIndex& variableIndex);
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
|
||||||
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
|
||||||
/// VariableIndex, it is faster to use COLAMD(const VariableIndex&). This function constrains
|
|
||||||
/// the variables in \c constrainLast to the end of the ordering, and orders all other variables
|
|
||||||
/// before in a fill-reducing ordering. If \c forceOrder is true, the variables in \c
|
|
||||||
/// constrainLast will be ordered in the same order specified in the vector<Key> \c
|
|
||||||
/// constrainLast. If \c forceOrder is false, the variables in \c constrainLast will be
|
|
||||||
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
|
||||||
template<class FACTOR>
|
|
||||||
static Ordering colamdConstrainedLast(const FactorGraph<FACTOR>& graph,
|
|
||||||
const std::vector<Key>& constrainLast, bool forceOrder = false) {
|
|
||||||
return colamdConstrainedLast(VariableIndex(graph), constrainLast, forceOrder); }
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using constrained COLAMD from a VariableIndex. This
|
|
||||||
/// function constrains the variables in \c constrainLast to the end of the ordering, and orders
|
|
||||||
/// all other variables before in a fill-reducing ordering. If \c forceOrder is true, the
|
|
||||||
/// variables in \c constrainLast will be ordered in the same order specified in the vector<Key>
|
|
||||||
/// \c constrainLast. If \c forceOrder is false, the variables in \c constrainLast will be
|
|
||||||
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
|
||||||
static GTSAM_EXPORT Ordering colamdConstrainedLast(const VariableIndex& variableIndex,
|
|
||||||
const std::vector<Key>& constrainLast, bool forceOrder = false);
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
|
||||||
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
|
||||||
/// VariableIndex, it is faster to use COLAMD(const VariableIndex&). This function constrains
|
|
||||||
/// the variables in \c constrainLast to the end of the ordering, and orders all other variables
|
|
||||||
/// before in a fill-reducing ordering. If \c forceOrder is true, the variables in \c
|
|
||||||
/// constrainLast will be ordered in the same order specified in the vector<Key> \c
|
|
||||||
/// constrainLast. If \c forceOrder is false, the variables in \c constrainFirst will be
|
|
||||||
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
|
||||||
template<class FACTOR>
|
|
||||||
static Ordering colamdConstrainedFirst(const FactorGraph<FACTOR>& graph,
|
|
||||||
const std::vector<Key>& constrainFirst, bool forceOrder = false) {
|
|
||||||
return colamdConstrainedFirst(VariableIndex(graph), constrainFirst, forceOrder); }
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using constrained COLAMD from a VariableIndex. This
|
|
||||||
/// function constrains the variables in \c constrainFirst to the front of the ordering, and
|
|
||||||
/// orders all other variables after in a fill-reducing ordering. If \c forceOrder is true, the
|
|
||||||
/// variables in \c constrainFirst will be ordered in the same order specified in the
|
|
||||||
/// vector<Key> \c constrainFirst. If \c forceOrder is false, the variables in \c
|
|
||||||
/// constrainFirst will be ordered after all the others, but will be rearranged by CCOLAMD to
|
|
||||||
/// reduce fill-in as well.
|
|
||||||
static GTSAM_EXPORT Ordering colamdConstrainedFirst(const VariableIndex& variableIndex,
|
|
||||||
const std::vector<Key>& constrainFirst, bool forceOrder = false);
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
|
||||||
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
|
||||||
/// VariableIndex, it is faster to use COLAMD(const VariableIndex&). In this function, a group
|
|
||||||
/// for each variable should be specified in \c groups, and each group of variables will appear
|
|
||||||
/// in the ordering in group index order. \c groups should be a map from Key to group index.
|
|
||||||
/// The group indices used should be consecutive starting at 0, but may appear in \c groups in
|
|
||||||
/// arbitrary order. Any variables not present in \c groups will be assigned to group 0. This
|
|
||||||
/// function simply fills the \c cmember argument to CCOLAMD with the supplied indices, see the
|
|
||||||
/// CCOLAMD documentation for more information.
|
|
||||||
template<class FACTOR>
|
|
||||||
static Ordering colamdConstrained(const FactorGraph<FACTOR>& graph,
|
|
||||||
const FastMap<Key, int>& groups) {
|
|
||||||
return colamdConstrained(VariableIndex(graph), groups); }
|
|
||||||
|
|
||||||
/// Compute a fill-reducing ordering using constrained COLAMD from a VariableIndex. In this
|
|
||||||
/// function, a group for each variable should be specified in \c groups, and each group of
|
|
||||||
/// variables will appear in the ordering in group index order. \c groups should be a map from
|
|
||||||
/// Key to group index. The group indices used should be consecutive starting at 0, but may
|
|
||||||
/// appear in \c groups in arbitrary order. Any variables not present in \c groups will be
|
|
||||||
/// assigned to group 0. This function simply fills the \c cmember argument to CCOLAMD with the
|
|
||||||
/// supplied indices, see the CCOLAMD documentation for more information.
|
|
||||||
static GTSAM_EXPORT Ordering colamdConstrained(const VariableIndex& variableIndex,
|
|
||||||
const FastMap<Key, int>& groups);
|
|
||||||
|
|
||||||
/// Return a natural Ordering. Typically used by iterative solvers
|
|
||||||
template <class FACTOR>
|
|
||||||
static Ordering Natural(const FactorGraph<FACTOR> &fg) {
|
|
||||||
FastSet<Key> src = fg.keys();
|
|
||||||
std::vector<Key> keys(src.begin(), src.end());
|
|
||||||
std::stable_sort(keys.begin(), keys.end());
|
|
||||||
return Ordering(keys);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// METIS Formatting function
|
|
||||||
template<class FACTOR>
|
|
||||||
static GTSAM_EXPORT void CSRFormat(std::vector<int>& xadj, std::vector<int>& adj, const FactorGraph<FACTOR>& graph);
|
|
||||||
|
|
||||||
/// Compute an ordering determined by METIS from a VariableIndex
|
|
||||||
static GTSAM_EXPORT Ordering metis(const MetisIndex& met);
|
|
||||||
|
|
||||||
template<class FACTOR>
|
|
||||||
static Ordering metis(const FactorGraph<FACTOR>& graph)
|
|
||||||
{
|
|
||||||
return metis(MetisIndex(graph));
|
|
||||||
}
|
|
||||||
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
/// @name Named Constructors @{
|
|
||||||
|
|
||||||
template<class FACTOR>
|
|
||||||
static Ordering Create(OrderingType orderingType,
|
|
||||||
const FactorGraph<FACTOR>& graph) {
|
|
||||||
|
|
||||||
switch (orderingType) {
|
|
||||||
case COLAMD:
|
|
||||||
return colamd(graph);
|
|
||||||
case METIS:
|
|
||||||
return metis(graph);
|
|
||||||
case CUSTOM:
|
|
||||||
throw std::runtime_error(
|
|
||||||
"Ordering::Create error: called with CUSTOM ordering type.");
|
|
||||||
default:
|
|
||||||
throw std::runtime_error(
|
|
||||||
"Ordering::Create error: called with unknown ordering type.");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
/// @name Testable @{
|
|
||||||
|
|
||||||
GTSAM_EXPORT void print(const std::string& str = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
|
|
||||||
|
|
||||||
GTSAM_EXPORT bool equals(const Ordering& other, double tol = 1e-9) const;
|
|
||||||
|
|
||||||
/// @}
|
|
||||||
|
|
||||||
private:
|
|
||||||
/// Internal COLAMD function
|
|
||||||
static GTSAM_EXPORT Ordering colamdConstrained(
|
|
||||||
const VariableIndex& variableIndex, std::vector<int>& cmember);
|
|
||||||
|
|
||||||
|
|
||||||
/** Serialization function */
|
|
||||||
friend class boost::serialization::access;
|
|
||||||
template<class ARCHIVE>
|
|
||||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
||||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
/// traits
|
typedef Ordering This; ///< Typedef to this class
|
||||||
template<> struct traits<Ordering> : public Testable<Ordering> {};
|
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
|
||||||
|
|
||||||
|
/// Create an empty ordering
|
||||||
|
GTSAM_EXPORT
|
||||||
|
Ordering() {
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create from a container
|
||||||
|
template<typename KEYS>
|
||||||
|
explicit Ordering(const KEYS& keys) :
|
||||||
|
Base(keys.begin(), keys.end()) {
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an ordering using iterators over keys
|
||||||
|
template<typename ITERATOR>
|
||||||
|
Ordering(ITERATOR firstKey, ITERATOR lastKey) :
|
||||||
|
Base(firstKey, lastKey) {
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Add new variables to the ordering as ordering += key1, key2, ... Equivalent to calling
|
||||||
|
/// push_back.
|
||||||
|
boost::assign::list_inserter<boost::assign_detail::call_push_back<This> > operator+=(
|
||||||
|
Key key) {
|
||||||
|
return boost::assign::make_list_inserter(
|
||||||
|
boost::assign_detail::call_push_back<This>(*this))(key);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Invert (not reverse) the ordering - returns a map from key to order position
|
||||||
|
FastMap<Key, size_t> invert() const;
|
||||||
|
|
||||||
|
/// @name Fill-reducing Orderings @{
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using COLAMD from a factor graph (see details for note on
|
||||||
|
/// performance). This internally builds a VariableIndex so if you already have a VariableIndex,
|
||||||
|
/// it is faster to use COLAMD(const VariableIndex&)
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering colamd(const FactorGraph<FACTOR>& graph) {
|
||||||
|
return colamd(VariableIndex(graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using COLAMD from a VariableIndex.
|
||||||
|
static GTSAM_EXPORT Ordering colamd(const VariableIndex& variableIndex);
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
||||||
|
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
||||||
|
/// VariableIndex, it is faster to use COLAMD(const VariableIndex&). This function constrains
|
||||||
|
/// the variables in \c constrainLast to the end of the ordering, and orders all other variables
|
||||||
|
/// before in a fill-reducing ordering. If \c forceOrder is true, the variables in \c
|
||||||
|
/// constrainLast will be ordered in the same order specified in the vector<Key> \c
|
||||||
|
/// constrainLast. If \c forceOrder is false, the variables in \c constrainLast will be
|
||||||
|
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering colamdConstrainedLast(const FactorGraph<FACTOR>& graph,
|
||||||
|
const std::vector<Key>& constrainLast, bool forceOrder = false) {
|
||||||
|
return colamdConstrainedLast(VariableIndex(graph), constrainLast,
|
||||||
|
forceOrder);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using constrained COLAMD from a VariableIndex. This
|
||||||
|
/// function constrains the variables in \c constrainLast to the end of the ordering, and orders
|
||||||
|
/// all other variables before in a fill-reducing ordering. If \c forceOrder is true, the
|
||||||
|
/// variables in \c constrainLast will be ordered in the same order specified in the vector<Key>
|
||||||
|
/// \c constrainLast. If \c forceOrder is false, the variables in \c constrainLast will be
|
||||||
|
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
||||||
|
static GTSAM_EXPORT Ordering colamdConstrainedLast(
|
||||||
|
const VariableIndex& variableIndex, const std::vector<Key>& constrainLast,
|
||||||
|
bool forceOrder = false);
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
||||||
|
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
||||||
|
/// VariableIndex, it is faster to use COLAMD(const VariableIndex&). This function constrains
|
||||||
|
/// the variables in \c constrainLast to the end of the ordering, and orders all other variables
|
||||||
|
/// before in a fill-reducing ordering. If \c forceOrder is true, the variables in \c
|
||||||
|
/// constrainLast will be ordered in the same order specified in the vector<Key> \c
|
||||||
|
/// constrainLast. If \c forceOrder is false, the variables in \c constrainFirst will be
|
||||||
|
/// ordered after all the others, but will be rearranged by CCOLAMD to reduce fill-in as well.
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering colamdConstrainedFirst(const FactorGraph<FACTOR>& graph,
|
||||||
|
const std::vector<Key>& constrainFirst, bool forceOrder = false) {
|
||||||
|
return colamdConstrainedFirst(VariableIndex(graph), constrainFirst,
|
||||||
|
forceOrder);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using constrained COLAMD from a VariableIndex. This
|
||||||
|
/// function constrains the variables in \c constrainFirst to the front of the ordering, and
|
||||||
|
/// orders all other variables after in a fill-reducing ordering. If \c forceOrder is true, the
|
||||||
|
/// variables in \c constrainFirst will be ordered in the same order specified in the
|
||||||
|
/// vector<Key> \c constrainFirst. If \c forceOrder is false, the variables in \c
|
||||||
|
/// constrainFirst will be ordered after all the others, but will be rearranged by CCOLAMD to
|
||||||
|
/// reduce fill-in as well.
|
||||||
|
static GTSAM_EXPORT Ordering colamdConstrainedFirst(
|
||||||
|
const VariableIndex& variableIndex,
|
||||||
|
const std::vector<Key>& constrainFirst, bool forceOrder = false);
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using constrained COLAMD from a factor graph (see details
|
||||||
|
/// for note on performance). This internally builds a VariableIndex so if you already have a
|
||||||
|
/// VariableIndex, it is faster to use COLAMD(const VariableIndex&). In this function, a group
|
||||||
|
/// for each variable should be specified in \c groups, and each group of variables will appear
|
||||||
|
/// in the ordering in group index order. \c groups should be a map from Key to group index.
|
||||||
|
/// The group indices used should be consecutive starting at 0, but may appear in \c groups in
|
||||||
|
/// arbitrary order. Any variables not present in \c groups will be assigned to group 0. This
|
||||||
|
/// function simply fills the \c cmember argument to CCOLAMD with the supplied indices, see the
|
||||||
|
/// CCOLAMD documentation for more information.
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering colamdConstrained(const FactorGraph<FACTOR>& graph,
|
||||||
|
const FastMap<Key, int>& groups) {
|
||||||
|
return colamdConstrained(VariableIndex(graph), groups);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Compute a fill-reducing ordering using constrained COLAMD from a VariableIndex. In this
|
||||||
|
/// function, a group for each variable should be specified in \c groups, and each group of
|
||||||
|
/// variables will appear in the ordering in group index order. \c groups should be a map from
|
||||||
|
/// Key to group index. The group indices used should be consecutive starting at 0, but may
|
||||||
|
/// appear in \c groups in arbitrary order. Any variables not present in \c groups will be
|
||||||
|
/// assigned to group 0. This function simply fills the \c cmember argument to CCOLAMD with the
|
||||||
|
/// supplied indices, see the CCOLAMD documentation for more information.
|
||||||
|
static GTSAM_EXPORT Ordering colamdConstrained(
|
||||||
|
const VariableIndex& variableIndex, const FastMap<Key, int>& groups);
|
||||||
|
|
||||||
|
/// Return a natural Ordering. Typically used by iterative solvers
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering Natural(const FactorGraph<FACTOR> &fg) {
|
||||||
|
FastSet<Key> src = fg.keys();
|
||||||
|
std::vector<Key> keys(src.begin(), src.end());
|
||||||
|
std::stable_sort(keys.begin(), keys.end());
|
||||||
|
return Ordering(keys);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// METIS Formatting function
|
||||||
|
template<class FACTOR>
|
||||||
|
static GTSAM_EXPORT void CSRFormat(std::vector<int>& xadj,
|
||||||
|
std::vector<int>& adj, const FactorGraph<FACTOR>& graph);
|
||||||
|
|
||||||
|
/// Compute an ordering determined by METIS from a VariableIndex
|
||||||
|
static GTSAM_EXPORT Ordering metis(const MetisIndex& met);
|
||||||
|
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering metis(const FactorGraph<FACTOR>& graph) {
|
||||||
|
return metis(MetisIndex(graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
/// @name Named Constructors @{
|
||||||
|
|
||||||
|
template<class FACTOR>
|
||||||
|
static Ordering Create(OrderingType orderingType,
|
||||||
|
const FactorGraph<FACTOR>& graph) {
|
||||||
|
|
||||||
|
switch (orderingType) {
|
||||||
|
case COLAMD:
|
||||||
|
return colamd(graph);
|
||||||
|
case METIS:
|
||||||
|
return metis(graph);
|
||||||
|
case CUSTOM:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"Ordering::Create error: called with CUSTOM ordering type.");
|
||||||
|
default:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"Ordering::Create error: called with unknown ordering type.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
/// @name Testable @{
|
||||||
|
|
||||||
|
GTSAM_EXPORT
|
||||||
|
void print(const std::string& str = "", const KeyFormatter& keyFormatter =
|
||||||
|
DefaultKeyFormatter) const;
|
||||||
|
|
||||||
|
GTSAM_EXPORT
|
||||||
|
bool equals(const Ordering& other, double tol = 1e-9) const;
|
||||||
|
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
private:
|
||||||
|
/// Internal COLAMD function
|
||||||
|
static GTSAM_EXPORT Ordering colamdConstrained(
|
||||||
|
const VariableIndex& variableIndex, std::vector<int>& cmember);
|
||||||
|
|
||||||
|
/** Serialization function */
|
||||||
|
friend class boost::serialization::access;
|
||||||
|
template<class ARCHIVE>
|
||||||
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||||
|
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/// traits
|
||||||
|
template<> struct traits<Ordering> : public Testable<Ordering> {
|
||||||
|
};
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -56,7 +56,8 @@ TEST(Ordering, constrained_ordering) {
|
||||||
EXPECT(assert_equal(expConstrained, actConstrained));
|
EXPECT(assert_equal(expConstrained, actConstrained));
|
||||||
|
|
||||||
// constrained version - push one set to the start
|
// constrained version - push one set to the start
|
||||||
Ordering actConstrained2 = Ordering::colamdConstrainedFirst(sfg, list_of(2)(4));
|
Ordering actConstrained2 = Ordering::colamdConstrainedFirst(sfg,
|
||||||
|
list_of(2)(4));
|
||||||
Ordering expConstrained2 = Ordering(list_of(2)(4)(0)(1)(3)(5));
|
Ordering expConstrained2 = Ordering(list_of(2)(4)(0)(1)(3)(5));
|
||||||
EXPECT(assert_equal(expConstrained2, actConstrained2));
|
EXPECT(assert_equal(expConstrained2, actConstrained2));
|
||||||
}
|
}
|
||||||
|
@ -82,43 +83,41 @@ TEST(Ordering, grouped_constrained_ordering) {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(Ordering, csr_format) {
|
TEST(Ordering, csr_format) {
|
||||||
// Example in METIS manual
|
// Example in METIS manual
|
||||||
SymbolicFactorGraph sfg;
|
SymbolicFactorGraph sfg;
|
||||||
sfg.push_factor(0, 1);
|
sfg.push_factor(0, 1);
|
||||||
sfg.push_factor(1, 2);
|
sfg.push_factor(1, 2);
|
||||||
sfg.push_factor(2, 3);
|
sfg.push_factor(2, 3);
|
||||||
sfg.push_factor(3, 4);
|
sfg.push_factor(3, 4);
|
||||||
sfg.push_factor(5, 6);
|
sfg.push_factor(5, 6);
|
||||||
sfg.push_factor(6, 7);
|
sfg.push_factor(6, 7);
|
||||||
sfg.push_factor(7, 8);
|
sfg.push_factor(7, 8);
|
||||||
sfg.push_factor(8, 9);
|
sfg.push_factor(8, 9);
|
||||||
sfg.push_factor(10, 11);
|
sfg.push_factor(10, 11);
|
||||||
sfg.push_factor(11, 12);
|
sfg.push_factor(11, 12);
|
||||||
sfg.push_factor(12, 13);
|
sfg.push_factor(12, 13);
|
||||||
sfg.push_factor(13, 14);
|
sfg.push_factor(13, 14);
|
||||||
|
|
||||||
sfg.push_factor(0, 5);
|
sfg.push_factor(0, 5);
|
||||||
sfg.push_factor(5, 10);
|
sfg.push_factor(5, 10);
|
||||||
sfg.push_factor(1, 6);
|
sfg.push_factor(1, 6);
|
||||||
sfg.push_factor(6, 11);
|
sfg.push_factor(6, 11);
|
||||||
sfg.push_factor(2, 7);
|
sfg.push_factor(2, 7);
|
||||||
sfg.push_factor(7, 12);
|
sfg.push_factor(7, 12);
|
||||||
sfg.push_factor(3, 8);
|
sfg.push_factor(3, 8);
|
||||||
sfg.push_factor(8, 13);
|
sfg.push_factor(8, 13);
|
||||||
sfg.push_factor(4, 9);
|
sfg.push_factor(4, 9);
|
||||||
sfg.push_factor(9, 14);
|
sfg.push_factor(9, 14);
|
||||||
|
|
||||||
MetisIndex mi(sfg);
|
MetisIndex mi(sfg);
|
||||||
|
|
||||||
vector<int> xadjExpected, adjExpected;
|
vector<int> xadjExpected, adjExpected;
|
||||||
xadjExpected += 0, 2, 5, 8, 11, 13, 16, 20, 24, 28, 31, 33, 36, 39, 42, 44;
|
xadjExpected += 0, 2, 5, 8, 11, 13, 16, 20, 24, 28, 31, 33, 36, 39, 42, 44;
|
||||||
adjExpected += 1, 5, 0, 2, 6, 1, 3, 7, 2, 4, 8, 3, 9, 0, 6, 10, 1, 5, 7, 11,
|
adjExpected += 1, 5, 0, 2, 6, 1, 3, 7, 2, 4, 8, 3, 9, 0, 6, 10, 1, 5, 7, 11, 2, 6, 8, 12, 3, 7, 9, 13, 4, 8, 14, 5, 11, 6, 10, 12, 7, 11, 13, 8, 12, 14, 9, 13;
|
||||||
2, 6, 8, 12, 3, 7, 9, 13, 4, 8, 14, 5, 11, 6, 10, 12, 7, 11,
|
|
||||||
13, 8, 12, 14, 9, 13 ;
|
|
||||||
|
|
||||||
EXPECT(xadjExpected == mi.xadj());
|
EXPECT(xadjExpected == mi.xadj());
|
||||||
EXPECT(adjExpected.size() == mi.adj().size());
|
EXPECT(adjExpected.size() == mi.adj().size());
|
||||||
EXPECT(adjExpected == mi.adj());
|
EXPECT(adjExpected == mi.adj());
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
@ -136,7 +135,7 @@ TEST(Ordering, csr_format_2) {
|
||||||
|
|
||||||
vector<int> xadjExpected, adjExpected;
|
vector<int> xadjExpected, adjExpected;
|
||||||
xadjExpected += 0, 1, 4, 6, 8, 10;
|
xadjExpected += 0, 1, 4, 6, 8, 10;
|
||||||
adjExpected += 1, 0, 2, 4, 1, 3, 2, 4, 1, 3;
|
adjExpected += 1, 0, 2, 4, 1, 3, 2, 4, 1, 3;
|
||||||
|
|
||||||
EXPECT(xadjExpected == mi.xadj());
|
EXPECT(xadjExpected == mi.xadj());
|
||||||
EXPECT(adjExpected.size() == mi.adj().size());
|
EXPECT(adjExpected.size() == mi.adj().size());
|
||||||
|
@ -237,18 +236,18 @@ TEST(Ordering, MetisLoop) {
|
||||||
SymbolicFactorGraph sfg = example::symbolicChain();
|
SymbolicFactorGraph sfg = example::symbolicChain();
|
||||||
|
|
||||||
// add loop closure
|
// add loop closure
|
||||||
sfg.push_factor(0,5);
|
sfg.push_factor(0, 5);
|
||||||
|
|
||||||
// METIS
|
// METIS
|
||||||
{
|
{
|
||||||
Ordering actual = Ordering::Create(Ordering::METIS,sfg);
|
Ordering actual = Ordering::Create(Ordering::METIS, sfg);
|
||||||
// 0,3
|
// 0,3
|
||||||
// 1
|
// 1,3
|
||||||
// 2
|
// 2
|
||||||
// 4
|
// 4,0
|
||||||
// 5
|
// 5
|
||||||
Ordering expected = Ordering(list_of(5)(4)(2)(1)(0)(3));
|
Ordering expected = Ordering(list_of(5)(4)(2)(1)(0)(3));
|
||||||
EXPECT(assert_equal(expected, actual));
|
EXPECT(assert_equal(expected, actual));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -260,28 +259,31 @@ TEST(Ordering, Create) {
|
||||||
|
|
||||||
// COLAMD
|
// COLAMD
|
||||||
{
|
{
|
||||||
Ordering actual = Ordering::Create(Ordering::COLAMD,sfg);
|
Ordering actual = Ordering::Create(Ordering::COLAMD, sfg);
|
||||||
Ordering expected = Ordering(list_of(0)(1)(2)(3)(4)(5));
|
Ordering expected = Ordering(list_of(0)(1)(2)(3)(4)(5));
|
||||||
EXPECT(assert_equal(expected, actual));
|
EXPECT(assert_equal(expected, actual));
|
||||||
}
|
}
|
||||||
|
|
||||||
// METIS
|
// METIS
|
||||||
{
|
{
|
||||||
Ordering actual = Ordering::Create(Ordering::METIS,sfg);
|
Ordering actual = Ordering::Create(Ordering::METIS, sfg);
|
||||||
// 2
|
// 2
|
||||||
// 0
|
// 0
|
||||||
// 1
|
// 1
|
||||||
// 4
|
// 4
|
||||||
// 3
|
// 3
|
||||||
// 5
|
// 5
|
||||||
Ordering expected = Ordering(list_of(5)(3)(4)(1)(0)(2));
|
Ordering expected = Ordering(list_of(5)(3)(4)(1)(0)(2));
|
||||||
EXPECT(assert_equal(expected, actual));
|
EXPECT(assert_equal(expected, actual));
|
||||||
}
|
}
|
||||||
|
|
||||||
// CUSTOM
|
// CUSTOM
|
||||||
CHECK_EXCEPTION(Ordering::Create(Ordering::CUSTOM,sfg),runtime_error);
|
CHECK_EXCEPTION(Ordering::Create(Ordering::CUSTOM, sfg), runtime_error);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
int main() {
|
||||||
|
TestResult tr;
|
||||||
|
return TestRegistry::runAllTests(tr);
|
||||||
|
}
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue