Revive BetweenFactorEM, without LieVector

release/4.3a0
Frank Dellaert 2022-01-02 14:38:20 -05:00
parent 3c9ace628a
commit 55f31ab2d7
2 changed files with 30 additions and 26 deletions

View File

@ -421,4 +421,8 @@ private:
};
// \class BetweenFactorEM
/// traits
template<class VALUE>
struct traits<BetweenFactorEM<VALUE> > : public Testable<BetweenFactorEM<VALUE> > {};
} // namespace gtsam

View File

@ -11,6 +11,7 @@
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/Vector.h>
#include <gtsam/slam/BetweenFactor.h>
@ -21,26 +22,24 @@ using namespace gtsam;
// Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
// to reenable the test.
#if 0
// #if 0
/* ************************************************************************* */
LieVector predictionError(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactorEM<gtsam::Pose2>& factor){
Vector predictionError(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactorEM<gtsam::Pose2>& factor){
gtsam::Values values;
values.insert(key1, p1);
values.insert(key2, p2);
// LieVector err = factor.whitenedError(values);
// return err;
return LieVector::Expmap(factor.whitenedError(values));
return factor.whitenedError(values);
}
/* ************************************************************************* */
LieVector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactor<gtsam::Pose2>& factor){
Vector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactor<gtsam::Pose2>& factor){
gtsam::Values values;
values.insert(key1, p1);
values.insert(key2, p2);
// LieVector err = factor.whitenedError(values);
// Vector err = factor.whitenedError(values);
// return err;
return LieVector::Expmap(factor.whitenedError(values));
return factor.whitenedError(values);
}
/* ************************************************************************* */
@ -99,8 +98,8 @@ TEST( BetweenFactorEM, EvaluateError)
Vector actual_err_wh = f.whitenedError(values);
Vector actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
Vector actual_err_wh_outlier = (Vector(3) << actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
Vector3 actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
Vector3 actual_err_wh_outlier = Vector3(actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
// cout << "Inlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier.norm()<<endl;
// cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl;
@ -117,8 +116,8 @@ TEST( BetweenFactorEM, EvaluateError)
actual_err_wh = g.whitenedError(values);
actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
actual_err_wh_outlier = (Vector(3) << actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
actual_err_wh_outlier = Vector3(actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
// in case of outlier, outlier-mode whitented error should be dominant
// CHECK(actual_err_wh_inlier.norm() < 1000.0*actual_err_wh_outlier.norm());
@ -132,7 +131,7 @@ TEST( BetweenFactorEM, EvaluateError)
BetweenFactorEM<gtsam::Pose2> h_EM(key1, key2, rel_pose_msr, model_inlier, model_outlier,
prior_inlier, prior_outlier);
actual_err_wh = h_EM.whitenedError(values);
actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier );
Vector actual_err_wh_stnd = h.whitenedError(values);
@ -178,7 +177,7 @@ TEST (BetweenFactorEM, jacobian ) {
// compare to standard between factor
BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier );
Vector actual_err_wh_stnd = h.whitenedError(values);
Vector actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
Vector actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
// CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8));
std::vector<gtsam::Matrix> H_actual_stnd_unwh(2);
(void)h.unwhitenedError(values, H_actual_stnd_unwh);
@ -190,12 +189,13 @@ TEST (BetweenFactorEM, jacobian ) {
// CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8));
double stepsize = 1.0e-9;
Matrix H1_expected = gtsam::numericalDerivative11<LieVector, Pose2>(std::bind(&predictionError, _1, p2, key1, key2, f), p1, stepsize);
Matrix H2_expected = gtsam::numericalDerivative11<LieVector, Pose2>(std::bind(&predictionError, p1, _1, key1, key2, f), p2, stepsize);
using std::placeholders::_1;
Matrix H1_expected = gtsam::numericalDerivative11<Vector, Pose2>(std::bind(&predictionError, _1, p2, key1, key2, f), p1, stepsize);
Matrix H2_expected = gtsam::numericalDerivative11<Vector, Pose2>(std::bind(&predictionError, p1, _1, key1, key2, f), p2, stepsize);
// try to check numerical derivatives of a standard between factor
Matrix H1_expected_stnd = gtsam::numericalDerivative11<LieVector, Pose2>(std::bind(&predictionError_standard, _1, p2, key1, key2, h), p1, stepsize);
Matrix H1_expected_stnd = gtsam::numericalDerivative11<Vector, Pose2>(std::bind(&predictionError_standard, _1, p2, key1, key2, h), p1, stepsize);
// CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5));
//
//
@ -240,8 +240,8 @@ TEST( BetweenFactorEM, CaseStudy)
Vector actual_err_unw = f.unwhitenedError(values);
Vector actual_err_wh = f.whitenedError(values);
Vector actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
Vector actual_err_wh_outlier = (Vector(3) << actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
Vector3 actual_err_wh_inlier = Vector3(actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
Vector3 actual_err_wh_outlier = Vector3(actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
if (debug){
cout << "p_inlier_outler: "<<p_inlier_outler[0]<<", "<<p_inlier_outler[1]<<endl;
@ -263,8 +263,8 @@ TEST (BetweenFactorEM, updateNoiseModel ) {
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(Vector3(1.5, 2.5, 4.05)));
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(Vector3(50.0, 50.0, 10.0)));
gtsam::Values values;
values.insert(key1, p1);
@ -287,14 +287,14 @@ TEST (BetweenFactorEM, updateNoiseModel ) {
SharedGaussian model_inlier_new = f.get_model_inlier();
SharedGaussian model_outlier_new = f.get_model_outlier();
model_inlier->print("model_inlier:");
model_outlier->print("model_outlier:");
model_inlier_new->print("model_inlier_new:");
model_outlier_new->print("model_outlier_new:");
// model_inlier->print("model_inlier:");
// model_outlier->print("model_outlier:");
// model_inlier_new->print("model_inlier_new:");
// model_outlier_new->print("model_outlier_new:");
}
#endif
// #endif
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}