Remove tests associated with older version (Yong-Dian) of BlockJacobiPreconditioner::build
parent
7760a802ab
commit
558bee685e
|
@ -27,199 +27,6 @@
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
static GaussianFactorGraph createSimpleGaussianFactorGraph() {
|
||||
GaussianFactorGraph fg;
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
|
||||
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
|
||||
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
||||
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vector(2) << 2.0, -1.0).finished(), unit2);
|
||||
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
||||
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0).finished(), unit2);
|
||||
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
|
||||
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5).finished(), unit2);
|
||||
return fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static GaussianFactorGraph createSimpleGaussianFactorGraphUnordered() {
|
||||
GaussianFactorGraph fg;
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_
|
||||
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
|
||||
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
|
||||
fg += JacobianFactor(2, -10*eye(2), 1, 10*eye(2), (Vector(2) << 2.0, -1.0).finished(), unit2);
|
||||
// measurement between x1 and l1: l1-x1=[0.0;0.2]
|
||||
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0).finished(), unit2);
|
||||
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
|
||||
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5).finished(), unit2);
|
||||
return fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Copy of BlockJacobiPreconditioner::build
|
||||
std::vector<Matrix> buildBlocks( const GaussianFactorGraph &gfg, const KeyInfo &keyInfo)
|
||||
{
|
||||
const size_t n = keyInfo.size();
|
||||
std::vector<size_t> dims_ = keyInfo.colSpec();
|
||||
|
||||
/* prepare the buffer of block diagonals */
|
||||
std::vector<Matrix> blocks; blocks.reserve(n);
|
||||
|
||||
/* allocate memory for the factorization of block diagonals */
|
||||
size_t nnz = 0;
|
||||
for ( size_t i = 0 ; i < n ; ++i ) {
|
||||
const size_t dim = dims_[i];
|
||||
blocks.push_back(Matrix::Zero(dim, dim));
|
||||
// nnz += (((dim)*(dim+1)) >> 1); // d*(d+1) / 2 ;
|
||||
nnz += dim*dim;
|
||||
}
|
||||
|
||||
/* compute the block diagonal by scanning over the factors */
|
||||
BOOST_FOREACH ( const GaussianFactor::shared_ptr &gf, gfg ) {
|
||||
if ( JacobianFactor::shared_ptr jf = boost::dynamic_pointer_cast<JacobianFactor>(gf) ) {
|
||||
for ( JacobianFactor::const_iterator it = jf->begin() ; it != jf->end() ; ++it ) {
|
||||
const KeyInfoEntry &entry = keyInfo.find(*it)->second;
|
||||
const Matrix &Ai = jf->getA(it);
|
||||
blocks[entry.index()] += (Ai.transpose() * Ai);
|
||||
}
|
||||
}
|
||||
else if ( HessianFactor::shared_ptr hf = boost::dynamic_pointer_cast<HessianFactor>(gf) ) {
|
||||
for ( HessianFactor::const_iterator it = hf->begin() ; it != hf->end() ; ++it ) {
|
||||
const KeyInfoEntry &entry = keyInfo.find(*it)->second;
|
||||
const Matrix &Hii = hf->info(it, it).selfadjointView();
|
||||
blocks[entry.index()] += Hii;
|
||||
}
|
||||
}
|
||||
else {
|
||||
throw invalid_argument("BlockJacobiPreconditioner::build gfg contains a factor that is neither a JacobianFactor nor a HessianFactor.");
|
||||
}
|
||||
}
|
||||
|
||||
return blocks;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Preconditioner, buildBlocks ) {
|
||||
// Create simple Gaussian factor graph and initial values
|
||||
GaussianFactorGraph gfg = createSimpleGaussianFactorGraph();
|
||||
|
||||
// Expected Hessian block diagonal matrices
|
||||
std::map<Key, Matrix> expectedHessian =gfg.hessianBlockDiagonal();
|
||||
|
||||
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
|
||||
std::vector<Matrix> actualHessian = buildBlocks(gfg, KeyInfo(gfg));
|
||||
|
||||
// Compare the number of block diagonal matrices
|
||||
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
|
||||
|
||||
// Compare the values of matrices
|
||||
// This test should be failed when the noise model is not isotropic.
|
||||
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
|
||||
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
|
||||
for(; it1!=expectedHessian.end(); it1++, it2++)
|
||||
EXPECT(assert_equal(it1->second, *it2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Preconditioner, buildBlocks2 ) {
|
||||
// Create simple Gaussian factor graph and initial values
|
||||
GaussianFactorGraph gfg = createSimpleGaussianFactorGraphUnordered();
|
||||
|
||||
// Expected Hessian block diagonal matrices
|
||||
std::map<Key, Matrix> expectedHessian =gfg.hessianBlockDiagonal();
|
||||
|
||||
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
|
||||
std::vector<Matrix> actualHessian = buildBlocks(gfg, KeyInfo(gfg));
|
||||
|
||||
// Compare the number of block diagonal matrices
|
||||
EXPECT_LONGS_EQUAL(expectedHessian.size(), 3);
|
||||
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
|
||||
|
||||
// Compare the values of matrices
|
||||
// This test should be failed when the noise model is not isotropic.
|
||||
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
|
||||
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
|
||||
for(; it1!=expectedHessian.end(); it1++, it2++)
|
||||
EXPECT(assert_equal(it1->second, *it2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( BlockJacobiPreconditioner, verySimpleLinerSystem) {
|
||||
// Ax = [4 1][u] = [1] x0 = [2]
|
||||
// [1 3][v] [2] [1]
|
||||
//
|
||||
// exact solution x = [1/11, 7/11]';
|
||||
//
|
||||
|
||||
// Create a Gaussian Factor Graph
|
||||
GaussianFactorGraph simpleGFG;
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 4, 1, 1, 3).finished(), (Vector(2) << 1, 2).finished(), noiseModel::Unit::Create(2));
|
||||
//simpleGFG.print("Factors\n");
|
||||
|
||||
// Expected Hessian block diagonal matrices
|
||||
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
|
||||
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
|
||||
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
|
||||
// Compare the number of block diagonal matrices
|
||||
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
|
||||
|
||||
// Compare the values of matrices
|
||||
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
|
||||
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
|
||||
|
||||
// the function 'build' in BlockJacobianPreconditioner stores in 'buffer'
|
||||
// the cholesky decomposion of each block of the hessian (column major)
|
||||
// In this example there is a single block (i.e., a single value)
|
||||
// and the corresponding block of the Hessian is
|
||||
//
|
||||
// H0 = [17 7; 7 10]
|
||||
//
|
||||
// The corresponding Cholesky decomposition is:
|
||||
// R = chol(H0) = [4.1231 1.6977 0 2.6679] (from Matlab)
|
||||
|
||||
Matrix expectedH0 = it1->second;
|
||||
Matrix actualH0 = *it2;
|
||||
|
||||
// This test should be failed when the noise model is not isotropic.
|
||||
EXPECT(assert_equal(expectedH0, (Matrix(2,2) << 17, 7, 7, 10).finished() ));
|
||||
EXPECT(assert_equal(expectedH0, actualH0));
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( BlockJacobiPreconditioner, SimpleLinerSystem) {
|
||||
// Create a Gaussian Factor Graph
|
||||
GaussianFactorGraph simpleGFG;
|
||||
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << -1, -1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -10, 0, 0, -10).finished(), 0, (Matrix(2,2)<< 10, 0, 0, 10).finished(), (Vector(2) << 2, -1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << 0, 1).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< -5, 0, 0, -5).finished(), 1, (Matrix(2,2)<< 5, 0, 0, 5).finished(), (Vector(2) << -1, 1.5).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(0, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(1, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
simpleGFG += JacobianFactor(2, (Matrix(2,2)<< 1, 0, 0, 1).finished(), (Vector(2) << 0, 0).finished(), unit2);
|
||||
|
||||
// Expected Hessian block diagonal matrices
|
||||
std::map<Key, Matrix> expectedHessian =simpleGFG.hessianBlockDiagonal();
|
||||
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
|
||||
std::vector<Matrix> actualHessian = buildBlocks(simpleGFG, KeyInfo(simpleGFG));
|
||||
// Compare the number of block diagonal matrices
|
||||
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
|
||||
|
||||
// Compare the values of matrices
|
||||
// This test should be failed when the noise model is not isotropic.
|
||||
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
|
||||
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
|
||||
|
||||
for(; it1!=expectedHessian.end(); it1++, it2++){
|
||||
Matrix expectedHi = it1->second;
|
||||
Matrix actualHi = *it2;
|
||||
EXPECT(assert_equal(expectedHi, actualHi));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( PCGsolver, verySimpleLinearSystem) {
|
||||
|
||||
|
|
Loading…
Reference in New Issue