Addressed PR feedback: applied suggested improvements
parent
9e676b215e
commit
53b1ce3885
|
@ -33,6 +33,7 @@
|
|||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
int main() {
|
||||
|
||||
|
@ -54,18 +55,20 @@ int main() {
|
|||
// i.e., we should get 0,0 0,1 0,2 if there is no noise
|
||||
|
||||
// Create new state variable
|
||||
Symbol x0('x',0);
|
||||
Key x0 = X(0);
|
||||
ordering->push_back(x0);
|
||||
|
||||
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
|
||||
// This is equivalent to x_0 and P_0
|
||||
Point2 x_initial(0,0);
|
||||
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
|
||||
SharedDiagonal P_initial = noiseModel::Isotropic::Sigma(2, 0.1);
|
||||
|
||||
// Create a JacobianFactor directly - this represents the prior constraint on x0
|
||||
JacobianFactor::shared_ptr factor1(
|
||||
new JacobianFactor(x0, P_initial->R(), Vector::Zero(2),
|
||||
noiseModel::Unit::Create(2)));
|
||||
auto factor1 = std::make_shared<JacobianFactor>(
|
||||
x0,
|
||||
P_initial->R(),
|
||||
Vector::Zero(2),
|
||||
noiseModel::Unit::Create(2));
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x0, x_initial);
|
||||
|
@ -91,11 +94,11 @@ int main() {
|
|||
// so, difference = x_{t+1} - x_{t} = F*x_{t} + B*u_{t} - I*x_{t}
|
||||
// = (F - I)*x_{t} + B*u_{t}
|
||||
// = B*u_{t} (for our example)
|
||||
Symbol x1('x',1);
|
||||
Key x1 = X(1);
|
||||
ordering->push_back(x1);
|
||||
|
||||
Point2 difference(1,0);
|
||||
SharedDiagonal Q = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
|
||||
SharedDiagonal Q = noiseModel::Isotropic::Sigma(2, 0.1);
|
||||
BetweenFactor<Point2> factor2(x0, x1, difference, Q);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x1, x_initial);
|
||||
|
@ -119,7 +122,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x1,P1 from the Bayes Network
|
||||
VectorValues result = bayesNet->optimize();
|
||||
Point2 x1_predict = linearizationPoints.at<Point2>(x1) + Point2(result[x1]);
|
||||
Point2 x1_predict = linearizationPoints.at<Point2>(x1) + result[x1];
|
||||
traits<Point2>::Print(x1_predict, "X1 Predict");
|
||||
|
||||
// Update the new linearization point to the new estimate
|
||||
|
@ -143,11 +146,11 @@ int main() {
|
|||
// -> b'' = b' - F(dx1' - dx1'')
|
||||
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
|
||||
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
|
||||
JacobianFactor::shared_ptr newPrior(new JacobianFactor(
|
||||
auto newPrior = std::make_shared<JacobianFactor>(
|
||||
x1,
|
||||
x1Conditional->R(),
|
||||
x1Conditional->d() - x1Conditional->R() * result[x1],
|
||||
x1Conditional->get_model()));
|
||||
x1Conditional->get_model());
|
||||
|
||||
// Ensure correct number of rows, that there is one variable, and that variable is x1
|
||||
assert(newPrior->rows() == x1Conditional->R().rows());
|
||||
|
@ -183,7 +186,7 @@ int main() {
|
|||
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
|
||||
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
|
||||
Point2 z1(1.0, 0.0);
|
||||
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
|
||||
SharedDiagonal R1 = noiseModel::Isotropic::Sigma(2, 0.25);
|
||||
PriorFactor<Point2> factor4(x1, z1, R1);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor4.linearize(linearizationPoints));
|
||||
|
@ -201,7 +204,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x1 from the Bayes Network
|
||||
VectorValues updatedResult = updatedBayesNet->optimize();
|
||||
Point2 x1_update = linearizationPoints.at<Point2>(x1) + Point2(updatedResult[x1]);
|
||||
Point2 x1_update = linearizationPoints.at<Point2>(x1) + updatedResult[x1];
|
||||
traits<Point2>::Print(x1_update, "X1 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -219,11 +222,11 @@ int main() {
|
|||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
|
||||
// the first key in the next iteration
|
||||
JacobianFactor::shared_ptr updatedPrior(new JacobianFactor(
|
||||
auto updatedPrior = std::make_shared<JacobianFactor>(
|
||||
x1,
|
||||
updatedConditional->R(),
|
||||
updatedConditional->d() - updatedConditional->R() * updatedResult[x1],
|
||||
updatedConditional->get_model()));
|
||||
updatedConditional->get_model());
|
||||
|
||||
// Ensure correct number of rows, that there is one variable, and that variable is x1
|
||||
assert(updatedPrior->rows() == updatedConditional->R().rows());
|
||||
|
@ -233,7 +236,7 @@ int main() {
|
|||
linearFactorGraph->push_back(updatedPrior);
|
||||
|
||||
// Create a key for the new state
|
||||
Symbol x2('x',2);
|
||||
Key x2 = X(2);
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
|
@ -242,7 +245,7 @@ int main() {
|
|||
|
||||
// Create a nonlinear factor describing the motion model (moving right again)
|
||||
Point2 difference2(1,0);
|
||||
SharedDiagonal Q2 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
|
||||
SharedDiagonal Q2 = noiseModel::Isotropic::Sigma(2, 0.1);
|
||||
BetweenFactor<Point2> factor6(x1, x2, difference2, Q2);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
|
@ -255,7 +258,7 @@ int main() {
|
|||
|
||||
// Extract the predicted state
|
||||
VectorValues prediction2Result = predictionBayesNet2->optimize();
|
||||
Point2 x2_predict = linearizationPoints.at<Point2>(x2) + Point2(prediction2Result[x2]);
|
||||
Point2 x2_predict = linearizationPoints.at<Point2>(x2) + prediction2Result[x2];
|
||||
traits<Point2>::Print(x2_predict, "X2 Predict");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -266,11 +269,11 @@ int main() {
|
|||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
JacobianFactor::shared_ptr prior2(new JacobianFactor(
|
||||
auto prior2 = std::make_shared<JacobianFactor>(
|
||||
x2,
|
||||
x2Conditional->R(),
|
||||
x2Conditional->d() - x2Conditional->R() * prediction2Result[x2],
|
||||
x2Conditional->get_model()));
|
||||
x2Conditional->d() - x2Conditional->R() * prediction2Result[x2],
|
||||
x2Conditional->get_model());
|
||||
|
||||
assert(prior2->rows() == x2Conditional->R().rows());
|
||||
assert(prior2->size() == 1);
|
||||
|
@ -303,7 +306,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
VectorValues updatedResult2 = updatedBayesNet2->optimize();
|
||||
Point2 x2_update = linearizationPoints.at<Point2>(x2) + Point2(updatedResult2[x2]);
|
||||
Point2 x2_update = linearizationPoints.at<Point2>(x2) + updatedResult2[x2];
|
||||
traits<Point2>::Print(x2_update, "X2 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -321,16 +324,16 @@ int main() {
|
|||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
Matrix updatedR2 = updatedConditional2->R();
|
||||
Vector updatedD2 = updatedConditional2->d() - updatedR2 * updatedResult2[x2];
|
||||
JacobianFactor::shared_ptr updatedPrior2(new JacobianFactor(
|
||||
auto updatedPrior2 = std::make_shared<JacobianFactor>(
|
||||
x2,
|
||||
updatedR2,
|
||||
updatedD2,
|
||||
updatedConditional2->get_model()));
|
||||
updatedConditional2->get_model());
|
||||
|
||||
linearFactorGraph->push_back(updatedPrior2);
|
||||
|
||||
// Create a key for the new state
|
||||
Symbol x3('x',3);
|
||||
Key x3 = X(3);
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
|
@ -339,7 +342,7 @@ int main() {
|
|||
|
||||
// Create a nonlinear factor describing the motion model
|
||||
Point2 difference3(1,0);
|
||||
SharedDiagonal Q3 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.1, 0.1).finished());
|
||||
SharedDiagonal Q3 = noiseModel::Isotropic::Sigma(2, 0.1);
|
||||
BetweenFactor<Point2> factor10(x2, x3, difference3, Q3);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
|
@ -352,7 +355,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x3 from the Bayes Network
|
||||
VectorValues prediction3Result = predictionBayesNet3->optimize();
|
||||
Point2 x3_predict = linearizationPoints.at<Point2>(x3) + Point2(prediction3Result[x3]);
|
||||
Point2 x3_predict = linearizationPoints.at<Point2>(x3) + prediction3Result[x3];
|
||||
traits<Point2>::Print(x3_predict, "X3 Predict");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
@ -365,11 +368,11 @@ int main() {
|
|||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
JacobianFactor::shared_ptr prior3(new JacobianFactor(
|
||||
x3,
|
||||
x3Conditional->R(),
|
||||
x3Conditional->d() - x3Conditional->R() * prediction3Result[x3],
|
||||
x3Conditional->get_model()));
|
||||
auto prior3 = std::make_shared<JacobianFactor>(
|
||||
x3,
|
||||
x3Conditional->R(),
|
||||
x3Conditional->d() - x3Conditional->R() * prediction3Result[x3],
|
||||
x3Conditional->get_model());
|
||||
|
||||
linearFactorGraph->push_back(prior3);
|
||||
|
||||
|
@ -379,7 +382,7 @@ int main() {
|
|||
|
||||
// And update using z3 ...
|
||||
Point2 z3(3.0, 0.0);
|
||||
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas((gtsam::Vector2() << 0.25, 0.25).finished());
|
||||
SharedDiagonal R3 = noiseModel::Isotropic::Sigma(2, 0.25);
|
||||
PriorFactor<Point2> factor12(x3, z3, R3);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
|
@ -398,7 +401,7 @@ int main() {
|
|||
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
VectorValues updatedResult3 = updatedBayesNet3->optimize();
|
||||
Point2 x3_update = linearizationPoints.at<Point2>(x3) + Point2(updatedResult3[x3]);
|
||||
Point2 x3_update = linearizationPoints.at<Point2>(x3) + updatedResult3[x3];
|
||||
traits<Point2>::Print(x3_update, "X3 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
|
|
|
@ -725,5 +725,13 @@ virtual class BatchFixedLagSmoother : gtsam::FixedLagSmoother {
|
|||
VALUE calculateEstimate(size_t key) const;
|
||||
};
|
||||
|
||||
#include <gtsam/nonlinear/ExtendedKalmanFilter.h>
|
||||
template<T = {gtsam::Point2, gtsam::Pose2, gtsam::Pose3}>
|
||||
class ExtendedKalmanFilter {
|
||||
ExtendedKalmanFilter(size_t key_initial, T x_initial, gtsam::noiseModel::Gaussian* P_initial);
|
||||
T predict(const gtsam::NoiseModelFactor& motionFactor);
|
||||
T update(const gtsam::NoiseModelFactor& measurementFactor);
|
||||
gtsam::JacobianFactor* Density() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue