Merge pull request #402 from borglab/feature/bayesnet_example

Two new discrete examples
release/4.3a0
Frank Dellaert 2020-07-13 10:22:25 -04:00 committed by GitHub
commit 52fcdb51a8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 459 additions and 247 deletions

View File

@ -0,0 +1,83 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNetExample.cpp
* @brief Discrete Bayes Net example with famous Asia Bayes Network
* @author Frank Dellaert
* @date JULY 10, 2020
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/inference/BayesNet-inst.h>
#include <iomanip>
using namespace std;
using namespace gtsam;
int main(int argc, char **argv) {
DiscreteBayesNet asia;
DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2), LungCancer(6, 2),
Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
asia.add(Asia % "99/1");
asia.add(Smoking % "50/50");
asia.add(Tuberculosis | Asia = "99/1 95/5");
asia.add(LungCancer | Smoking = "99/1 90/10");
asia.add(Bronchitis | Smoking = "70/30 40/60");
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
asia.add(XRay | Either = "95/5 2/98");
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
// print
vector<string> pretty = {"Asia", "Dyspnea", "XRay", "Tuberculosis",
"Smoking", "Either", "LungCancer", "Bronchitis"};
auto formatter = [pretty](Key key) { return pretty[key]; };
asia.print("Asia", formatter);
// Convert to factor graph
DiscreteFactorGraph fg(asia);
// Create solver and eliminate
Ordering ordering;
ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7);
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
// solve
DiscreteFactor::sharedValues mpe = chordal->optimize();
GTSAM_PRINT(*mpe);
// We can also build a Bayes tree (directed junction tree).
// The elimination order above will do fine:
auto bayesTree = fg.eliminateMultifrontal(ordering);
bayesTree->print("bayesTree", formatter);
// add evidence, we were in Asia and we have dyspnea
fg.add(Asia, "0 1");
fg.add(Dyspnea, "0 1");
// solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
DiscreteFactor::sharedValues mpe2 = chordal2->optimize();
GTSAM_PRINT(*mpe2);
// We can also sample from it
cout << "\n10 samples:" << endl;
for (size_t i = 0; i < 10; i++) {
DiscreteFactor::sharedValues sample = chordal2->sample();
GTSAM_PRINT(*sample);
}
return 0;
}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNet_graph.cpp
* @file DiscreteBayesNet_FG.cpp
* @brief Discrete Bayes Net example using Factor Graphs
* @author Abhijit
* @date Jun 4, 2012

94
examples/HMMExample.cpp Normal file
View File

@ -0,0 +1,94 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNetExample.cpp
* @brief Hidden Markov Model example, discrete.
* @author Frank Dellaert
* @date July 12, 2020
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/inference/BayesNet-inst.h>
#include <iomanip>
#include <sstream>
using namespace std;
using namespace gtsam;
int main(int argc, char **argv) {
const int nrNodes = 4;
const size_t nrStates = 3;
// Define variables as well as ordering
Ordering ordering;
vector<DiscreteKey> keys;
for (int k = 0; k < nrNodes; k++) {
DiscreteKey key_i(k, nrStates);
keys.push_back(key_i);
ordering.emplace_back(k);
}
// Create HMM as a DiscreteBayesNet
DiscreteBayesNet hmm;
// Define backbone
const string transition = "8/1/1 1/8/1 1/1/8";
for (int k = 1; k < nrNodes; k++) {
hmm.add(keys[k] | keys[k - 1] = transition);
}
// Add some measurements, not needed for all time steps!
hmm.add(keys[0] % "7/2/1");
hmm.add(keys[1] % "1/9/0");
hmm.add(keys.back() % "5/4/1");
// print
hmm.print("HMM");
// Convert to factor graph
DiscreteFactorGraph factorGraph(hmm);
// Create solver and eliminate
// This will create a DAG ordered with arrow of time reversed
DiscreteBayesNet::shared_ptr chordal =
factorGraph.eliminateSequential(ordering);
chordal->print("Eliminated");
// solve
DiscreteFactor::sharedValues mpe = chordal->optimize();
GTSAM_PRINT(*mpe);
// We can also sample from it
cout << "\n10 samples:" << endl;
for (size_t k = 0; k < 10; k++) {
DiscreteFactor::sharedValues sample = chordal->sample();
GTSAM_PRINT(*sample);
}
// Or compute the marginals. This re-eliminates the FG into a Bayes tree
cout << "\nComputing Node Marginals .." << endl;
DiscreteMarginals marginals(factorGraph);
for (int k = 0; k < nrNodes; k++) {
Vector margProbs = marginals.marginalProbabilities(keys[k]);
stringstream ss;
ss << "marginal " << k;
print(margProbs, ss.str());
}
// TODO(frank): put in the glue to have DiscreteMarginals produce *arbitrary*
// joints efficiently, by the Bayes tree shortcut magic. All the code is there
// but it's not yet connected.
return 0;
}

View File

@ -27,6 +27,7 @@
#include <algorithm>
#include <random>
#include <stdexcept>
#include <string>
#include <vector>
using namespace std;
@ -61,16 +62,26 @@ DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint,
}
/* ******************************************************************************** */
DiscreteConditional::DiscreteConditional(const Signature& signature) :
BaseFactor(signature.discreteKeysParentsFirst(), signature.cpt()), BaseConditional(
1) {
}
DiscreteConditional::DiscreteConditional(const Signature& signature)
: BaseFactor(signature.discreteKeys(), signature.cpt()),
BaseConditional(1) {}
/* ******************************************************************************** */
void DiscreteConditional::print(const std::string& s,
const KeyFormatter& formatter) const {
std::cout << s << std::endl;
Potentials::print(s);
void DiscreteConditional::print(const string& s,
const KeyFormatter& formatter) const {
cout << s << " P( ";
for (const_iterator it = beginFrontals(); it != endFrontals(); ++it) {
cout << formatter(*it) << " ";
}
if (nrParents()) {
cout << "| ";
for (const_iterator it = beginParents(); it != endParents(); ++it) {
cout << formatter(*it) << " ";
}
}
cout << ")";
Potentials::print("");
cout << endl;
}
/* ******************************************************************************** */
@ -173,55 +184,28 @@ size_t DiscreteConditional::solve(const Values& parentsValues) const {
/* ******************************************************************************** */
size_t DiscreteConditional::sample(const Values& parentsValues) const {
static mt19937 rng(2); // random number generator
bool debug = ISDEBUG("DiscreteConditional::sample");
static mt19937 rng(2); // random number generator
// Get the correct conditional density
ADT pFS = choose(parentsValues); // P(F|S=parentsValues)
if (debug)
GTSAM_PRINT(pFS);
ADT pFS = choose(parentsValues); // P(F|S=parentsValues)
// get cumulative distribution function (cdf)
// TODO, only works for one key now, seems horribly slow this way
// TODO(Duy): only works for one key now, seems horribly slow this way
assert(nrFrontals() == 1);
Key j = (firstFrontalKey());
size_t nj = cardinality(j);
vector<double> cdf(nj);
Key key = firstFrontalKey();
size_t nj = cardinality(key);
vector<double> p(nj);
Values frontals;
double sum = 0;
for (size_t value = 0; value < nj; value++) {
frontals[j] = value;
double pValueS = pFS(frontals); // P(F=value|S=parentsValues)
sum += pValueS; // accumulate
if (debug)
cout << sum << " ";
if (pValueS == 1) {
if (debug)
cout << "--> " << value << endl;
return value; // shortcut exit
frontals[key] = value;
p[value] = pFS(frontals); // P(F=value|S=parentsValues)
if (p[value] == 1.0) {
return value; // shortcut exit
}
cdf[value] = sum;
}
// inspired by http://www.boost.org/doc/libs/1_46_1/doc/html/boost_random/tutorial.html
uniform_real_distribution<double> dist(0, cdf.back());
size_t sampled = lower_bound(cdf.begin(), cdf.end(), dist(rng)) - cdf.begin();
if (debug)
cout << "-> " << sampled << endl;
return sampled;
return 0;
std::discrete_distribution<size_t> distribution(p.begin(), p.end());
return distribution(rng);
}
/* ******************************************************************************** */
//void DiscreteConditional::permuteWithInverse(
// const Permutation& inversePermutation) {
// IndexConditionalOrdered::permuteWithInverse(inversePermutation);
// Potentials::permuteWithInverse(inversePermutation);
//}
/* ******************************************************************************** */
}// namespace

View File

@ -15,50 +15,52 @@
* @author Frank Dellaert
*/
#include <gtsam/discrete/Potentials.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/Potentials.h>
#include <boost/format.hpp>
#include <string>
using namespace std;
namespace gtsam {
// explicit instantiation
template class DecisionTree<Key, double> ;
template class AlgebraicDecisionTree<Key> ;
// explicit instantiation
template class DecisionTree<Key, double>;
template class AlgebraicDecisionTree<Key>;
/* ************************************************************************* */
double Potentials::safe_div(const double& a, const double& b) {
// cout << boost::format("%g / %g = %g\n") % a % b % ((a == 0) ? 0 : (a / b));
// The use for safe_div is when we divide the product factor by the sum factor.
// If the product or sum is zero, we accord zero probability to the event.
return (a == 0 || b == 0) ? 0 : (a / b);
}
/* ************************************************************************* */
double Potentials::safe_div(const double& a, const double& b) {
// cout << boost::format("%g / %g = %g\n") % a % b % ((a == 0) ? 0 : (a / b));
// The use for safe_div is when we divide the product factor by the sum
// factor. If the product or sum is zero, we accord zero probability to the
// event.
return (a == 0 || b == 0) ? 0 : (a / b);
}
/* ******************************************************************************** */
Potentials::Potentials() :
ADT(1.0) {
}
/* ********************************************************************************
*/
Potentials::Potentials() : ADT(1.0) {}
/* ******************************************************************************** */
Potentials::Potentials(const DiscreteKeys& keys, const ADT& decisionTree) :
ADT(decisionTree), cardinalities_(keys.cardinalities()) {
}
/* ********************************************************************************
*/
Potentials::Potentials(const DiscreteKeys& keys, const ADT& decisionTree)
: ADT(decisionTree), cardinalities_(keys.cardinalities()) {}
/* ************************************************************************* */
bool Potentials::equals(const Potentials& other, double tol) const {
return ADT::equals(other, tol);
}
/* ************************************************************************* */
bool Potentials::equals(const Potentials& other, double tol) const {
return ADT::equals(other, tol);
}
/* ************************************************************************* */
void Potentials::print(const string& s,
const KeyFormatter& formatter) const {
cout << s << "\n Cardinalities: ";
for(const DiscreteKey& key: cardinalities_)
cout << formatter(key.first) << "=" << formatter(key.second) << " ";
cout << endl;
ADT::print(" ");
}
/* ************************************************************************* */
void Potentials::print(const string& s, const KeyFormatter& formatter) const {
cout << s << "\n Cardinalities: {";
for (const DiscreteKey& key : cardinalities_)
cout << formatter(key.first) << ":" << key.second << ", ";
cout << "}" << endl;
ADT::print(" ");
}
//
// /* ************************************************************************* */
// template<class P>
@ -95,4 +97,4 @@ namespace gtsam {
/* ************************************************************************* */
} // namespace gtsam
} // namespace gtsam

View File

@ -122,28 +122,30 @@ namespace gtsam {
key_(key) {
}
DiscreteKeys Signature::discreteKeysParentsFirst() const {
DiscreteKeys Signature::discreteKeys() const {
DiscreteKeys keys;
for(const DiscreteKey& key: parents_)
keys.push_back(key);
keys.push_back(key_);
for (const DiscreteKey& key : parents_) keys.push_back(key);
return keys;
}
KeyVector Signature::indices() const {
KeyVector js;
js.push_back(key_.first);
for(const DiscreteKey& key: parents_)
js.push_back(key.first);
for (const DiscreteKey& key : parents_) js.push_back(key.first);
return js;
}
vector<double> Signature::cpt() const {
vector<double> cpt;
if (table_) {
for(const Row& row: *table_)
for(const double& x: row)
cpt.push_back(x);
const size_t nrStates = table_->at(0).size();
for (size_t j = 0; j < nrStates; j++) {
for (const Row& row : *table_) {
assert(row.size() == nrStates);
cpt.push_back(row[j]);
}
}
}
return cpt;
}

View File

@ -86,8 +86,8 @@ namespace gtsam {
return parents_;
}
/** All keys, with variable key last */
DiscreteKeys discreteKeysParentsFirst() const;
/** All keys, with variable key first */
DiscreteKeys discreteKeys() const;
/** All key indices, with variable key first */
KeyVector indices() const;

View File

@ -132,7 +132,7 @@ TEST(ADT, example3)
/** Convert Signature into CPT */
ADT create(const Signature& signature) {
ADT p(signature.discreteKeysParentsFirst(), signature.cpt());
ADT p(signature.discreteKeys(), signature.cpt());
static size_t count = 0;
const DiscreteKey& key = signature.key();
string dotfile = (boost::format("CPT-%03d-%d") % ++count % key.first).str();
@ -181,19 +181,20 @@ TEST(ADT, joint)
dot(joint, "Asia-ASTLBEX");
joint = apply(joint, pD, &mul);
dot(joint, "Asia-ASTLBEXD");
EXPECT_LONGS_EQUAL(346, (long)muls);
EXPECT_LONGS_EQUAL(346, muls);
gttoc_(asiaJoint);
tictoc_getNode(asiaJointNode, asiaJoint);
elapsed = asiaJointNode->secs() + asiaJointNode->wall();
tictoc_reset_();
printCounts("Asia joint");
// Form P(A,S,T,L) = P(A) P(S) P(T|A) P(L|S)
ADT pASTL = pA;
pASTL = apply(pASTL, pS, &mul);
pASTL = apply(pASTL, pT, &mul);
pASTL = apply(pASTL, pL, &mul);
// test combine
// test combine to check that P(A) = \sum_{S,T,L} P(A,S,T,L)
ADT fAa = pASTL.combine(L, &add_).combine(T, &add_).combine(S, &add_);
EXPECT(assert_equal(pA, fAa));
ADT fAb = pASTL.combine(S, &add_).combine(T, &add_).combine(L, &add_);

View File

@ -18,110 +18,135 @@
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <gtsam/base/debug.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Vector.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/map.hpp>
#include <boost/assign/list_inserter.hpp>
#include <boost/assign/std/map.hpp>
using namespace boost::assign;
#include <iostream>
#include <string>
#include <vector>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
TEST(DiscreteBayesNet, Asia)
{
TEST(DiscreteBayesNet, bayesNet) {
DiscreteBayesNet bayesNet;
DiscreteKey Parent(0, 2), Child(1, 2);
auto prior = boost::make_shared<DiscreteConditional>(Parent % "6/4");
CHECK(assert_equal(Potentials::ADT({Parent}, "0.6 0.4"),
(Potentials::ADT)*prior));
bayesNet.push_back(prior);
auto conditional =
boost::make_shared<DiscreteConditional>(Child | Parent = "7/3 8/2");
EXPECT_LONGS_EQUAL(1, *(conditional->beginFrontals()));
Potentials::ADT expected(Child & Parent, "0.7 0.8 0.3 0.2");
CHECK(assert_equal(expected, (Potentials::ADT)*conditional));
bayesNet.push_back(conditional);
DiscreteFactorGraph fg(bayesNet);
LONGS_EQUAL(2, fg.back()->size());
// Check the marginals
const double expectedMarginal[2]{0.4, 0.6 * 0.3 + 0.4 * 0.2};
DiscreteMarginals marginals(fg);
for (size_t j = 0; j < 2; j++) {
Vector FT = marginals.marginalProbabilities(DiscreteKey(j, 2));
EXPECT_DOUBLES_EQUAL(expectedMarginal[j], FT[1], 1e-3);
EXPECT_DOUBLES_EQUAL(FT[0], 1.0 - FT[1], 1e-9);
}
}
/* ************************************************************************* */
TEST(DiscreteBayesNet, Asia) {
DiscreteBayesNet asia;
// DiscreteKey A("Asia"), S("Smoking"), T("Tuberculosis"), L("LungCancer"), B(
// "Bronchitis"), E("Either"), X("XRay"), D("Dyspnoea");
DiscreteKey A(0,2), S(4,2), T(3,2), L(6,2), B(7,2), E(5,2), X(2,2), D(1,2);
DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2), LungCancer(6, 2),
Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2);
// TODO: make a version that doesn't use the parser
asia.add(A % "99/1");
asia.add(S % "50/50");
asia.add(Asia % "99/1");
asia.add(Smoking % "50/50");
asia.add(T | A = "99/1 95/5");
asia.add(L | S = "99/1 90/10");
asia.add(B | S = "70/30 40/60");
asia.add(Tuberculosis | Asia = "99/1 95/5");
asia.add(LungCancer | Smoking = "99/1 90/10");
asia.add(Bronchitis | Smoking = "70/30 40/60");
asia.add((E | T, L) = "F T T T");
asia.add((Either | Tuberculosis, LungCancer) = "F T T T");
asia.add(X | E = "95/5 2/98");
// next lines are same as asia.add((D | E, B) = "9/1 2/8 3/7 1/9");
DiscreteConditional::shared_ptr actual =
boost::make_shared<DiscreteConditional>((D | E, B) = "9/1 2/8 3/7 1/9");
asia.push_back(actual);
// GTSAM_PRINT(asia);
asia.add(XRay | Either = "95/5 2/98");
asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9");
// Convert to factor graph
DiscreteFactorGraph fg(asia);
// GTSAM_PRINT(fg);
LONGS_EQUAL(3,fg.back()->size());
Potentials::ADT expected(B & D & E, "0.9 0.3 0.1 0.7 0.2 0.1 0.8 0.9");
CHECK(assert_equal(expected,(Potentials::ADT)*actual));
LONGS_EQUAL(3, fg.back()->size());
// Check the marginals we know (of the parent-less nodes)
DiscreteMarginals marginals(fg);
Vector2 va(0.99, 0.01), vs(0.5, 0.5);
EXPECT(assert_equal(va, marginals.marginalProbabilities(Asia)));
EXPECT(assert_equal(vs, marginals.marginalProbabilities(Smoking)));
// Create solver and eliminate
Ordering ordering;
ordering += Key(0),Key(1),Key(2),Key(3),Key(4),Key(5),Key(6),Key(7);
ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7);
DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering);
// GTSAM_PRINT(*chordal);
DiscreteConditional expected2(B % "11/9");
CHECK(assert_equal(expected2,*chordal->back()));
DiscreteConditional expected2(Bronchitis % "11/9");
EXPECT(assert_equal(expected2, *chordal->back()));
// solve
DiscreteFactor::sharedValues actualMPE = chordal->optimize();
DiscreteFactor::Values expectedMPE;
insert(expectedMPE)(A.first, 0)(D.first, 0)(X.first, 0)(T.first, 0)(S.first,
0)(E.first, 0)(L.first, 0)(B.first, 0);
insert(expectedMPE)(Asia.first, 0)(Dyspnea.first, 0)(XRay.first, 0)(
Tuberculosis.first, 0)(Smoking.first, 0)(Either.first, 0)(
LungCancer.first, 0)(Bronchitis.first, 0);
EXPECT(assert_equal(expectedMPE, *actualMPE));
// add evidence, we were in Asia and we have Dispnoea
fg.add(A, "0 1");
fg.add(D, "0 1");
// fg.product().dot("fg");
// add evidence, we were in Asia and we have dyspnea
fg.add(Asia, "0 1");
fg.add(Dyspnea, "0 1");
// solve again, now with evidence
DiscreteBayesNet::shared_ptr chordal2 = fg.eliminateSequential(ordering);
// GTSAM_PRINT(*chordal2);
DiscreteFactor::sharedValues actualMPE2 = chordal2->optimize();
DiscreteFactor::Values expectedMPE2;
insert(expectedMPE2)(A.first, 1)(D.first, 1)(X.first, 0)(T.first, 0)(S.first,
1)(E.first, 0)(L.first, 0)(B.first, 1);
insert(expectedMPE2)(Asia.first, 1)(Dyspnea.first, 1)(XRay.first, 0)(
Tuberculosis.first, 0)(Smoking.first, 1)(Either.first, 0)(
LungCancer.first, 0)(Bronchitis.first, 1);
EXPECT(assert_equal(expectedMPE2, *actualMPE2));
// now sample from it
DiscreteFactor::Values expectedSample;
SETDEBUG("DiscreteConditional::sample", false);
insert(expectedSample)(A.first, 1)(D.first, 1)(X.first, 1)(T.first, 0)(
S.first, 1)(E.first, 1)(L.first, 1)(B.first, 0);
insert(expectedSample)(Asia.first, 1)(Dyspnea.first, 1)(XRay.first, 1)(
Tuberculosis.first, 0)(Smoking.first, 1)(Either.first, 1)(
LungCancer.first, 1)(Bronchitis.first, 0);
DiscreteFactor::sharedValues actualSample = chordal2->sample();
EXPECT(assert_equal(expectedSample, *actualSample));
}
/* ************************************************************************* */
TEST_UNSAFE(DiscreteBayesNet, Sugar)
{
DiscreteKey T(0,2), L(1,2), E(2,2), D(3,2), C(8,3), S(7,2);
TEST_UNSAFE(DiscreteBayesNet, Sugar) {
DiscreteKey T(0, 2), L(1, 2), E(2, 2), C(8, 3), S(7, 2);
DiscreteBayesNet bn;
// test some mistakes
// add(bn, D);
// add(bn, D | E);
// add(bn, D | E = "blah");
// try logic
bn.add((E | T, L) = "OR");
bn.add((E | T, L) = "AND");
// // try multivalued
bn.add(C % "1/1/2");
bn.add(C | S = "1/1/2 5/2/3");
// try multivalued
bn.add(C % "1/1/2");
bn.add(C | S = "1/1/2 5/2/3");
}
/* ************************************************************************* */
@ -130,4 +155,3 @@ int main() {
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -80,6 +80,12 @@ TEST_UNSAFE(DiscreteBayesTree, ThinTree) {
bayesTree->saveGraph("/tmp/discreteBayesTree.dot");
}
// Check frontals and parents
for (size_t i : {13, 14, 9, 3, 2, 8, 1, 0, 10, 5, 4}) {
auto clique_i = (*bayesTree)[i];
EXPECT_LONGS_EQUAL(i, *(clique_i->conditional_->beginFrontals()));
}
auto R = bayesTree->roots().front();
// Check whether BN and BT give the same answer on all configurations
@ -104,16 +110,22 @@ TEST_UNSAFE(DiscreteBayesTree, ThinTree) {
double px = bayesTree->evaluate(x);
for (size_t i = 0; i < 15; i++)
if (x[i]) marginals[i] += px;
if (x[12] && x[14]) joint_12_14 += px;
if (x[9] && x[12] && x[14]) joint_9_12_14 += px;
if (x[8] && x[12] && x[14]) joint_8_12_14 += px;
if (x[12] && x[14]) {
joint_12_14 += px;
if (x[9]) joint_9_12_14 += px;
if (x[8]) joint_8_12_14 += px;
}
if (x[8] && x[12]) joint_8_12 += px;
if (x[8] && x[2]) joint82 += px;
if (x[1] && x[2]) joint12 += px;
if (x[2] && x[4]) joint24 += px;
if (x[4] && x[5]) joint45 += px;
if (x[4] && x[6]) joint46 += px;
if (x[4] && x[11]) joint_4_11 += px;
if (x[2]) {
if (x[8]) joint82 += px;
if (x[1]) joint12 += px;
}
if (x[4]) {
if (x[2]) joint24 += px;
if (x[5]) joint45 += px;
if (x[6]) joint46 += px;
if (x[11]) joint_4_11 += px;
}
if (x[11] && x[13]) {
joint_11_13 += px;
if (x[8] && x[12]) joint_8_11_12_13 += px;
@ -129,50 +141,50 @@ TEST_UNSAFE(DiscreteBayesTree, ThinTree) {
DiscreteFactor::Values all1 = allPosbValues.back();
// check separator marginal P(S0)
auto c = (*bayesTree)[0];
auto clique = (*bayesTree)[0];
DiscreteFactorGraph separatorMarginal0 =
c->separatorMarginal(EliminateDiscrete);
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
// check separator marginal P(S9), should be P(14)
c = (*bayesTree)[9];
clique = (*bayesTree)[9];
DiscreteFactorGraph separatorMarginal9 =
c->separatorMarginal(EliminateDiscrete);
clique->separatorMarginal(EliminateDiscrete);
DOUBLES_EQUAL(marginals[14], separatorMarginal9(all1), 1e-9);
// check separator marginal of root, should be empty
c = (*bayesTree)[11];
clique = (*bayesTree)[11];
DiscreteFactorGraph separatorMarginal11 =
c->separatorMarginal(EliminateDiscrete);
clique->separatorMarginal(EliminateDiscrete);
LONGS_EQUAL(0, separatorMarginal11.size());
// check shortcut P(S9||R) to root
c = (*bayesTree)[9];
DiscreteBayesNet shortcut = c->shortcut(R, EliminateDiscrete);
clique = (*bayesTree)[9];
DiscreteBayesNet shortcut = clique->shortcut(R, EliminateDiscrete);
LONGS_EQUAL(1, shortcut.size());
DOUBLES_EQUAL(joint_11_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// check shortcut P(S8||R) to root
c = (*bayesTree)[8];
shortcut = c->shortcut(R, EliminateDiscrete);
clique = (*bayesTree)[8];
shortcut = clique->shortcut(R, EliminateDiscrete);
DOUBLES_EQUAL(joint_11_12_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// check shortcut P(S2||R) to root
c = (*bayesTree)[2];
shortcut = c->shortcut(R, EliminateDiscrete);
clique = (*bayesTree)[2];
shortcut = clique->shortcut(R, EliminateDiscrete);
DOUBLES_EQUAL(joint_9_11_12_13 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// check shortcut P(S0||R) to root
c = (*bayesTree)[0];
shortcut = c->shortcut(R, EliminateDiscrete);
clique = (*bayesTree)[0];
shortcut = clique->shortcut(R, EliminateDiscrete);
DOUBLES_EQUAL(joint_8_11_12_13 / joint_11_13, shortcut.evaluate(all1), 1e-9);
// calculate all shortcuts to root
DiscreteBayesTree::Nodes cliques = bayesTree->nodes();
for (auto c : cliques) {
DiscreteBayesNet shortcut = c.second->shortcut(R, EliminateDiscrete);
for (auto clique : cliques) {
DiscreteBayesNet shortcut = clique.second->shortcut(R, EliminateDiscrete);
if (debug) {
c.second->conditional_->printSignature();
clique.second->conditional_->printSignature();
shortcut.print("shortcut:");
}
}

View File

@ -16,9 +16,9 @@
* @date Feb 14, 2011
*/
#include <boost/make_shared.hpp>
#include <boost/assign/std/map.hpp>
#include <boost/assign/std/vector.hpp>
#include <boost/make_shared.hpp>
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
@ -36,6 +36,11 @@ TEST( DiscreteConditional, constructors)
DiscreteConditional::shared_ptr expected1 = //
boost::make_shared<DiscreteConditional>(X | Y = "1/1 2/3 1/4");
EXPECT(expected1);
EXPECT_LONGS_EQUAL(0, *(expected1->beginFrontals()));
EXPECT_LONGS_EQUAL(2, *(expected1->beginParents()));
EXPECT(expected1->endParents() == expected1->end());
EXPECT(expected1->endFrontals() == expected1->beginParents());
DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
DiscreteConditional actual1(1, f1);
EXPECT(assert_equal(*expected1, actual1, 1e-9));
@ -43,71 +48,68 @@ TEST( DiscreteConditional, constructors)
DecisionTreeFactor f2(X & Y & Z,
"0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DiscreteConditional actual2(1, f2);
DecisionTreeFactor::shared_ptr actual2factor = actual2.toFactor();
// EXPECT(assert_equal(f2, *actual2factor, 1e-9));
EXPECT(assert_equal(f2 / *f2.sum(1), *actual2.toFactor(), 1e-9));
}
/* ************************************************************************* */
TEST( DiscreteConditional, constructors_alt_interface)
{
DiscreteKey X(0, 2), Y(2, 3), Z(1, 2); // watch ordering !
TEST(DiscreteConditional, constructors_alt_interface) {
DiscreteKey X(0, 2), Y(2, 3), Z(1, 2); // watch ordering !
Signature::Table table;
Signature::Row r1, r2, r3;
r1 += 1.0, 1.0; r2 += 2.0, 3.0; r3 += 1.0, 4.0;
r1 += 1.0, 1.0;
r2 += 2.0, 3.0;
r3 += 1.0, 4.0;
table += r1, r2, r3;
DiscreteConditional::shared_ptr expected1 = //
boost::make_shared<DiscreteConditional>(X | Y = table);
EXPECT(expected1);
auto actual1 = boost::make_shared<DiscreteConditional>(X | Y = table);
EXPECT(actual1);
DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
DiscreteConditional actual1(1, f1);
EXPECT(assert_equal(*expected1, actual1, 1e-9));
DiscreteConditional expected1(1, f1);
EXPECT(assert_equal(expected1, *actual1, 1e-9));
DecisionTreeFactor f2(X & Y & Z,
"0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DecisionTreeFactor f2(
X & Y & Z, "0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DiscreteConditional actual2(1, f2);
DecisionTreeFactor::shared_ptr actual2factor = actual2.toFactor();
// EXPECT(assert_equal(f2, *actual2factor, 1e-9));
EXPECT(assert_equal(f2 / *f2.sum(1), *actual2.toFactor(), 1e-9));
}
/* ************************************************************************* */
TEST( DiscreteConditional, constructors2)
{
TEST(DiscreteConditional, constructors2) {
// Declare keys and ordering
DiscreteKey C(0,2), B(1,2);
DecisionTreeFactor expected(C & B, "0.8 0.75 0.2 0.25");
DiscreteKey C(0, 2), B(1, 2);
DecisionTreeFactor actual(C & B, "0.8 0.75 0.2 0.25");
Signature signature((C | B) = "4/1 3/1");
DiscreteConditional actual(signature);
DecisionTreeFactor::shared_ptr actualFactor = actual.toFactor();
EXPECT(assert_equal(expected, *actualFactor));
DiscreteConditional expected(signature);
DecisionTreeFactor::shared_ptr expectedFactor = expected.toFactor();
EXPECT(assert_equal(*expectedFactor, actual));
}
/* ************************************************************************* */
TEST( DiscreteConditional, constructors3)
{
TEST(DiscreteConditional, constructors3) {
// Declare keys and ordering
DiscreteKey C(0,2), B(1,2), A(2,2);
DecisionTreeFactor expected(C & B & A, "0.8 0.5 0.5 0.2 0.2 0.5 0.5 0.8");
DiscreteKey C(0, 2), B(1, 2), A(2, 2);
DecisionTreeFactor actual(C & B & A, "0.8 0.5 0.5 0.2 0.2 0.5 0.5 0.8");
Signature signature((C | B, A) = "4/1 1/1 1/1 1/4");
DiscreteConditional actual(signature);
DecisionTreeFactor::shared_ptr actualFactor = actual.toFactor();
EXPECT(assert_equal(expected, *actualFactor));
DiscreteConditional expected(signature);
DecisionTreeFactor::shared_ptr expectedFactor = expected.toFactor();
EXPECT(assert_equal(*expectedFactor, actual));
}
/* ************************************************************************* */
TEST( DiscreteConditional, Combine) {
TEST(DiscreteConditional, Combine) {
DiscreteKey A(0, 2), B(1, 2);
vector<DiscreteConditional::shared_ptr> c;
c.push_back(boost::make_shared<DiscreteConditional>(A | B = "1/2 2/1"));
c.push_back(boost::make_shared<DiscreteConditional>(B % "1/2"));
DecisionTreeFactor factor(A & B, "0.111111 0.444444 0.222222 0.222222");
DiscreteConditional expected(2, factor);
DiscreteConditional::shared_ptr actual = DiscreteConditional::Combine(
c.begin(), c.end());
EXPECT(assert_equal(expected, *actual,1e-5));
DiscreteConditional actual(2, factor);
auto expected = DiscreteConditional::Combine(c.begin(), c.end());
EXPECT(assert_equal(*expected, actual, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -146,8 +146,7 @@ TEST_UNSAFE( DiscreteMarginals, truss ) {
/* ************************************************************************* */
// Second truss example with non-trivial factors
TEST_UNSAFE( DiscreteMarginals, truss2 ) {
TEST_UNSAFE(DiscreteMarginals, truss2) {
const int nrNodes = 5;
const size_t nrStates = 2;
@ -160,40 +159,39 @@ TEST_UNSAFE( DiscreteMarginals, truss2 ) {
// create graph and add three truss potentials
DiscreteFactorGraph graph;
graph.add(key[0] & key[2] & key[4],"1 2 3 4 5 6 7 8");
graph.add(key[1] & key[3] & key[4],"1 2 3 4 5 6 7 8");
graph.add(key[2] & key[3] & key[4],"1 2 3 4 5 6 7 8");
graph.add(key[0] & key[2] & key[4], "1 2 3 4 5 6 7 8");
graph.add(key[1] & key[3] & key[4], "1 2 3 4 5 6 7 8");
graph.add(key[2] & key[3] & key[4], "1 2 3 4 5 6 7 8");
// Calculate the marginals by brute force
vector<DiscreteFactor::Values> allPosbValues = cartesianProduct(
key[0] & key[1] & key[2] & key[3] & key[4]);
vector<DiscreteFactor::Values> allPosbValues =
cartesianProduct(key[0] & key[1] & key[2] & key[3] & key[4]);
Vector T = Z_5x1, F = Z_5x1;
for (size_t i = 0; i < allPosbValues.size(); ++i) {
DiscreteFactor::Values x = allPosbValues[i];
double px = graph(x);
for (size_t j=0;j<5;j++)
if (x[j]) T[j]+=px; else F[j]+=px;
// cout << x[0] << " " << x[1] << " "<< x[2] << " " << x[3] << " " << x[4] << " :\t" << px << endl;
for (size_t j = 0; j < 5; j++)
if (x[j])
T[j] += px;
else
F[j] += px;
}
// Check all marginals given by a sequential solver and Marginals
// DiscreteSequentialSolver solver(graph);
// DiscreteSequentialSolver solver(graph);
DiscreteMarginals marginals(graph);
for (size_t j=0;j<5;j++) {
double sum = T[j]+F[j];
T[j]/=sum;
F[j]/=sum;
// // solver
// Vector actualV = solver.marginalProbabilities(key[j]);
// EXPECT(assert_equal((Vector(2) << F[j], T[j]), actualV));
for (size_t j = 0; j < 5; j++) {
double sum = T[j] + F[j];
T[j] /= sum;
F[j] /= sum;
// Marginals
vector<double> table;
table += F[j],T[j];
DecisionTreeFactor expectedM(key[j],table);
table += F[j], T[j];
DecisionTreeFactor expectedM(key[j], table);
DiscreteFactor::shared_ptr actualM = marginals(j);
EXPECT(assert_equal(expectedM, *boost::dynamic_pointer_cast<DecisionTreeFactor>(actualM)));
EXPECT(assert_equal(
expectedM, *boost::dynamic_pointer_cast<DecisionTreeFactor>(actualM)));
}
}

View File

@ -11,36 +11,43 @@
/**
* @file testSignature
* @brief Tests focusing on the details of Signatures to evaluate boost compliance
* @brief Tests focusing on the details of Signatures to evaluate boost
* compliance
* @author Alex Cunningham
* @date Sept 19th 2011
*/
#include <boost/assign/std/vector.hpp>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/Signature.h>
#include <boost/assign/std/vector.hpp>
#include <vector>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
DiscreteKey X(0,2), Y(1,3), Z(2,2);
DiscreteKey X(0, 2), Y(1, 3), Z(2, 2);
/* ************************************************************************* */
TEST(testSignature, simple_conditional) {
Signature sig(X | Y = "1/1 2/3 1/4");
Signature::Table table = *sig.table();
vector<double> row[3]{{0.5, 0.5}, {0.4, 0.6}, {0.2, 0.8}};
CHECK(row[0] == table[0]);
CHECK(row[1] == table[1]);
CHECK(row[2] == table[2]);
DiscreteKey actKey = sig.key();
LONGS_EQUAL((long)X.first, (long)actKey.first);
LONGS_EQUAL(X.first, actKey.first);
DiscreteKeys actKeys = sig.discreteKeysParentsFirst();
LONGS_EQUAL(2, (long)actKeys.size());
LONGS_EQUAL((long)Y.first, (long)actKeys.front().first);
LONGS_EQUAL((long)X.first, (long)actKeys.back().first);
DiscreteKeys actKeys = sig.discreteKeys();
LONGS_EQUAL(2, actKeys.size());
LONGS_EQUAL(X.first, actKeys.front().first);
LONGS_EQUAL(Y.first, actKeys.back().first);
vector<double> actCpt = sig.cpt();
EXPECT_LONGS_EQUAL(6, (long)actCpt.size());
EXPECT_LONGS_EQUAL(6, actCpt.size());
}
/* ************************************************************************* */
@ -54,17 +61,20 @@ TEST(testSignature, simple_conditional_nonparser) {
Signature sig(X | Y = table);
DiscreteKey actKey = sig.key();
EXPECT_LONGS_EQUAL((long)X.first, (long)actKey.first);
EXPECT_LONGS_EQUAL(X.first, actKey.first);
DiscreteKeys actKeys = sig.discreteKeysParentsFirst();
LONGS_EQUAL(2, (long)actKeys.size());
LONGS_EQUAL((long)Y.first, (long)actKeys.front().first);
LONGS_EQUAL((long)X.first, (long)actKeys.back().first);
DiscreteKeys actKeys = sig.discreteKeys();
LONGS_EQUAL(2, actKeys.size());
LONGS_EQUAL(X.first, actKeys.front().first);
LONGS_EQUAL(Y.first, actKeys.back().first);
vector<double> actCpt = sig.cpt();
EXPECT_LONGS_EQUAL(6, (long)actCpt.size());
EXPECT_LONGS_EQUAL(6, actCpt.size());
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */