test Qr with old codebase fails
parent
c4ebab5e44
commit
52fc9cf4ba
|
@ -190,15 +190,7 @@ Vector6 Pose3::ChartAtOrigin::Local(const Pose3& pose, ChartJacobian Hpose) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Compute the 3x3 bottom-left block Q of the SE3 Expmap derivative matrix
|
||||
* J(xi) = [J_(w) Z_3x3;
|
||||
* Q J_(w)]
|
||||
* where J_(w) is the SO3 Expmap derivative.
|
||||
* (see Chirikjian11book2, pg 44, eq 10.95.
|
||||
* The closed-form formula is similar to formula 102 in Barfoot14tro)
|
||||
*/
|
||||
Matrix3 Pose3::computeQforExpmapDerivative(const Vector6& xi, double nearZeroThreshold) {
|
||||
Matrix3 Pose3::ComputeQforExpmapDerivative(const Vector6& xi, double nearZeroThreshold) {
|
||||
const auto w = xi.head<3>();
|
||||
const auto v = xi.tail<3>();
|
||||
const Matrix3 V = skewSymmetric(v);
|
||||
|
@ -230,8 +222,8 @@ Matrix3 Pose3::computeQforExpmapDerivative(const Vector6& xi, double nearZeroThr
|
|||
}
|
||||
else {
|
||||
Q = -0.5*V + 1./6.*(W*V + V*W - W*V*W)
|
||||
- 1./24.*(W*W*V + V*W*W - 3*W*V*W)
|
||||
+ 1./120.*(W*V*W*W + W*W*V*W);
|
||||
+ 1./24.*(W*W*V + V*W*W - 3*W*V*W)
|
||||
- 0.5*(1./24. + 3./120.)*(W*V*W*W + W*W*V*W);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -242,7 +234,7 @@ Matrix3 Pose3::computeQforExpmapDerivative(const Vector6& xi, double nearZeroThr
|
|||
Matrix6 Pose3::ExpmapDerivative(const Vector6& xi) {
|
||||
const Vector3 w = xi.head<3>();
|
||||
const Matrix3 Jw = Rot3::ExpmapDerivative(w);
|
||||
const Matrix3 Q = computeQforExpmapDerivative(xi);
|
||||
const Matrix3 Q = ComputeQforExpmapDerivative(xi);
|
||||
Matrix6 J;
|
||||
J << Jw, Z_3x3, Q, Jw;
|
||||
return J;
|
||||
|
@ -253,7 +245,7 @@ Matrix6 Pose3::LogmapDerivative(const Pose3& pose) {
|
|||
const Vector6 xi = Logmap(pose);
|
||||
const Vector3 w = xi.head<3>();
|
||||
const Matrix3 Jw = Rot3::LogmapDerivative(w);
|
||||
const Matrix3 Q = computeQforExpmapDerivative(xi);
|
||||
const Matrix3 Q = ComputeQforExpmapDerivative(xi);
|
||||
const Matrix3 Q2 = -Jw*Q*Jw;
|
||||
Matrix6 J;
|
||||
J << Jw, Z_3x3, Q2, Jw;
|
||||
|
|
|
@ -181,7 +181,16 @@ public:
|
|||
static Vector6 Local(const Pose3& pose, ChartJacobian Hpose = boost::none);
|
||||
};
|
||||
|
||||
static Matrix3 computeQforExpmapDerivative(
|
||||
/**
|
||||
* Compute the 3x3 bottom-left block Q of SE3 Expmap right derivative matrix
|
||||
* J_r(xi) = [J_(w) Z_3x3;
|
||||
* Q_r J_(w)]
|
||||
* where J_(w) is the SO3 Expmap right derivative.
|
||||
* (see Chirikjian11book2, pg 44, eq 10.95.
|
||||
* The closed-form formula is identical to formula 102 in Barfoot14tro where
|
||||
* Q_l of the SE3 Expmap left derivative matrix is given.
|
||||
*/
|
||||
static Matrix3 ComputeQforExpmapDerivative(
|
||||
const Vector6& xi, double nearZeroThreshold = 1e-5);
|
||||
|
||||
using LieGroup<Pose3, 6>::inverse; // version with derivative
|
||||
|
|
|
@ -807,6 +807,17 @@ TEST(Pose3, ExpmapDerivative2) {
|
|||
}
|
||||
}
|
||||
|
||||
TEST( Pose3, ExpmapDerivativeQr) {
|
||||
Vector6 w = Vector6::Random();
|
||||
w.head<3>().normalize();
|
||||
w.head<3>() = w.head<3>() * 0.9e-2;
|
||||
Matrix3 actualQr = Pose3::ComputeQforExpmapDerivative(w, 0.01);
|
||||
Matrix expectedH = numericalDerivative21<Pose3, Vector6,
|
||||
OptionalJacobian<6, 6> >(&Pose3::Expmap, w, boost::none);
|
||||
Matrix3 expectedQr = expectedH.bottomLeftCorner<3, 3>();
|
||||
EXPECT(assert_equal(expectedQr, actualQr, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Pose3, LogmapDerivative) {
|
||||
Matrix6 actualH;
|
||||
|
@ -818,15 +829,6 @@ TEST( Pose3, LogmapDerivative) {
|
|||
EXPECT(assert_equal(expectedH, actualH));
|
||||
}
|
||||
|
||||
TEST( Pose3, computeQforExpmapDerivative) {
|
||||
Vector6 w = Vector6::Random();
|
||||
w.head<3>().normalize();
|
||||
w.head<3>() = w.head<3>() * 0.09;
|
||||
Matrix3 Qexact = Pose3::computeQforExpmapDerivative(w);
|
||||
Matrix3 Qapprox = Pose3::computeQforExpmapDerivative(w, 0.1);
|
||||
EXPECT(assert_equal(Qapprox, Qexact, 1e-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector6 testDerivAdjoint(const Vector6& xi, const Vector6& v) {
|
||||
return Pose3::adjointMap(xi) * v;
|
||||
|
|
Loading…
Reference in New Issue