Merge remote-tracking branch 'origin/develop'

release/4.3a0
chrisbeall 2019-05-19 18:35:20 -07:00
commit 52e8db60dd
2666 changed files with 251284 additions and 101949 deletions

14
.gitignore vendored
View File

@ -1,4 +1,5 @@
/build*
/debug*
.idea
*.pyc
*.DS_Store
@ -7,5 +8,16 @@
/examples/Data/pose3example-rewritten.txt
*.txt.user
*.txt.user.6d59f0c
/python-build/
*.pydevproject
cython/venv
cython/gtsam.cpp
cython/gtsam.cpython-35m-darwin.so
cython/gtsam.pyx
cython/gtsam.so
cython/gtsam_wrapper.pxd
.vscode
.env
/.vs/
/CMakeSettings.json
# for QtCreator:
CMakeLists.txt.user*

View File

@ -1,6 +1,6 @@
project(GTSAM CXX C)
cmake_minimum_required(VERSION 2.6)
cmake_minimum_required(VERSION 3.0)
# new feature to Cmake Version > 2.8.12
# Mac ONLY. Define Relative Path on Mac OS
@ -55,46 +55,56 @@ endif()
if(GTSAM_UNSTABLE_AVAILABLE)
option(GTSAM_BUILD_UNSTABLE "Enable/Disable libgtsam_unstable" ON)
endif()
option(GTSAM_BUILD_STATIC_LIBRARY "Build a static gtsam library, instead of shared" OFF)
option(BUILD_SHARED_LIBS "Build shared gtsam library, instead of static" ON)
option(GTSAM_USE_QUATERNIONS "Enable/Disable using an internal Quaternion representation for rotations instead of rotation matrices. If enable, Rot3::EXPMAP is enforced by default." OFF)
option(GTSAM_POSE3_EXPMAP "Enable/Disable using Pose3::EXPMAP as the default mode. If disabled, Pose3::FIRST_ORDER will be used." OFF)
option(GTSAM_ROT3_EXPMAP "Ignore if GTSAM_USE_QUATERNIONS is OFF (Rot3::EXPMAP by default). Otherwise, enable Rot3::EXPMAP, or if disabled, use Rot3::CAYLEY." OFF)
option(GTSAM_ENABLE_CONSISTENCY_CHECKS "Enable/Disable expensive consistency checks" OFF)
option(GTSAM_WITH_TBB "Use Intel Threaded Building Blocks (TBB) if available" ON)
option(GTSAM_WITH_EIGEN_MKL "Eigen will use Intel MKL if available" ON)
option(GTSAM_WITH_EIGEN_MKL_OPENMP "Eigen, when using Intel MKL, will also use OpenMP for multithreading if available" ON)
option(GTSAM_WITH_EIGEN_MKL "Eigen will use Intel MKL if available" OFF)
option(GTSAM_WITH_EIGEN_MKL_OPENMP "Eigen, when using Intel MKL, will also use OpenMP for multithreading if available" OFF)
option(GTSAM_THROW_CHEIRALITY_EXCEPTION "Throw exception when a triangulated point is behind a camera" ON)
option(GTSAM_BUILD_PYTHON "Enable/Disable building & installation of Python module" OFF)
option(GTSAM_ALLOW_DEPRECATED_SINCE_V4 "Allow use of methods/functions deprecated in GTSAM 4" ON)
option(GTSAM_TYPEDEF_POINTS_TO_VECTORS "Typdef Point2 and Point3 to Eigen::Vector equivalents" OFF)
option(GTSAM_SUPPORT_NESTED_DISSECTION "Support Metis-based nested dissection" ON)
option(GTSAM_TANGENT_PREINTEGRATION "Use new ImuFactor with integration on tangent space" ON)
if(NOT MSVC AND NOT XCODE_VERSION)
option(GTSAM_BUILD_WITH_CCACHE "Use ccache compiler cache" ON)
endif()
# Options relating to MATLAB wrapper
# TODO: Check for matlab mex binary before handling building of binaries
option(GTSAM_INSTALL_MATLAB_TOOLBOX "Enable/Disable installation of matlab toolbox" OFF)
option(GTSAM_BUILD_WRAP "Enable/Disable building of matlab wrap utility (necessary for matlab interface)" ON)
option(GTSAM_INSTALL_CYTHON_TOOLBOX "Enable/Disable installation of Cython toolbox" OFF)
option(GTSAM_BUILD_WRAP "Enable/Disable building of matlab/cython wrap utility (necessary for matlab/cython interface)" ON)
set(GTSAM_PYTHON_VERSION "Default" CACHE STRING "The version of python to build the cython wrapper for (or Default)")
# Check / set dependent variables for MATLAB wrapper
if(GTSAM_INSTALL_MATLAB_TOOLBOX AND NOT GTSAM_BUILD_WRAP)
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX is enabled, please also enable GTSAM_BUILD_WRAP")
if((GTSAM_INSTALL_MATLAB_TOOLBOX OR GTSAM_INSTALL_CYTHON_TOOLBOX) AND NOT GTSAM_BUILD_WRAP)
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX or GTSAM_INSTALL_CYTHON_TOOLBOX is enabled, please also enable GTSAM_BUILD_WRAP")
endif()
if((GTSAM_INSTALL_MATLAB_TOOLBOX OR GTSAM_INSTALL_CYTHON_TOOLBOX) AND GTSAM_BUILD_TYPE_POSTFIXES)
set(CURRENT_POSTFIX ${CMAKE_${CMAKE_BUILD_TYPE}_POSTFIX})
if(NOT "${CURRENT_POSTFIX}" STREQUAL "")
message(FATAL_ERROR "Cannot use executable postfixes with the matlab or cython wrappers. Please disable GTSAM_BUILD_TYPE_POSTFIXES")
endif()
endif()
if(GTSAM_INSTALL_WRAP AND NOT GTSAM_BUILD_WRAP)
message(FATAL_ERROR "GTSAM_INSTALL_WRAP is enabled, please also enable GTSAM_BUILD_WRAP")
endif()
if(GTSAM_INSTALL_MATLAB_TOOLBOX AND GTSAM_BUILD_STATIC_LIBRARY)
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX and GTSAM_BUILD_STATIC_LIBRARY are both enabled. The MATLAB wrapper cannot be compiled with a static GTSAM library because mex modules are themselves shared libraries. If you want a self-contained mex module, enable GTSAM_MEX_BUILD_STATIC_MODULE instead of GTSAM_BUILD_STATIC_LIBRARY.")
endif()
if(GTSAM_BUILD_PYTHON AND GTSAM_ALLOW_DEPRECATED_SINCE_V4)
message(FATAL_ERROR "GTSAM_BUILD_PYTHON and GTSAM_ALLOW_DEPRECATED_SINCE_V4 are both enabled. The python module cannot be compiled with deprecated functions turned on. Turn one of the two options off.")
if(GTSAM_INSTALL_MATLAB_TOOLBOX AND NOT BUILD_SHARED_LIBS)
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX and BUILD_SHARED_LIBS=OFF. The MATLAB wrapper cannot be compiled with a static GTSAM library because mex modules are themselves shared libraries. If you want a self-contained mex module, enable GTSAM_MEX_BUILD_STATIC_MODULE instead of BUILD_SHARED_LIBS=OFF.")
endif()
if(GTSAM_INSTALL_MATLAB_TOOLBOX AND GTSAM_TYPEDEF_POINTS_TO_VECTORS)
message(FATAL_ERROR "GTSAM_INSTALL_MATLAB_TOOLBOX and GTSAM_TYPEDEF_POINTS_TO_VECTORS are both enabled. For now, the MATLAB toolbox cannot deal with this yet. Please turn one of the two options off.")
endif()
if(GTSAM_INSTALL_CYTHON_TOOLBOX AND GTSAM_TYPEDEF_POINTS_TO_VECTORS)
message(FATAL_ERROR "GTSAM_INSTALL_CYTHON_TOOLBOX and GTSAM_TYPEDEF_POINTS_TO_VECTORS are both enabled. For now, the CYTHON toolbox cannot deal with this yet. Please turn one of the two options off.")
endif()
# Flags for choosing default packaging tools
set(CPACK_SOURCE_GENERATOR "TGZ" CACHE STRING "CPack Default Source Generator")
set(CPACK_GENERATOR "TGZ" CACHE STRING "CPack Default Binary Generator")
@ -106,35 +116,78 @@ set(CPACK_GENERATOR "TGZ" CACHE STRING "CPack Default Binary Generator")
# BOOST_ROOT: path to install prefix for boost
# Boost_NO_SYSTEM_PATHS: set to true to keep the find script from ignoring BOOST_ROOT
# If using Boost shared libs, disable auto linking
if(MSVC)
# Some libraries, at least Boost Program Options, rely on this to export DLL symbols
# Disable autolinking
# By default, boost only builds static libraries on windows
set(Boost_USE_STATIC_LIBS ON) # only find static libs
# If we ever reset above on windows and, ...
# If we use Boost shared libs, disable auto linking.
# Some libraries, at least Boost Program Options, rely on this to export DLL symbols.
if(NOT Boost_USE_STATIC_LIBS)
add_definitions(-DBOOST_ALL_NO_LIB)
add_definitions(-DBOOST_ALL_DYN_LINK)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC BOOST_ALL_NO_LIB BOOST_ALL_DYN_LINK)
endif()
# Virtual memory range for PCH exceeded on VS2015
if(MSVC_VERSION LESS 1910) # older than VS2017
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE -Zm295)
endif()
endif()
find_package(Boost 1.43 COMPONENTS serialization system filesystem thread program_options date_time regex timer chrono)
# If building DLLs in MSVC, we need to avoid EIGEN_STATIC_ASSERT()
# or explicit instantiation will generate build errors.
# See: https://bitbucket.org/gtborg/gtsam/issues/417/fail-to-build-on-msvc-2017
#
if(MSVC AND BUILD_SHARED_LIBS)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC EIGEN_NO_STATIC_ASSERT)
endif()
# Store these in variables so they are automatically replicated in GTSAMConfig.cmake and such.
set(BOOST_FIND_MINIMUM_VERSION 1.43)
set(BOOST_FIND_MINIMUM_COMPONENTS serialization system filesystem thread program_options date_time timer chrono regex)
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${BOOST_FIND_MINIMUM_COMPONENTS})
# Required components
if(NOT Boost_SERIALIZATION_LIBRARY OR NOT Boost_SYSTEM_LIBRARY OR NOT Boost_FILESYSTEM_LIBRARY OR
NOT Boost_THREAD_LIBRARY OR NOT Boost_DATE_TIME_LIBRARY OR NOT Boost_REGEX_LIBRARY)
NOT Boost_THREAD_LIBRARY OR NOT Boost_DATE_TIME_LIBRARY)
message(FATAL_ERROR "Missing required Boost components >= v1.43, please install/upgrade Boost or configure your search paths.")
endif()
option(GTSAM_DISABLE_NEW_TIMERS "Disables using Boost.chrono for timing" OFF)
# Allow for not using the timer libraries on boost < 1.48 (GTSAM timing code falls back to old timer library)
option(GTSAM_DISABLE_NEW_TIMERS "Disables using Boost.chrono for timing" OFF)
# JLBC: This was once updated to target-based names (Boost::xxx), but it caused
# problems with Boost versions newer than FindBoost.cmake was prepared to handle,
# so we downgraded this to classic filenames-based variables, and manually adding
# the target_include_directories(xxx ${Boost_INCLUDE_DIR})
set(GTSAM_BOOST_LIBRARIES
${Boost_SERIALIZATION_LIBRARY} ${Boost_SYSTEM_LIBRARY} ${Boost_FILESYSTEM_LIBRARY}
${Boost_THREAD_LIBRARY} ${Boost_DATE_TIME_LIBRARY} ${Boost_REGEX_LIBRARY})
optimized
${Boost_SERIALIZATION_LIBRARY_RELEASE}
${Boost_SYSTEM_LIBRARY_RELEASE}
${Boost_FILESYSTEM_LIBRARY_RELEASE}
${Boost_THREAD_LIBRARY_RELEASE}
${Boost_DATE_TIME_LIBRARY_RELEASE}
${Boost_REGEX_LIBRARY_RELEASE}
debug
${Boost_SERIALIZATION_LIBRARY_DEBUG}
${Boost_SYSTEM_LIBRARY_DEBUG}
${Boost_FILESYSTEM_LIBRARY_DEBUG}
${Boost_THREAD_LIBRARY_DEBUG}
${Boost_DATE_TIME_LIBRARY_DEBUG}
${Boost_REGEX_LIBRARY_DEBUG}
)
message(STATUS "GTSAM_BOOST_LIBRARIES: ${GTSAM_BOOST_LIBRARIES}")
if (GTSAM_DISABLE_NEW_TIMERS)
message("WARNING: GTSAM timing instrumentation manually disabled")
add_definitions(-DGTSAM_DISABLE_NEW_TIMERS)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC DGTSAM_DISABLE_NEW_TIMERS)
else()
if(Boost_TIMER_LIBRARY)
list(APPEND GTSAM_BOOST_LIBRARIES ${Boost_TIMER_LIBRARY} ${Boost_CHRONO_LIBRARY})
list(APPEND GTSAM_BOOST_LIBRARIES
optimized
${Boost_TIMER_LIBRARY_RELEASE}
${Boost_CHRONO_LIBRARY_RELEASE}
debug
${Boost_TIMER_LIBRARY_DEBUG}
${Boost_CHRONO_LIBRARY_DEBUG}
)
else()
list(APPEND GTSAM_BOOST_LIBRARIES rt) # When using the header-only boost timer library, need -lrt
message("WARNING: GTSAM timing instrumentation will use the older, less accurate, Boost timer library because boost older than 1.48 was found.")
@ -144,29 +197,19 @@ endif()
if(NOT (${Boost_VERSION} LESS 105600))
message("Ignoring Boost restriction on optional lvalue assignment from rvalues")
add_definitions(-DBOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES -DBOOST_OPTIONAL_CONFIG_ALLOW_BINDING_TO_RVALUES)
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC BOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES BOOST_OPTIONAL_CONFIG_ALLOW_BINDING_TO_RVALUES)
endif()
###############################################################################
# Find TBB
find_package(TBB)
find_package(TBB COMPONENTS tbb tbbmalloc)
# Set up variables if we're using TBB
if(TBB_FOUND AND GTSAM_WITH_TBB)
set(GTSAM_USE_TBB 1) # This will go into config.h
include_directories(BEFORE ${TBB_INCLUDE_DIRS})
set(GTSAM_TBB_LIBRARIES "")
if(TBB_DEBUG_LIBRARIES)
foreach(lib ${TBB_LIBRARIES})
list(APPEND GTSAM_TBB_LIBRARIES optimized "${lib}")
endforeach()
foreach(lib ${TBB_DEBUG_LIBRARIES})
list(APPEND GTSAM_TBB_LIBRARIES debug "${lib}")
endforeach()
else()
set(GTSAM_TBB_LIBRARIES ${TBB_LIBRARIES})
endif()
list(APPEND GTSAM_ADDITIONAL_LIBRARIES ${GTSAM_TBB_LIBRARIES})
# all definitions and link requisites will go via imported targets:
# tbb & tbbmalloc
list(APPEND GTSAM_ADDITIONAL_LIBRARIES tbb tbbmalloc)
else()
set(GTSAM_USE_TBB 0) # This will go into config.h
endif()
@ -182,6 +225,20 @@ endif()
# Find Google perftools
find_package(GooglePerfTools)
###############################################################################
# Support ccache, if installed
if(NOT MSVC AND NOT XCODE_VERSION)
find_program(CCACHE_FOUND ccache)
if(CCACHE_FOUND)
if(GTSAM_BUILD_WITH_CCACHE)
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache)
set_property(GLOBAL PROPERTY RULE_LAUNCH_LINK ccache)
else()
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "")
set_property(GLOBAL PROPERTY RULE_LAUNCH_LINK "")
endif()
endif(CCACHE_FOUND)
endif()
###############################################################################
# Find MKL
@ -190,7 +247,6 @@ find_package(MKL)
if(MKL_FOUND AND GTSAM_WITH_EIGEN_MKL)
set(GTSAM_USE_EIGEN_MKL 1) # This will go into config.h
set(EIGEN_USE_MKL_ALL 1) # This will go into config.h - it makes Eigen use MKL
include_directories(${MKL_INCLUDE_DIR})
list(APPEND GTSAM_ADDITIONAL_LIBRARIES ${MKL_LIBRARIES})
# --no-as-needed is required with gcc according to the MKL link advisor
@ -225,30 +281,45 @@ option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', us
# Switch for using system Eigen or GTSAM-bundled Eigen
if(GTSAM_USE_SYSTEM_EIGEN)
find_package(Eigen3 REQUIRED)
include_directories(AFTER "${EIGEN3_INCLUDE_DIR}")
# Use generic Eigen include paths e.g. <Eigen/Core>
set(GTSAM_EIGEN_INCLUDE_PREFIX "${EIGEN3_INCLUDE_DIR}")
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "${EIGEN3_INCLUDE_DIR}")
# check if MKL is also enabled - can have one or the other, but not both!
# Note: Eigen >= v3.2.5 includes our patches
if(EIGEN_USE_MKL_ALL AND (EIGEN3_VERSION VERSION_LESS 3.2.5))
message(FATAL_ERROR "MKL requires at least Eigen 3.2.5, and your system appears to have an older version. Disable GTSAM_USE_SYSTEM_EIGEN to use GTSAM's copy of Eigen, or disable GTSAM_WITH_EIGEN_MKL")
endif()
# Check for Eigen version which doesn't work with MKL
# See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1527 for details.
if(EIGEN_USE_MKL_ALL AND (EIGEN3_VERSION VERSION_EQUAL 3.3.4))
message(FATAL_ERROR "MKL does not work with Eigen 3.3.4 because of a bug in Eigen. See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1527. Disable GTSAM_USE_SYSTEM_EIGEN to use GTSAM's copy of Eigen, disable GTSAM_WITH_EIGEN_MKL, or upgrade/patch your installation of Eigen.")
endif()
# The actual include directory (for BUILD cmake target interface):
set(GTSAM_EIGEN_INCLUDE_FOR_BUILD "${EIGEN3_INCLUDE_DIR}")
else()
# Use bundled Eigen include path.
# Clear any variables set by FindEigen3
if(EIGEN3_INCLUDE_DIR)
set(EIGEN3_INCLUDE_DIR NOTFOUND CACHE STRING "" FORCE)
endif()
# Add the bundled version of eigen to the include path so that it can still be included
# with #include <Eigen/Core>
include_directories(BEFORE "gtsam/3rdparty/Eigen/")
# set full path to be used by external projects
# this will be added to GTSAM_INCLUDE_DIR by gtsam_extra.cmake.in
set(GTSAM_EIGEN_INCLUDE_PREFIX "${CMAKE_INSTALL_PREFIX}/include/gtsam/3rdparty/Eigen/")
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "include/gtsam/3rdparty/Eigen/")
# The actual include directory (for BUILD cmake target interface):
set(GTSAM_EIGEN_INCLUDE_FOR_BUILD "${CMAKE_SOURCE_DIR}/gtsam/3rdparty/Eigen/")
endif()
if (MSVC)
if (BUILD_SHARED_LIBS)
# mute eigen static assert to avoid errors in shared lib
list(APPEND GTSAM_COMPILE_DEFINITIONS_PUBLIC DEIGEN_NO_STATIC_ASSERT)
endif()
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE "/wd4244") # Disable loss of precision which is thrown all over our Eigen
endif()
###############################################################################
@ -289,51 +360,29 @@ elseif("${GTSAM_DEFAULT_ALLOCATOR}" STREQUAL "tcmalloc")
list(APPEND GTSAM_ADDITIONAL_LIBRARIES "tcmalloc")
endif()
# Include boost - use 'BEFORE' so that a specific boost specified to CMake
# takes precedence over a system-installed one.
include_directories(BEFORE SYSTEM ${Boost_INCLUDE_DIR})
if(GTSAM_SUPPORT_NESTED_DISSECTION)
set(METIS_INCLUDE_DIRECTORIES
gtsam/3rdparty/metis/include
gtsam/3rdparty/metis/libmetis
gtsam/3rdparty/metis/GKlib)
else()
set(METIS_INCLUDE_DIRECTORIES)
endif()
# Add includes for source directories 'BEFORE' boost and any system include
# paths so that the compiler uses GTSAM headers in our source directory instead
# of any previously installed GTSAM headers.
include_directories(BEFORE
gtsam/3rdparty/SuiteSparse_config
gtsam/3rdparty/CCOLAMD/Include
${METIS_INCLUDE_DIRECTORIES}
${PROJECT_SOURCE_DIR}
${PROJECT_BINARY_DIR} # So we can include generated config header files
CppUnitLite)
if(MSVC)
add_definitions(-D_CRT_SECURE_NO_WARNINGS -D_SCL_SECURE_NO_WARNINGS)
add_definitions(/wd4251 /wd4275 /wd4251 /wd4661 /wd4344 /wd4503) # Disable non-DLL-exported base class and other warnings
list(APPEND GTSAM_COMPILE_DEFINITIONS_PRIVATE _CRT_SECURE_NO_WARNINGS _SCL_SECURE_NO_WARNINGS)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE /wd4251 /wd4275 /wd4251 /wd4661 /wd4344 /wd4503) # Disable non-DLL-exported base class and other warnings
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE /bigobj) # Allow large object files for template-based code
endif()
# GCC 4.8+ complains about local typedefs which we use for shared_ptr etc.
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8)
add_definitions(-Wno-unused-local-typedefs)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE -Wno-unused-local-typedefs)
endif()
endif()
# As of XCode 7, clang also complains about this
if(CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 7.0)
add_definitions(-Wno-unused-local-typedefs)
list(APPEND GTSAM_COMPILE_OPTIONS_PRIVATE -Wno-unused-local-typedefs)
endif()
endif()
if(GTSAM_ENABLE_CONSISTENCY_CHECKS)
add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS)
# This should be made PUBLIC if GTSAM_EXTRA_CONSISTENCY_CHECKS is someday used in a public .h
list(APPEND GTSAM_COMPILE_DEFINITIONS_PRIVATE GTSAM_EXTRA_CONSISTENCY_CHECKS)
endif()
###############################################################################
@ -359,29 +408,30 @@ add_subdirectory(examples)
# Build timing
add_subdirectory(timing)
# Build gtsam_unstable
if (GTSAM_BUILD_UNSTABLE)
add_subdirectory(gtsam_unstable)
endif(GTSAM_BUILD_UNSTABLE)
# Matlab toolbox
if (GTSAM_INSTALL_MATLAB_TOOLBOX)
add_subdirectory(matlab)
endif()
# Python wrap
if (GTSAM_BUILD_PYTHON)
include(GtsamPythonWrap)
# NOTE: The automatic generation of python wrapper from the gtsampy.h interface is
# not working yet, so we're using a handwritten wrapper files on python/handwritten.
# Once the python wrapping from the interface file is working, you can _swap_ the
# comments on the next lines
# wrap_and_install_python(gtsampy.h "${GTSAM_ADDITIONAL_LIBRARIES}" "")
add_subdirectory(python)
# Cython wrap
if (GTSAM_INSTALL_CYTHON_TOOLBOX)
set(GTSAM_INSTALL_CYTHON_TOOLBOX 1)
# Set up cache options
set(GTSAM_CYTHON_INSTALL_PATH "" CACHE PATH "Cython toolbox destination, blank defaults to CMAKE_INSTALL_PREFIX/cython")
if(NOT GTSAM_CYTHON_INSTALL_PATH)
set(GTSAM_CYTHON_INSTALL_PATH "${CMAKE_INSTALL_PREFIX}/cython")
endif()
set(GTSAM_EIGENCY_INSTALL_PATH ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)
add_subdirectory(cython)
else()
set(GTSAM_INSTALL_CYTHON_TOOLBOX 0) # This will go into config.h
endif()
# Build gtsam_unstable
if (GTSAM_BUILD_UNSTABLE)
add_subdirectory(gtsam_unstable)
endif(GTSAM_BUILD_UNSTABLE)
# Install config and export files
GtsamMakeConfigFile(GTSAM "${CMAKE_CURRENT_SOURCE_DIR}/gtsam_extra.cmake.in")
@ -437,12 +487,13 @@ print_config_flag(${GTSAM_BUILD_TIMING_ALWAYS} "Build timing scripts wit
if (DOXYGEN_FOUND)
print_config_flag(${GTSAM_BUILD_DOCS} "Build Docs ")
endif()
print_config_flag(${GTSAM_BUILD_STATIC_LIBRARY} "Build static GTSAM library instead of shared")
print_config_flag(${BUILD_SHARED_LIBS} "Build shared GTSAM libraries ")
print_config_flag(${GTSAM_BUILD_TYPE_POSTFIXES} "Put build type in library name ")
if(GTSAM_UNSTABLE_AVAILABLE)
print_config_flag(${GTSAM_BUILD_UNSTABLE} "Build libgtsam_unstable ")
endif()
string(TOUPPER "${CMAKE_BUILD_TYPE}" cmake_build_type_toupper)
print_config_flag(${GTSAM_BUILD_WITH_MARCH_NATIVE} "Build for native architecture ")
if(NOT MSVC AND NOT XCODE_VERSION)
message(STATUS " Build type : ${CMAKE_BUILD_TYPE}")
message(STATUS " C compilation flags : ${CMAKE_C_FLAGS} ${CMAKE_C_FLAGS_${cmake_build_type_toupper}}")
@ -480,6 +531,15 @@ else()
endif()
message(STATUS " Default allocator : ${GTSAM_DEFAULT_ALLOCATOR}")
if(NOT MSVC AND NOT XCODE_VERSION)
if(CCACHE_FOUND AND GTSAM_BUILD_WITH_CCACHE)
message(STATUS " Build with ccache : Yes")
elseif(CCACHE_FOUND)
message(STATUS " Build with ccache : ccache found but GTSAM_BUILD_WITH_CCACHE is disabled")
else()
message(STATUS " Build with ccache : No")
endif()
endif()
message(STATUS "Packaging flags ")
message(STATUS " CPack Source Generator : ${CPACK_SOURCE_GENERATOR}")
@ -491,22 +551,17 @@ print_config_flag(${GTSAM_ENABLE_CONSISTENCY_CHECKS} "Runtime consistency chec
print_config_flag(${GTSAM_ROT3_EXPMAP} "Rot3 retract is full ExpMap ")
print_config_flag(${GTSAM_POSE3_EXPMAP} "Pose3 retract is full ExpMap ")
print_config_flag(${GTSAM_ALLOW_DEPRECATED_SINCE_V4} "Deprecated in GTSAM 4 allowed ")
print_config_flag(${GTSAM_TYPEDEF_POINTS_TO_VECTORS} "Point3 is typedef to Vector3 ")
print_config_flag(${GTSAM_TYPEDEF_POINTS_TO_VECTORS} "Point3 is typedef to Vector3 ")
print_config_flag(${GTSAM_SUPPORT_NESTED_DISSECTION} "Metis-based Nested Dissection ")
print_config_flag(${GTSAM_TANGENT_PREINTEGRATION} "Use tangent-space preintegration")
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
message(STATUS "MATLAB toolbox flags ")
print_config_flag(${GTSAM_INSTALL_MATLAB_TOOLBOX} "Install matlab toolbox ")
print_config_flag(${GTSAM_BUILD_WRAP} "Build Wrap ")
message(STATUS "Python module flags ")
if(GTSAM_PYTHON_WARNINGS)
message(STATUS " Build python module : No - dependencies missing")
else()
print_config_flag(${GTSAM_BUILD_PYTHON} "Build python module ")
endif()
if(GTSAM_BUILD_PYTHON)
message(STATUS "Cython toolbox flags ")
print_config_flag(${GTSAM_INSTALL_CYTHON_TOOLBOX} "Install Cython toolbox ")
if(GTSAM_INSTALL_CYTHON_TOOLBOX)
message(STATUS " Python version : ${GTSAM_PYTHON_VERSION}")
endif()
message(STATUS "===============================================================")
@ -516,13 +571,10 @@ if(GTSAM_WITH_TBB AND NOT TBB_FOUND)
message(WARNING "TBB was not found - this is ok, but note that GTSAM parallelization will be disabled. Set GTSAM_WITH_TBB to 'Off' to avoid this warning.")
endif()
if(GTSAM_WITH_EIGEN_MKL AND NOT MKL_FOUND)
message(WARNING "MKL was not found - this is ok, but note that MKL yields better performance. Set GTSAM_WITH_EIGEN_MKL to 'Off' to disable this warning.")
message(WARNING "MKL was not found - this is ok, but note that MKL will be disabled. Set GTSAM_WITH_EIGEN_MKL to 'Off' to disable this warning. See INSTALL.md for notes on performance.")
endif()
if(GTSAM_WITH_EIGEN_MKL_OPENMP AND NOT OPENMP_FOUND AND MKL_FOUND)
message(WARNING "Your compiler does not support OpenMP - this is ok, but performance may be improved with OpenMP. Set GTSAM_WITH_EIGEN_MKL_OPENMP to 'Off' to avoid this warning.")
endif()
if(GTSAM_BUILD_PYTHON AND GTSAM_PYTHON_WARNINGS)
message(WARNING "${GTSAM_PYTHON_WARNINGS}")
message(WARNING "Your compiler does not support OpenMP. Set GTSAM_WITH_EIGEN_MKL_OPENMP to 'Off' to avoid this warning. See INSTALL.md for notes on performance.")
endif()
# Include CPack *after* all flags

View File

@ -6,6 +6,7 @@ file(GLOB cppunitlite_src "*.cpp")
add_library(CppUnitLite STATIC ${cppunitlite_src} ${cppunitlite_headers})
list(APPEND GTSAM_EXPORTED_TARGETS CppUnitLite)
set(GTSAM_EXPORTED_TARGETS "${GTSAM_EXPORTED_TARGETS}" PARENT_SCOPE)
target_include_directories(CppUnitLite PUBLIC ${Boost_INCLUDE_DIR}) # boost/lexical_cast.h
gtsam_assign_source_folders("${cppunitlite_headers};${cppunitlite_src}") # MSVC project structure

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -36,7 +36,7 @@ Test *Test::getNext() const
}
void Test::setNext(Test *test)
{
{
next_ = test;
}
@ -46,9 +46,9 @@ bool Test::check(long expected, long actual, TestResult& result, const std::stri
return true;
result.addFailure (
Failure (
name_,
name_,
boost::lexical_cast<std::string> (__FILE__),
__LINE__,
__LINE__,
boost::lexical_cast<std::string> (expected),
boost::lexical_cast<std::string> (actual)));
@ -63,10 +63,10 @@ bool Test::check(const std::string& expected, const std::string& actual, TestRes
return true;
result.addFailure (
Failure (
name_,
name_,
boost::lexical_cast<std::string> (__FILE__),
__LINE__,
expected,
__LINE__,
expected,
actual));
return false;

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -12,7 +12,7 @@
///////////////////////////////////////////////////////////////////////////////
//
// TEST.H
//
//
// This file contains the Test class along with the macros which make effective
// in the harness.
//
@ -66,7 +66,7 @@ protected:
virtual ~testGroup##testName##Test () {};\
void run (TestResult& result_);} \
testGroup##testName##Instance; \
void testGroup##testName##Test::run (TestResult& result_)
void testGroup##testName##Test::run (TestResult& result_)
/**
* Declare friend in a class to test its private methods

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -12,7 +12,7 @@
///////////////////////////////////////////////////////////////////////////////
//
// TESTHARNESS.H
//
//
// The primary include file for the framework.
//
///////////////////////////////////////////////////////////////////////////////

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -18,26 +18,26 @@
#include "TestResult.h"
#include "TestRegistry.h"
void TestRegistry::addTest (Test *test)
void TestRegistry::addTest (Test *test)
{
instance ().add (test);
}
int TestRegistry::runAllTests (TestResult& result)
int TestRegistry::runAllTests (TestResult& result)
{
return instance ().run (result);
}
TestRegistry& TestRegistry::instance ()
TestRegistry& TestRegistry::instance ()
{
static TestRegistry registry;
return registry;
}
void TestRegistry::add (Test *test)
void TestRegistry::add (Test *test)
{
if (tests == 0) {
test->setNext(0);
@ -52,7 +52,7 @@ void TestRegistry::add (Test *test)
}
int TestRegistry::run (TestResult& result)
int TestRegistry::run (TestResult& result)
{
result.testsStarted ();

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -12,9 +12,9 @@
///////////////////////////////////////////////////////////////////////////////
//
// TESTREGISTRY.H
//
// TestRegistry is a singleton collection of all the tests to run in a system.
//
//
// TestRegistry is a singleton collection of all the tests to run in a system.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef TESTREGISTRY_H
@ -38,7 +38,7 @@ private:
void add (Test *test);
int run (TestResult& result);
Test *tests;
Test *lastTest;

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -22,12 +22,12 @@ TestResult::TestResult ()
}
void TestResult::testsStarted ()
void TestResult::testsStarted ()
{
}
void TestResult::addFailure (const Failure& failure)
void TestResult::addFailure (const Failure& failure)
{
if (failure.lineNumber < 0) // allow for no line number
fprintf (stdout, "%s%s%s%s\n",
@ -48,7 +48,7 @@ void TestResult::addFailure (const Failure& failure)
}
void TestResult::testsEnded ()
void TestResult::testsEnded ()
{
if (failureCount > 0)
fprintf (stdout, "There were %d failures\n", failureCount);

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -12,10 +12,10 @@
///////////////////////////////////////////////////////////////////////////////
//
// TESTRESULT.H
//
//
// A TestResult is a collection of the history of some test runs. Right now
// it just collects failures.
//
//
///////////////////////////////////////////////////////////////////////////////
#ifndef TESTRESULT_H
@ -26,12 +26,12 @@ class Failure;
class TestResult
{
public:
TestResult ();
TestResult ();
virtual ~TestResult() {};
virtual void testsStarted ();
virtual void addFailure (const Failure& failure);
virtual void testsEnded ();
int getFailureCount() {return failureCount;}
private:

View File

@ -97,12 +97,24 @@ Note that in the Lie group case, the usual valid expressions for Retract and Loc
For Lie groups, the `exponential map` above is the most obvious mapping: it
associates straight lines in the tangent space with geodesics on the manifold
(and it's inverse, the log map). However, there are two cases in which we deviate from this:
(and it's inverse, the log map). However, there are several cases in which we deviate from this:
However, the exponential map is unnecessarily expensive for use in optimization. Hence, in GTSAM there is the option to provide a cheaper chart by means of the `ChartAtOrigin` struct in a class. This is done for *SE(2)*, *SO(3)* and *SE(3)* (see `Pose2`, `Rot3`, `Pose3`)
Most Lie groups we care about are *Matrix groups*, continuous sub-groups of *GL(n)*, the group of *n x n* invertible matrices. In this case, a lot of the derivatives calculations needed can be standardized, and this is done by the `LieGroup` superclass. You only need to provide an `AdjointMap` method.
A CRTP helper class `LieGroup` is available that can take a class and create some of the Lie group methods automatically. The class needs:
* operator* : implements group operator
* inverse: implements group inverse
* AdjointMap: maps tangent vectors according to group element
* Expmap/Logmap: exponential map and its inverse
* ChartAtOrigin: struct where you define Retract/Local at origin
To use, simply derive, but also say `using LieGroup<Class,N>::inverse` so you get an inverse with a derivative.
Finally, to create the traits automatically you can use `internal::LieGroupTraits<Class>`
Vector Space
------------

146
INSTALL
View File

@ -1,146 +0,0 @@
Quickstart
In the root library folder execute:
$] mkdir build
$] cd build
$] cmake ..
$] make check (optional, runs unit tests)
$] make install
Important Installation Notes
----------------------------
1)
GTSAM requires the following libraries to be installed on your system:
- BOOST version 1.43 or greater (install through Linux repositories or MacPorts)
- Cmake version 2.6 or higher
- Support for XCode 4.3 command line tools on Mac requires CMake 2.8.8 or higher
Optional dependent libraries:
- If TBB is installed and detectable by CMake GTSAM will use it automatically.
Ensure that CMake prints "Use Intel TBB : Yes". To disable the use of TBB,
disable the CMake flag GTSAM_WITH_TBB (enabled by default). On Ubuntu, TBB
may be installed from the Ubuntu repositories, and for other platforms it
may be downloaded from https://www.threadingbuildingblocks.org/
Tested compilers:
- GCC 4.2-4.7
- OSX Clang 2.9-5.0
- OSX GCC 4.2
- MSVC 2010, 2012
Tested systems:
- Ubuntu 11.04 - 13.10
- MacOS 10.6 - 10.9
- Windows 7, 8, 8.1
Known issues:
- MSVC 2013 is not yet supported because it cannot build the serialization module
of Boost 1.55 (or earlier).
2)
GTSAM makes extensive use of debug assertions, and we highly recommend you work
in Debug mode while developing (enabled by default). Likewise, it is imperative
that you switch to release mode when running finished code and for timing. GTSAM
will run up to 10x faster in Release mode! See the end of this document for
additional debugging tips.
3)
GTSAM has Doxygen documentation. To generate, run 'make doc' from your
build directory.
4)
The instructions below install the library to the default system install path and
build all components. From a terminal, starting in the root library folder,
execute commands as follows for an out-of-source build:
$] mkdir build
$] cd build
$] cmake ..
$] make check (optional, runs unit tests)
$] make install
This will build the library and unit tests, run all of the unit tests,
and then install the library itself.
- CMake Configuration Options and Details
GTSAM has a number of options that can be configured, which is best done with
one of the following:
ccmake the curses GUI for cmake
cmake-gui a real GUI for cmake
Important Options:
CMAKE_BUILD_TYPE: We support several build configurations for GTSAM (case insensitive)
Debug (default) All error checking options on, no optimization. Use for development.
Release Optimizations turned on, no debug symbols.
Timing Adds ENABLE_TIMING flag to provide statistics on operation
Profiling Standard configuration for use during profiling
RelWithDebInfo Same as Release, but with the -g flag for debug symbols
CMAKE_INSTALL_PREFIX: The install folder. The default is typically /usr/local/
To configure to install to your home directory, you could execute:
$] cmake -DCMAKE_INSTALL_PREFIX:PATH=$HOME ..
GTSAM_TOOLBOX_INSTALL_PATH: The Matlab toolbox will be installed in a subdirectory
of this folder, called 'gtsam'.
$] cmake -DGTSAM_TOOLBOX_INSTALL_PATH:PATH=$HOME/toolbox ..
GTSAM_BUILD_CONVENIENCE_LIBRARIES: This is a build option to allow for tests in
subfolders to be linked against convenience libraries rather than the full libgtsam.
Set with the command line as follows:
$] cmake -DGTSAM_BUILD_CONVENIENCE_LIBRARIES:OPTION=ON ..
ON (Default) This builds convenience libraries and links tests against them. This
option is suggested for gtsam developers, as it is possible to build
and run tests without first building the rest of the library, and
speeds up compilation for a single test. The downside of this option
is that it will build the entire library again to build the full
libgtsam library, so build/install will be slower.
OFF This will build all of libgtsam before any of the tests, and then
link all of the tests at once. This option is best for users of GTSAM,
as it avoids rebuilding the entirety of gtsam an extra time.
GTSAM_BUILD_UNSTABLE: Enable build and install for libgtsam_unstable library.
Set with the command line as follows:
$] cmake -DGTSAM_BUILD_UNSTABLE:OPTION=ON ..
ON When enabled, libgtsam_unstable will be built and installed with the
same options as libgtsam. In addition, if tests are enabled, the
unit tests will be built as well. The Matlab toolbox will also
be generated if the matlab toolbox is enabled, installing into a
folder called "gtsam_unstable".
OFF (Default) If disabled, no gtsam_unstable code will be included in build or install.
Check
"make check" will build and run all of the tests. Note that the tests will only be
built when using the "check" targets, to prevent "make install" from building the tests
unnecessarily. You can also run "make timing" to build all of the timing scripts.
To run check on a particular module only, run "make check.[subfolder]", so to run
just the geometry tests, run "make check.geometry". Individual tests can be run by
appending ".run" to the name of the test, for example, to run testMatrix, run
"make testMatrix.run".
MEX_COMMAND: Path to the mex compiler. Defaults to assume the path is included in your
shell's PATH environment variable. mex is installed with matlab at
$MATLABROOT/bin/mex
$MATLABROOT can be found by executing the command 'matlabroot' in MATLAB
Debugging tips:
Another useful debugging symbol is _GLIBCXX_DEBUG, which enables debug checks
and safe containers in the standard C++ library and makes problems much easier
to find.
NOTE: The native Snow Leopard g++ compiler/library contains a bug that makes
it impossible to use _GLIBCXX_DEBUG. MacPorts g++ compilers do work with it though.
NOTE: If _GLIBCXX_DEBUG is used to compile gtsam, anything that links against
gtsam will need to be compiled with _GLIBCXX_DEBUG as well, due to the use of
header-only Eigen.

195
INSTALL.md Normal file
View File

@ -0,0 +1,195 @@
# Quickstart
In the root library folder execute:
```sh
$ mkdir build
$ cd build
$ cmake ..
$ make check # (optional, runs unit tests)
$ make install
```
## Important Installation Notes
1. GTSAM requires the following libraries to be installed on your system:
- BOOST version 1.43 or greater (install through Linux repositories or MacPorts)
- Cmake version 3.0 or higher
- Support for XCode 4.3 command line tools on Mac requires CMake 2.8.8 or higher
Optional dependent libraries:
- If TBB is installed and detectable by CMake GTSAM will use it automatically.
Ensure that CMake prints "Use Intel TBB : Yes". To disable the use of TBB,
disable the CMake flag GTSAM_WITH_TBB (enabled by default). On Ubuntu, TBB
may be installed from the Ubuntu repositories, and for other platforms it
may be downloaded from https://www.threadingbuildingblocks.org/
- GTSAM may be configured to use MKL by toggling `GTSAM_WITH_EIGEN_MKL` and
`GTSAM_WITH_EIGEN_MKL_OPENMP` to `ON`; however, best performance is usually
achieved with MKL disabled. We therefore advise you to benchmark your problem
before using MKL.
Tested compilers:
- GCC 4.2-7.3
- OS X Clang 2.9-10.0
- OS X GCC 4.2
- MSVC 2010, 2012, 2017
Tested systems:
- Ubuntu 16.04 - 18.04
- MacOS 10.6 - 10.14
- Windows 7, 8, 8.1, 10
Known issues:
- MSVC 2013 is not yet supported because it cannot build the serialization module
of Boost 1.55 (or earlier).
2. GTSAM makes extensive use of debug assertions, and we highly recommend you work
in Debug mode while developing (enabled by default). Likewise, it is imperative
that you switch to release mode when running finished code and for timing. GTSAM
will run up to 10x faster in Release mode! See the end of this document for
additional debugging tips.
3. GTSAM has Doxygen documentation. To generate, run 'make doc' from your
build directory.
4. The instructions below install the library to the default system install path and
build all components. From a terminal, starting in the root library folder,
execute commands as follows for an out-of-source build:
```sh
$ mkdir build
$ cd build
$ cmake ..
$ make check (optional, runs unit tests)
$ make install
```
This will build the library and unit tests, run all of the unit tests,
and then install the library itself.
## CMake Configuration Options and Details
GTSAM has a number of options that can be configured, which is best done with
one of the following:
- ccmake the curses GUI for cmake
- cmake-gui a real GUI for cmake
### Important Options:
#### CMAKE_BUILD_TYPE
We support several build configurations for GTSAM (case insensitive)
```cmake -DCMAKE_BUILD_TYPE=[Option] ..```
- Debug (default) All error checking options on, no optimization. Use for development.
- Release Optimizations turned on, no debug symbols.
- Timing Adds ENABLE_TIMING flag to provide statistics on operation
- Profiling Standard configuration for use during profiling
- RelWithDebInfo Same as Release, but with the -g flag for debug symbols
#### CMAKE_INSTALL_PREFIX
The install folder. The default is typically `/usr/local/`.
To configure to install to your home directory, you could execute:
```cmake -DCMAKE_INSTALL_PREFIX:PATH=$HOME ..```
#### GTSAM_TOOLBOX_INSTALL_PATH
The Matlab toolbox will be installed in a subdirectory
of this folder, called 'gtsam'.
```cmake -DGTSAM_TOOLBOX_INSTALL_PATH:PATH=$HOME/toolbox ..```
#### GTSAM_BUILD_CONVENIENCE_LIBRARIES
This is a build option to allow for tests in subfolders to be linked against convenience libraries rather than the full libgtsam.
Set with the command line as follows:
```cmake -DGTSAM_BUILD_CONVENIENCE_LIBRARIES:OPTION=ON ..```
- ON (Default): This builds convenience libraries and links tests against them. This option is suggested for gtsam developers, as it is possible to build and run tests without first building the rest of the library, and speeds up compilation for a single test. The downside of this option is that it will build the entire library again to build the full libgtsam library, so build/install will be slower.
- OFF: This will build all of libgtsam before any of the tests, and then link all of the tests at once. This option is best for users of GTSAM, as it avoids rebuilding the entirety of gtsam an extra time.
#### GTSAM_BUILD_UNSTABLE
Enable build and install for libgtsam_unstable library.
Set with the command line as follows:
```cmake -DGTSAM_BUILD_UNSTABLE:OPTION=ON ..```
ON: When enabled, libgtsam_unstable will be built and installed with the same options as libgtsam. In addition, if tests are enabled, the unit tests will be built as well. The Matlab toolbox will also be generated if the matlab toolbox is enabled, installing into a folder called `gtsam_unstable`.
OFF (Default) If disabled, no `gtsam_unstable` code will be included in build or install.
## Check
`make check` will build and run all of the tests. Note that the tests will only be
built when using the "check" targets, to prevent `make install` from building the tests
unnecessarily. You can also run `make timing` to build all of the timing scripts.
To run check on a particular module only, run `make check.[subfolder]`, so to run
just the geometry tests, run `make check.geometry`. Individual tests can be run by
appending `.run` to the name of the test, for example, to run testMatrix, run
`make testMatrix.run`.
MEX_COMMAND: Path to the mex compiler. Defaults to assume the path is included in your shell's PATH environment variable. mex is installed with matlab at `$MATLABROOT/bin/mex`
$MATLABROOT can be found by executing the command `matlabroot` in MATLAB
## Performance
Here are some tips to get the best possible performance out of GTSAM.
1. Build in `Release` mode. GTSAM will run up to 10x faster compared to `Debug` mode.
2. Enable TBB. On modern processors with multiple cores, this can easily speed up
optimization by 30-50%. Please note that this may not be true for very small
problems where the overhead of dispatching work to multiple threads outweighs
the benefit. We recommend that you benchmark your problem with/without TBB.
3. Add `-march=native` to `GTSAM_CMAKE_CXX_FLAGS`. A performance gain of
25-30% can be expected on modern processors. Note that this affects the portability
of your executable. It may not run when copied to another system with older/different
processor architecture.
Also note that all dependent projects *must* be compiled with the same flag, or
seg-faults and other undefined behavior may result.
4. Possibly enable MKL. Please note that our benchmarks have shown that this helps only
in very limited cases, and actually hurts performance in the usual case. We therefore
recommend that you do *not* enable MKL, unless you have benchmarked it on
your problem and have verified that it improves performance.
## Debugging tips
Another useful debugging symbol is _GLIBCXX_DEBUG, which enables debug checks and safe containers in the standard C++ library and makes problems much easier to find.
NOTE: The native Snow Leopard g++ compiler/library contains a bug that makes it impossible to use _GLIBCXX_DEBUG. MacPorts g++ compilers do work with it though.
NOTE: If _GLIBCXX_DEBUG is used to compile gtsam, anything that links against gtsam will need to be compiled with _GLIBCXX_DEBUG as well, due to the use of header-only Eigen.
## Installing MKL on Linux
Intel has a guide for installing MKL on Linux through APT repositories at <https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo>.
After following the instructions, add the following to your `~/.bashrc` (and afterwards, open a new terminal before compiling GTSAM):
`LD_PRELOAD` need only be set if you are building the cython wrapper to use GTSAM from python.
```sh
source /opt/intel/mkl/bin/mklvars.sh intel64
export LD_PRELOAD="$LD_PRELOAD:/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so"
```
To use MKL in GTSAM pass the flag `-DGTSAM_WITH_EIGEN_MKL=ON` to cmake.
The `LD_PRELOAD` fix seems to be related to a well known problem with MKL which leads to lots of undefined symbol errors, for example:
- <https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/300857>
- <https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628976>
- <https://groups.google.com/a/continuum.io/forum/#!topic/anaconda/J3YGoef64z8>
Failing to specify `LD_PRELOAD` may lead to errors such as:
`ImportError: /opt/intel/mkl/lib/intel64/libmkl_vml_avx2.so: undefined symbol: mkl_serv_getenv`
or
`Intel MKL FATAL ERROR: Cannot load libmkl_avx2.so or libmkl_def.so.`
when importing GTSAM using the cython wrapper in python.

31
LICENSE
View File

@ -1,18 +1,25 @@
GTSAM is released under the simplified BSD license, reproduced in the file
LICENSE.BSD in this directory.
GTSAM contains two third party libraries, with documentation of licensing and
modifications as follows:
GTSAM contains several third party libraries, with documentation of licensing
and modifications as follows:
- CCOLAMD 2.73: Tim Davis' constrained column approximate minimum degree
- CCOLAMD 2.9.6: Tim Davis' constrained column approximate minimum degree
ordering library
- Included unmodified in gtsam/3rdparty/CCOLAMD and gtsam/3rdparty/UFconfig
- http://www.cise.ufl.edu/research/sparse
- Licenced under LGPL v2.1, provided in gtsam/3rdparty/CCOLAMD/Doc/lesser.txt
- Eigen 3.2: General C++ matrix and linear algebra library
- Modified with 3 patches that have been contributed back to the Eigen team:
- http://eigen.tuxfamily.org/bz/show_bug.cgi?id=704 (Householder QR MKL selection)
- http://eigen.tuxfamily.org/bz/show_bug.cgi?id=705 (Fix MKL LLT return code)
- http://eigen.tuxfamily.org/bz/show_bug.cgi?id=716 (Improved comma initialization)
- Included unmodified in gtsam/3rdparty/CCOLAMD and
gtsam/3rdparty/SuiteSparse_config
- http://faculty.cse.tamu.edu/davis/suitesparse.html
- Licenced under BSD-3, provided in gtsam/3rdparty/CCOLAMD/Doc/License.txt
- ceres: Google's nonlinear least-squares optimization library
- Includes only auto-diff/jet code, with minor modifications to includes
- http://ceres-solver.org/license.html
- Eigen 3.3.7: General C++ matrix and linear algebra library
- Licenced under MPL2, provided in gtsam/3rdparty/Eigen/COPYING.README
- Some code that is 3rd-party to Eigen is BSD and LGPL
- Some code that is 3rd-party to Eigen is BSD and LGPL
- GeographicLib 1.35: Charles Karney's geographic conversion utility library
- Included unmodified in gtsam/3rdparty/GeographicLib
- Licenced under MIT, provided in gtsam/3rdparty/GeographicLib/LICENSE.txt
- METIS 5.1.0: Graph partitioning and fill-reducing matrix ordering library
- Included unmodified in gtsam/3rdparty/metis
- Licenced under Apache License v 2.0, provided in
gtsam/3rdparty/metis/LICENSE.txt

View File

@ -30,13 +30,15 @@ $ make install
Prerequisites:
- [Boost](http://www.boost.org/users/download/) >= 1.43 (Ubuntu: `sudo apt-get install libboost-all-dev`)
- [CMake](http://www.cmake.org/cmake/resources/software.html) >= 2.6 (Ubuntu: `sudo apt-get install cmake`)
- [CMake](http://www.cmake.org/cmake/resources/software.html) >= 3.0 (Ubuntu: `sudo apt-get install cmake`)
- A modern compiler, i.e., at least gcc 4.7.3 on Linux.
Optional prerequisites - used automatically if findable by CMake:
- [Intel Threaded Building Blocks (TBB)](http://www.threadingbuildingblocks.org/) (Ubuntu: `sudo apt-get install libtbb-dev`)
- [Intel Math Kernel Library (MKL)](http://software.intel.com/en-us/intel-mkl)
- [Intel Math Kernel Library (MKL)](http://software.intel.com/en-us/intel-mkl) (Ubuntu: [installing using APT](https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python-apt-repo))
- See [INSTALL.md](INSTALL.md) for more installation information
- Note that MKL may not provide a speedup in all cases. Make sure to benchmark your problem with and without MKL.
GTSAM 4 Compatibility
---------------------
@ -54,7 +56,7 @@ GTSAM includes a state of the art IMU handling scheme based on
Our implementation improves on this using integration on the manifold, as detailed in
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, "Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors", Int. Conf. on Robotics and Automation (ICRA), 2014.
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, "Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors", Int. Conf. on Robotics and Automation (ICRA), 2014.
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, "IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation", Robotics: Science and Systems (RSS), 2015.
If you are using the factor in academic work, please cite the publications above.
@ -62,16 +64,19 @@ If you are using the factor in academic work, please cite the publications above
In GTSAM 4 a new and more efficient implementation, based on integrating on the NavState tangent space and detailed in docs/ImuFactor.pdf, is enabled by default. To switch to the RSS 2015 version, set the flag **GTSAM_TANGENT_PREINTEGRATION** to OFF.
Additional Information
----------------------
Read about important [`GTSAM-Concepts`](GTSAM-Concepts.md) here.
There is a [`GTSAM users Google group`](https://groups.google.com/forum/#!forum/gtsam-users) for general discussion.
See the [`INSTALL`](INSTALL) file for more detailed installation instructions.
Read about important [`GTSAM-Concepts`](GTSAM-Concepts.md) here. A primer on GTSAM Expressions,
which support (superfast) automatic differentiation,
can be found on the [GTSAM wiki on BitBucket](https://bitbucket.org/gtborg/gtsam/wiki/Home).
See the [`INSTALL`](INSTALL.md) file for more detailed installation instructions.
GTSAM is open source under the BSD license, see the [`LICENSE`](LICENSE) and [`LICENSE.BSD`](LICENSE.BSD) files.
Please see the [`examples/`](examples) directory and the [`USAGE`](USAGE.md) file for examples on how to use GTSAM.
GTSAM was developed in the lab of [Frank Dellaert](http://www.cc.gatech.edu/~dellaert) at the [Georgia Institute of Technology](http://www.gatech.edu), with the help of many contributors over the years, see [THANKS](THANKS).
GTSAM was developed in the lab of [Frank Dellaert](http://www.cc.gatech.edu/~dellaert) at the [Georgia Institute of Technology](http://www.gatech.edu), with the help of many contributors over the years, see [THANKS](THANKS).

2
THANKS
View File

@ -1,5 +1,6 @@
GTSAM was made possible by the efforts of many collaborators at Georgia Tech, listed below with their current afffiliation, if they left Tech:
* Jeremy Aguilon, Facebook
* Sungtae An
* Doru Balcan, Bank of America
* Chris Beall
@ -26,6 +27,7 @@ GTSAM was made possible by the efforts of many collaborators at Georgia Tech, li
* Natesh Srinivasan
* Alex Trevor
* Stephen Williams, BossaNova
* Matthew Broadway
at ETH, Zurich

15
bitbucket-pipelines.yml Normal file
View File

@ -0,0 +1,15 @@
# Built from sample configuration for C++ Make.
# Check https://confluence.atlassian.com/x/5Q4SMw for more examples.
# -----
# Our custom docker image from Docker Hub as the build environment.
image: dellaert/ubuntu-boost-tbb-eigen3:bionic
pipelines:
default:
- step:
script: # Modify the commands below to build your repository.
- mkdir build
- cd build
- cmake -DGTSAM_USE_SYSTEM_EIGEN=OFF -DGTSAM_USE_EIGEN_MKL=OFF ..
- make -j2
- make -j2 check

View File

@ -18,7 +18,10 @@ install(FILES
GtsamMakeConfigFile.cmake
GtsamMatlabWrap.cmake
GtsamPythonWrap.cmake
GtsamCythonWrap.cmake
GtsamTesting.cmake
FindCython.cmake
FindNumPy.cmake
README.html
DESTINATION "${SCRIPT_INSTALL_DIR}/GTSAMCMakeTools")

View File

@ -1,7 +1,7 @@
# - Config file for @CMAKE_PROJECT_NAME@
# It defines the following variables
# @PACKAGE_NAME@_INCLUDE_DIR - include directories for @CMAKE_PROJECT_NAME@
# Compute paths
get_filename_component(OUR_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
if(EXISTS "${OUR_CMAKE_DIR}/CMakeCache.txt")
@ -11,7 +11,11 @@ else()
# Find installed library
set(@PACKAGE_NAME@_INCLUDE_DIR "${OUR_CMAKE_DIR}/@CONF_REL_INCLUDE_DIR@" CACHE PATH "@PACKAGE_NAME@ include directory")
endif()
# Find dependencies, required by cmake exported targets:
include(CMakeFindDependencyMacro)
find_dependency(Boost @BOOST_FIND_MINIMUM_VERSION@ COMPONENTS @BOOST_FIND_MINIMUM_COMPONENTS@)
# Load exports
include(${OUR_CMAKE_DIR}/@PACKAGE_NAME@-exports.cmake)

81
cmake/FindCython.cmake Normal file
View File

@ -0,0 +1,81 @@
# Modifed from: https://github.com/nest/nest-simulator/blob/master/cmake/FindCython.cmake
#
# Find the Cython compiler.
#
# This code sets the following variables:
#
# CYTHON_FOUND
# CYTHON_PATH
# CYTHON_EXECUTABLE
# CYTHON_VERSION
#
# See also UseCython.cmake
#=============================================================================
# Copyright 2011 Kitware, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#=============================================================================
# Use the Cython executable that lives next to the Python executable
# if it is a local installation.
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT)
endif()
if ( PYTHONINTERP_FOUND )
execute_process( COMMAND "${PYTHON_EXECUTABLE}" "-c"
"import Cython; print(Cython.__path__[0])"
RESULT_VARIABLE RESULT
OUTPUT_VARIABLE CYTHON_PATH
OUTPUT_STRIP_TRAILING_WHITESPACE
)
endif ()
# RESULT=0 means ok
if ( NOT RESULT )
get_filename_component( _python_path ${PYTHON_EXECUTABLE} PATH )
find_program( CYTHON_EXECUTABLE
NAMES cython cython.bat cython3
HINTS ${_python_path}
)
endif ()
# RESULT=0 means ok
if ( NOT RESULT )
execute_process( COMMAND "${PYTHON_EXECUTABLE}" "-c"
"import Cython; print(Cython.__version__)"
RESULT_VARIABLE RESULT
OUTPUT_VARIABLE CYTHON_VAR_OUTPUT
ERROR_VARIABLE CYTHON_VAR_OUTPUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if ( RESULT EQUAL 0 )
string( REGEX REPLACE ".* ([0-9]+\\.[0-9]+(\\.[0-9]+)?).*" "\\1"
CYTHON_VERSION "${CYTHON_VAR_OUTPUT}" )
endif ()
endif ()
include( FindPackageHandleStandardArgs )
find_package_handle_standard_args( Cython
FOUND_VAR
CYTHON_FOUND
REQUIRED_VARS
CYTHON_PATH
CYTHON_EXECUTABLE
VERSION_VAR
CYTHON_VERSION
)

View File

@ -83,10 +83,20 @@ FIND_PATH(MKL_FFTW_INCLUDE_DIR
NO_DEFAULT_PATH
)
IF(WIN32)
IF(WIN32 AND MKL_ROOT_DIR)
SET(MKL_LIB_SEARCHPATH $ENV{ICC_LIB_DIR} $ENV{MKL_LIB_DIR} "${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}" "${MKL_ROOT_DIR}/../compiler" "${MKL_ROOT_DIR}/../compiler/lib/${MKL_ARCH_DIR}")
IF (MKL_INCLUDE_DIR MATCHES "10.")
IF(MKL_INCLUDE_DIR MATCHES "2017" OR MKL_INCLUDE_DIR MATCHES "2018")
IF(CMAKE_CL_64)
SET(MKL_LIBS mkl_core mkl_intel_lp64 mkl_lapack95_lp64 mkl_blas95_lp64)
ELSE()
SET(MKL_LIBS mkl_core mkl_intel_s mkl_lapack95 mkl_blas95)
ENDIF()
IF(TBB_FOUND AND GTSAM_WITH_TBB)
SET(MKL_LIBS ${MKL_LIBS} mkl_tbb_thread)
ELSE()
SET(MKL_LIBS ${MKL_LIBS} mkl_intel_thread libiomp5md)
ENDIF()
ELSEIF(MKL_INCLUDE_DIR MATCHES "10.")
IF(CMAKE_CL_64)
SET(MKL_LIBS mkl_solver_lp64 mkl_core mkl_intel_lp64 mkl_intel_thread libguide mkl_lapack95_lp64 mkl_blas95_lp64)
ELSE()
@ -115,7 +125,7 @@ IF(WIN32)
ENDIF()
ENDFOREACH()
SET(MKL_FOUND ON)
ELSE() # UNIX and macOS
ELSEIF(MKL_ROOT_DIR) # UNIX and macOS
FIND_LIBRARY(MKL_CORE_LIBRARY
mkl_core
PATHS
@ -196,6 +206,15 @@ ELSE() # UNIX and macOS
)
ENDIF()
IF(NOT MKL_LAPACK_LIBRARY)
FIND_LIBRARY(MKL_LAPACK_LIBRARY
mkl_intel_lp64
PATHS
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
${MKL_ROOT_DIR}/lib/
)
ENDIF()
# iomp5
IF("${MKL_ARCH_DIR}" STREQUAL "32")
IF(UNIX AND NOT APPLE)

View File

@ -40,9 +40,17 @@
# Finding NumPy involves calling the Python interpreter
if(NumPy_FIND_REQUIRED)
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp REQUIRED)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT REQUIRED)
endif()
else()
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT)
endif()
endif()
if(NOT PYTHONINTERP_FOUND)

View File

@ -1,13 +1,6 @@
# Locate Intel Threading Building Blocks include paths and libraries
# FindTBB.cmake can be found at https://code.google.com/p/findtbb/
# Written by Hannes Hofmann <hannes.hofmann _at_ informatik.uni-erlangen.de>
# Improvements by Gino van den Bergen <gino _at_ dtecta.com>,
# Florian Uhlig <F.Uhlig _at_ gsi.de>,
# Jiri Marsik <jiri.marsik89 _at_ gmail.com>
# The MIT License
# The MIT License (MIT)
#
# Copyright (c) 2011 Hannes Hofmann
# Copyright (c) 2015 Justus Calvin
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
@ -16,291 +9,306 @@
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# GvdB: This module uses the environment variable TBB_ARCH_PLATFORM which defines architecture and compiler.
# e.g. "ia32/vc8" or "em64t/cc4.1.0_libc2.4_kernel2.6.16.21"
# TBB_ARCH_PLATFORM is set by the build script tbbvars[.bat|.sh|.csh], which can be found
# in the TBB installation directory (TBB_INSTALL_DIR).
#
# GvdB: Mac OS X distribution places libraries directly in lib directory.
# FindTBB
# -------
#
# For backwards compatibility, you may explicitely set the CMake variables TBB_ARCHITECTURE and TBB_COMPILER.
# TBB_ARCHITECTURE [ ia32 | em64t | itanium ]
# which architecture to use
# TBB_COMPILER e.g. vc9 or cc3.2.3_libc2.3.2_kernel2.4.21 or cc4.0.1_os10.4.9
# which compiler to use (detected automatically on Windows)
# Find TBB include directories and libraries.
#
# Usage:
#
# find_package(TBB [major[.minor]] [EXACT]
# [QUIET] [REQUIRED]
# [[COMPONENTS] [components...]]
# [OPTIONAL_COMPONENTS components...])
#
# where the allowed components are tbbmalloc and tbb_preview. Users may modify
# the behavior of this module with the following variables:
#
# * TBB_ROOT_DIR - The base directory the of TBB installation.
# * TBB_INCLUDE_DIR - The directory that contains the TBB headers files.
# * TBB_LIBRARY - The directory that contains the TBB library files.
# * TBB_<library>_LIBRARY - The path of the TBB the corresponding TBB library.
# These libraries, if specified, override the
# corresponding library search results, where <library>
# may be tbb, tbb_debug, tbbmalloc, tbbmalloc_debug,
# tbb_preview, or tbb_preview_debug.
# * TBB_USE_DEBUG_BUILD - The debug version of tbb libraries, if present, will
# be used instead of the release version.
#
# Users may modify the behavior of this module with the following environment
# variables:
#
# * TBB_INSTALL_DIR
# * TBBROOT
# * LIBRARY_PATH
#
# This module will set the following variables:
#
# * TBB_FOUND - Set to false, or undefined, if we havent found, or
# dont want to use TBB.
# * TBB_<component>_FOUND - If False, optional <component> part of TBB sytem is
# not available.
# * TBB_VERSION - The full version string
# * TBB_VERSION_MAJOR - The major version
# * TBB_VERSION_MINOR - The minor version
# * TBB_INTERFACE_VERSION - The interface version number defined in
# tbb/tbb_stddef.h.
# * TBB_<library>_LIBRARY_RELEASE - The path of the TBB release version of
# <library>, where <library> may be tbb, tbb_debug,
# tbbmalloc, tbbmalloc_debug, tbb_preview, or
# tbb_preview_debug.
# * TBB_<library>_LIBRARY_DEGUG - The path of the TBB release version of
# <library>, where <library> may be tbb, tbb_debug,
# tbbmalloc, tbbmalloc_debug, tbb_preview, or
# tbb_preview_debug.
#
# The following varibles should be used to build and link with TBB:
#
# * TBB_INCLUDE_DIRS - The include directory for TBB.
# * TBB_LIBRARIES - The libraries to link against to use TBB.
# * TBB_LIBRARIES_RELEASE - The release libraries to link against to use TBB.
# * TBB_LIBRARIES_DEBUG - The debug libraries to link against to use TBB.
# * TBB_DEFINITIONS - Definitions to use when compiling code that uses
# TBB.
# * TBB_DEFINITIONS_RELEASE - Definitions to use when compiling release code that
# uses TBB.
# * TBB_DEFINITIONS_DEBUG - Definitions to use when compiling debug code that
# uses TBB.
#
# This module will also create the "tbb" target that may be used when building
# executables and libraries.
# This module respects
# TBB_INSTALL_DIR or $ENV{TBB21_INSTALL_DIR} or $ENV{TBB_INSTALL_DIR}
include(FindPackageHandleStandardArgs)
# This module defines
# TBB_INCLUDE_DIRS, where to find task_scheduler_init.h, etc.
# TBB_LIBRARY_DIRS, where to find libtbb, libtbbmalloc
# TBB_DEBUG_LIBRARY_DIRS, where to find libtbb_debug, libtbbmalloc_debug
# TBB_INSTALL_DIR, the base TBB install directory
# TBB_LIBRARIES, the libraries to link against to use TBB.
# TBB_DEBUG_LIBRARIES, the libraries to link against to use TBB with debug symbols.
# TBB_FOUND, If false, don't try to use TBB.
# TBB_INTERFACE_VERSION, as defined in tbb/tbb_stddef.h
if(NOT TBB_FOUND)
##################################
# Check the build type
##################################
if (WIN32)
# has em64t/vc8 em64t/vc9
# has ia32/vc7.1 ia32/vc8 ia32/vc9
set(_TBB_DEFAULT_INSTALL_DIR "C:/Program Files/Intel/TBB")
set(_TBB_LIB_NAME "tbb")
set(_TBB_LIB_MALLOC_NAME "${_TBB_LIB_NAME}malloc")
set(_TBB_LIB_DEBUG_NAME "${_TBB_LIB_NAME}_debug")
set(_TBB_LIB_MALLOC_DEBUG_NAME "${_TBB_LIB_MALLOC_NAME}_debug")
if (MSVC71)
set (_TBB_COMPILER "vc7.1")
set (TBB_COMPILER "vc7.1")
endif(MSVC71)
if (MSVC80)
set(_TBB_COMPILER "vc8")
set(TBB_COMPILER "vc8")
endif(MSVC80)
if (MSVC90)
set(_TBB_COMPILER "vc9")
set(TBB_COMPILER "vc9")
endif(MSVC90)
if(MSVC10)
set(_TBB_COMPILER "vc10")
set(TBB_COMPILER "vc10")
endif(MSVC10)
if(MSVC11)
set(_TBB_COMPILER "vc11")
set(TBB_COMPILER "vc11")
endif(MSVC11)
# Todo: add other Windows compilers such as ICL.
if(TBB_ARCHITECTURE)
set(_TBB_ARCHITECTURE ${TBB_ARCHITECTURE})
elseif("$ENV{TBB_ARCH_PLATFORM}" STREQUAL "")
# Try to guess the architecture
if(CMAKE_CL_64)
set(_TBB_ARCHITECTURE intel64)
set(TBB_ARCHITECTURE intel64)
else()
set(_TBB_ARCHITECTURE ia32)
set(TBB_ARCHITECTURE ia32)
endif()
endif()
endif (WIN32)
if(NOT DEFINED TBB_USE_DEBUG_BUILD)
if(CMAKE_BUILD_TYPE MATCHES "(Debug|DEBUG|debug|RelWithDebInfo|RELWITHDEBINFO|relwithdebinfo)")
set(TBB_BUILD_TYPE DEBUG)
else()
set(TBB_BUILD_TYPE RELEASE)
endif()
elseif(TBB_USE_DEBUG_BUILD)
set(TBB_BUILD_TYPE DEBUG)
else()
set(TBB_BUILD_TYPE RELEASE)
endif()
if (UNIX)
if (APPLE)
# MAC
set(_TBB_DEFAULT_INSTALL_DIR "/Library/Frameworks/Intel_TBB.framework/Versions")
# libs: libtbb.dylib, libtbbmalloc.dylib, *_debug
set(_TBB_LIB_NAME "tbb")
set(_TBB_LIB_MALLOC_NAME "${_TBB_LIB_NAME}malloc")
set(_TBB_LIB_DEBUG_NAME "${_TBB_LIB_NAME}_debug")
set(_TBB_LIB_MALLOC_DEBUG_NAME "${_TBB_LIB_MALLOC_NAME}_debug")
# default flavor on apple: ia32/cc4.0.1_os10.4.9
# Jiri: There is no reason to presume there is only one flavor and
# that user's setting of variables should be ignored.
if(NOT TBB_COMPILER)
set(_TBB_COMPILER "cc4.0.1_os10.4.9")
elseif (NOT TBB_COMPILER)
set(_TBB_COMPILER ${TBB_COMPILER})
endif(NOT TBB_COMPILER)
if(NOT TBB_ARCHITECTURE)
set(_TBB_ARCHITECTURE "ia32")
elseif(NOT TBB_ARCHITECTURE)
set(_TBB_ARCHITECTURE ${TBB_ARCHITECTURE})
endif(NOT TBB_ARCHITECTURE)
else (APPLE)
# LINUX
set(_TBB_DEFAULT_INSTALL_DIR "/opt/intel/tbb" "/usr/local/include" "/usr/include")
set(_TBB_LIB_NAME "tbb")
set(_TBB_LIB_MALLOC_NAME "${_TBB_LIB_NAME}malloc")
set(_TBB_LIB_DEBUG_NAME "${_TBB_LIB_NAME}_debug")
set(_TBB_LIB_MALLOC_DEBUG_NAME "${_TBB_LIB_MALLOC_NAME}_debug")
# has em64t/cc3.2.3_libc2.3.2_kernel2.4.21 em64t/cc3.3.3_libc2.3.3_kernel2.6.5 em64t/cc3.4.3_libc2.3.4_kernel2.6.9 em64t/cc4.1.0_libc2.4_kernel2.6.16.21
# has ia32/*
# has itanium/*
set(_TBB_COMPILER ${TBB_COMPILER})
set(_TBB_ARCHITECTURE ${TBB_ARCHITECTURE})
endif (APPLE)
endif (UNIX)
##################################
# Set the TBB search directories
##################################
if (CMAKE_SYSTEM MATCHES "SunOS.*")
# SUN
# not yet supported
# has em64t/cc3.4.3_kernel5.10
# has ia32/*
endif (CMAKE_SYSTEM MATCHES "SunOS.*")
# Define search paths based on user input and environment variables
set(TBB_SEARCH_DIR ${TBB_ROOT_DIR} $ENV{TBB_INSTALL_DIR} $ENV{TBBROOT})
# Define the search directories based on the current platform
if(CMAKE_SYSTEM_NAME STREQUAL "Windows")
set(TBB_DEFAULT_SEARCH_DIR "C:/Program Files/Intel/TBB"
"C:/Program Files (x86)/Intel/TBB")
#-- Clear the public variables
set (TBB_FOUND "NO")
# Set the target architecture
if(CMAKE_SIZEOF_VOID_P EQUAL 8)
set(TBB_ARCHITECTURE "intel64")
else()
set(TBB_ARCHITECTURE "ia32")
endif()
# Set the TBB search library path search suffix based on the version of VC
if(WINDOWS_STORE)
set(TBB_LIB_PATH_SUFFIX "lib/${TBB_ARCHITECTURE}/vc11_ui")
elseif(MSVC14)
set(TBB_LIB_PATH_SUFFIX "lib/${TBB_ARCHITECTURE}/vc14")
elseif(MSVC12)
set(TBB_LIB_PATH_SUFFIX "lib/${TBB_ARCHITECTURE}/vc12")
elseif(MSVC11)
set(TBB_LIB_PATH_SUFFIX "lib/${TBB_ARCHITECTURE}/vc11")
elseif(MSVC10)
set(TBB_LIB_PATH_SUFFIX "lib/${TBB_ARCHITECTURE}/vc10")
endif()
#-- Find TBB install dir and set ${_TBB_INSTALL_DIR} and cached ${TBB_INSTALL_DIR}
# first: use CMake variable TBB_INSTALL_DIR
if (TBB_INSTALL_DIR)
set (_TBB_INSTALL_DIR ${TBB_INSTALL_DIR})
endif (TBB_INSTALL_DIR)
# second: use environment variable
if (NOT _TBB_INSTALL_DIR)
if (NOT "$ENV{TBB_INSTALL_DIR}" STREQUAL "")
set (_TBB_INSTALL_DIR $ENV{TBB_INSTALL_DIR})
endif (NOT "$ENV{TBB_INSTALL_DIR}" STREQUAL "")
# Intel recommends setting TBB21_INSTALL_DIR
if (NOT "$ENV{TBB21_INSTALL_DIR}" STREQUAL "")
set (_TBB_INSTALL_DIR $ENV{TBB21_INSTALL_DIR})
endif (NOT "$ENV{TBB21_INSTALL_DIR}" STREQUAL "")
if (NOT "$ENV{TBB22_INSTALL_DIR}" STREQUAL "")
set (_TBB_INSTALL_DIR $ENV{TBB22_INSTALL_DIR})
endif (NOT "$ENV{TBB22_INSTALL_DIR}" STREQUAL "")
if (NOT "$ENV{TBB30_INSTALL_DIR}" STREQUAL "")
set (_TBB_INSTALL_DIR $ENV{TBB30_INSTALL_DIR})
endif (NOT "$ENV{TBB30_INSTALL_DIR}" STREQUAL "")
endif (NOT _TBB_INSTALL_DIR)
# third: try to find path automatically
if (NOT _TBB_INSTALL_DIR)
if (_TBB_DEFAULT_INSTALL_DIR)
set (_TBB_INSTALL_DIR ${_TBB_DEFAULT_INSTALL_DIR})
endif (_TBB_DEFAULT_INSTALL_DIR)
endif (NOT _TBB_INSTALL_DIR)
# sanity check
if (NOT _TBB_INSTALL_DIR)
message (STATUS "TBB: Unable to find Intel TBB install directory. ${_TBB_INSTALL_DIR}")
else (NOT _TBB_INSTALL_DIR)
# finally: set the cached CMake variable TBB_INSTALL_DIR
if (NOT TBB_INSTALL_DIR)
set (TBB_INSTALL_DIR ${_TBB_INSTALL_DIR} CACHE PATH "Intel TBB install directory")
mark_as_advanced(TBB_INSTALL_DIR)
endif (NOT TBB_INSTALL_DIR)
# Add the library path search suffix for the VC independent version of TBB
list(APPEND TBB_LIB_PATH_SUFFIX "lib/${TBB_ARCHITECTURE}/vc_mt")
elseif(CMAKE_SYSTEM_NAME STREQUAL "Darwin")
# OS X
set(TBB_DEFAULT_SEARCH_DIR "/opt/intel/tbb")
#-- A macro to rewrite the paths of the library. This is necessary, because
# find_library() always found the em64t/vc9 version of the TBB libs
macro(TBB_CORRECT_LIB_DIR var_name)
# if (NOT "${_TBB_ARCHITECTURE}" STREQUAL "em64t")
string(REPLACE em64t "${_TBB_ARCHITECTURE}" ${var_name} ${${var_name}})
# endif (NOT "${_TBB_ARCHITECTURE}" STREQUAL "em64t")
string(REPLACE ia32 "${_TBB_ARCHITECTURE}" ${var_name} ${${var_name}})
string(REPLACE vc7.1 "${_TBB_COMPILER}" ${var_name} ${${var_name}})
string(REPLACE vc8 "${_TBB_COMPILER}" ${var_name} ${${var_name}})
string(REPLACE vc9 "${_TBB_COMPILER}" ${var_name} ${${var_name}})
string(REPLACE vc10 "${_TBB_COMPILER}" ${var_name} ${${var_name}})
string(REPLACE vc11 "${_TBB_COMPILER}" ${var_name} ${${var_name}})
endmacro(TBB_CORRECT_LIB_DIR var_content)
# TODO: Check to see which C++ library is being used by the compiler.
if(NOT ${CMAKE_SYSTEM_VERSION} VERSION_LESS 13.0)
# The default C++ library on OS X 10.9 and later is libc++
set(TBB_LIB_PATH_SUFFIX "lib/libc++" "lib")
else()
set(TBB_LIB_PATH_SUFFIX "lib")
endif()
elseif(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# Linux
set(TBB_DEFAULT_SEARCH_DIR "/opt/intel/tbb")
# TODO: Check compiler version to see the suffix should be <arch>/gcc4.1 or
# <arch>/gcc4.1. For now, assume that the compiler is more recent than
# gcc 4.4.x or later.
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
set(TBB_LIB_PATH_SUFFIX "lib/intel64/gcc4.4")
elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^i.86$")
set(TBB_LIB_PATH_SUFFIX "lib/ia32/gcc4.4")
endif()
endif()
#-- Look for include directory and set ${TBB_INCLUDE_DIR}
set (TBB_INC_SEARCH_DIR ${_TBB_INSTALL_DIR}/include)
# Jiri: tbbvars now sets the CPATH environment variable to the directory
# containing the headers.
find_path(TBB_INCLUDE_DIR
tbb/task_scheduler_init.h
PATHS ${TBB_INC_SEARCH_DIR} ENV CPATH
)
mark_as_advanced(TBB_INCLUDE_DIR)
##################################
# Find the TBB include dir
##################################
find_path(TBB_INCLUDE_DIRS tbb/tbb.h
HINTS ${TBB_INCLUDE_DIR} ${TBB_SEARCH_DIR}
PATHS ${TBB_DEFAULT_SEARCH_DIR}
PATH_SUFFIXES include)
#-- Look for libraries
# GvdB: $ENV{TBB_ARCH_PLATFORM} is set by the build script tbbvars[.bat|.sh|.csh]
if (NOT $ENV{TBB_ARCH_PLATFORM} STREQUAL "")
set (_TBB_LIBRARY_DIR
${_TBB_INSTALL_DIR}/lib/$ENV{TBB_ARCH_PLATFORM}
${_TBB_INSTALL_DIR}/$ENV{TBB_ARCH_PLATFORM}/lib
)
endif (NOT $ENV{TBB_ARCH_PLATFORM} STREQUAL "")
# Jiri: This block isn't mutually exclusive with the previous one
# (hence no else), instead I test if the user really specified
# the variables in question.
if ((NOT ${TBB_ARCHITECTURE} STREQUAL "") AND (NOT ${TBB_COMPILER} STREQUAL ""))
# HH: deprecated
message(STATUS "[Warning] FindTBB.cmake: The use of TBB_ARCHITECTURE and TBB_COMPILER is deprecated and may not be supported in future versions. Please set \$ENV{TBB_ARCH_PLATFORM} (using tbbvars.[bat|csh|sh]).")
# Jiri: It doesn't hurt to look in more places, so I store the hints from
# ENV{TBB_ARCH_PLATFORM} and the TBB_ARCHITECTURE and TBB_COMPILER
# variables and search them both.
set (
_TBB_LIBRARY_DIR "${_TBB_INSTALL_DIR}/${_TBB_ARCHITECTURE}/${_TBB_COMPILER}/lib" ${_TBB_LIBRARY_DIR}
_TBB_LIBRARY_DIR "${_TBB_INSTALL_DIR}/lib/${_TBB_ARCHITECTURE}/${_TBB_COMPILER}" ${_TBB_LIBRARY_DIR}
)
endif ((NOT ${TBB_ARCHITECTURE} STREQUAL "") AND (NOT ${TBB_COMPILER} STREQUAL ""))
##################################
# Set version strings
##################################
# GvdB: Mac OS X distribution places libraries directly in lib directory.
list(APPEND _TBB_LIBRARY_DIR ${_TBB_INSTALL_DIR}/lib)
if(TBB_INCLUDE_DIRS)
file(READ "${TBB_INCLUDE_DIRS}/tbb/tbb_stddef.h" _tbb_version_file)
string(REGEX REPLACE ".*#define TBB_VERSION_MAJOR ([0-9]+).*" "\\1"
TBB_VERSION_MAJOR "${_tbb_version_file}")
string(REGEX REPLACE ".*#define TBB_VERSION_MINOR ([0-9]+).*" "\\1"
TBB_VERSION_MINOR "${_tbb_version_file}")
string(REGEX REPLACE ".*#define TBB_INTERFACE_VERSION ([0-9]+).*" "\\1"
TBB_INTERFACE_VERSION "${_tbb_version_file}")
set(TBB_VERSION "${TBB_VERSION_MAJOR}.${TBB_VERSION_MINOR}")
endif()
# Jiri: No reason not to check the default paths. From recent versions,
# tbbvars has started exporting the LIBRARY_PATH and LD_LIBRARY_PATH
# variables, which now point to the directories of the lib files.
# It all makes more sense to use the ${_TBB_LIBRARY_DIR} as a HINTS
# argument instead of the implicit PATHS as it isn't hard-coded
# but computed by system introspection. Searching the LIBRARY_PATH
# and LD_LIBRARY_PATH environment variables is now even more important
# that tbbvars doesn't export TBB_ARCH_PLATFORM and it facilitates
# the use of TBB built from sources.
find_library(TBB_LIBRARY ${_TBB_LIB_NAME} HINTS ${_TBB_LIBRARY_DIR}
PATHS ENV LIBRARY_PATH ENV LD_LIBRARY_PATH)
find_library(TBB_MALLOC_LIBRARY ${_TBB_LIB_MALLOC_NAME} HINTS ${_TBB_LIBRARY_DIR}
PATHS ENV LIBRARY_PATH ENV LD_LIBRARY_PATH)
##################################
# Find TBB components
##################################
#Extract path from TBB_LIBRARY name
get_filename_component(TBB_LIBRARY_DIR ${TBB_LIBRARY} PATH)
if(TBB_VERSION VERSION_LESS 4.3)
set(TBB_SEARCH_COMPOMPONENTS tbb_preview tbbmalloc tbb)
else()
set(TBB_SEARCH_COMPOMPONENTS tbb_preview tbbmalloc_proxy tbbmalloc tbb)
endif()
#TBB_CORRECT_LIB_DIR(TBB_LIBRARY)
#TBB_CORRECT_LIB_DIR(TBB_MALLOC_LIBRARY)
mark_as_advanced(TBB_LIBRARY TBB_MALLOC_LIBRARY)
# Find each component
foreach(_comp ${TBB_SEARCH_COMPOMPONENTS})
if(";${TBB_FIND_COMPONENTS};tbb;" MATCHES ";${_comp};")
#-- Look for debug libraries
# Jiri: Changed the same way as for the release libraries.
find_library(TBB_LIBRARY_DEBUG ${_TBB_LIB_DEBUG_NAME} HINTS ${_TBB_LIBRARY_DIR}
PATHS ENV LIBRARY_PATH ENV LD_LIBRARY_PATH)
find_library(TBB_MALLOC_LIBRARY_DEBUG ${_TBB_LIB_MALLOC_DEBUG_NAME} HINTS ${_TBB_LIBRARY_DIR}
PATHS ENV LIBRARY_PATH ENV LD_LIBRARY_PATH)
# Search for the libraries
find_library(TBB_${_comp}_LIBRARY_RELEASE ${_comp}
HINTS ${TBB_LIBRARY} ${TBB_SEARCH_DIR}
PATHS ${TBB_DEFAULT_SEARCH_DIR} ENV LIBRARY_PATH
PATH_SUFFIXES ${TBB_LIB_PATH_SUFFIX})
# Jiri: Self-built TBB stores the debug libraries in a separate directory.
# Extract path from TBB_LIBRARY_DEBUG name
get_filename_component(TBB_LIBRARY_DEBUG_DIR ${TBB_LIBRARY_DEBUG} PATH)
find_library(TBB_${_comp}_LIBRARY_DEBUG ${_comp}_debug
HINTS ${TBB_LIBRARY} ${TBB_SEARCH_DIR}
PATHS ${TBB_DEFAULT_SEARCH_DIR} ENV LIBRARY_PATH
PATH_SUFFIXES ${TBB_LIB_PATH_SUFFIX})
#TBB_CORRECT_LIB_DIR(TBB_LIBRARY_DEBUG)
#TBB_CORRECT_LIB_DIR(TBB_MALLOC_LIBRARY_DEBUG)
mark_as_advanced(TBB_LIBRARY_DEBUG TBB_MALLOC_LIBRARY_DEBUG)
if(TBB_${_comp}_LIBRARY_DEBUG)
list(APPEND TBB_LIBRARIES_DEBUG "${TBB_${_comp}_LIBRARY_DEBUG}")
endif()
if(TBB_${_comp}_LIBRARY_RELEASE)
list(APPEND TBB_LIBRARIES_RELEASE "${TBB_${_comp}_LIBRARY_RELEASE}")
endif()
if(TBB_${_comp}_LIBRARY_${TBB_BUILD_TYPE} AND NOT TBB_${_comp}_LIBRARY)
set(TBB_${_comp}_LIBRARY "${TBB_${_comp}_LIBRARY_${TBB_BUILD_TYPE}}")
endif()
if(TBB_${_comp}_LIBRARY AND EXISTS "${TBB_${_comp}_LIBRARY}")
set(TBB_${_comp}_FOUND TRUE)
else()
set(TBB_${_comp}_FOUND FALSE)
endif()
if (TBB_INCLUDE_DIR)
if (TBB_LIBRARY)
set (TBB_FOUND "YES")
set (TBB_LIBRARIES ${TBB_LIBRARY} ${TBB_MALLOC_LIBRARY} ${TBB_LIBRARIES})
set (TBB_DEBUG_LIBRARIES ${TBB_LIBRARY_DEBUG} ${TBB_MALLOC_LIBRARY_DEBUG} ${TBB_DEBUG_LIBRARIES})
set (TBB_INCLUDE_DIRS ${TBB_INCLUDE_DIR} CACHE PATH "TBB include directory" FORCE)
set (TBB_LIBRARY_DIRS ${TBB_LIBRARY_DIR} CACHE PATH "TBB library directory" FORCE)
# Jiri: Self-built TBB stores the debug libraries in a separate directory.
set (TBB_DEBUG_LIBRARY_DIRS ${TBB_LIBRARY_DEBUG_DIR} CACHE PATH "TBB debug library directory" FORCE)
mark_as_advanced(TBB_INCLUDE_DIRS TBB_LIBRARY_DIRS TBB_DEBUG_LIBRARY_DIRS TBB_LIBRARIES TBB_DEBUG_LIBRARIES)
message(STATUS "Found Intel TBB")
endif (TBB_LIBRARY)
endif (TBB_INCLUDE_DIR)
# Mark internal variables as advanced
mark_as_advanced(TBB_${_comp}_LIBRARY_RELEASE)
mark_as_advanced(TBB_${_comp}_LIBRARY_DEBUG)
mark_as_advanced(TBB_${_comp}_LIBRARY)
if (NOT TBB_FOUND)
message(STATUS "TBB: Intel TBB NOT found!")
message(STATUS "TBB: Looked for Threading Building Blocks in ${_TBB_INSTALL_DIR}")
# do only throw fatal, if this pkg is REQUIRED
if (TBB_FIND_REQUIRED)
message(FATAL_ERROR "Could NOT find TBB library.")
endif (TBB_FIND_REQUIRED)
endif (NOT TBB_FOUND)
endif()
endforeach()
endif (NOT _TBB_INSTALL_DIR)
##################################
# Set compile flags and libraries
##################################
if (TBB_FOUND)
set(TBB_INTERFACE_VERSION 0)
FILE(READ "${TBB_INCLUDE_DIRS}/tbb/tbb_stddef.h" _TBB_VERSION_CONTENTS)
STRING(REGEX REPLACE ".*#define TBB_INTERFACE_VERSION ([0-9]+).*" "\\1" TBB_INTERFACE_VERSION "${_TBB_VERSION_CONTENTS}")
set(TBB_INTERFACE_VERSION "${TBB_INTERFACE_VERSION}")
endif (TBB_FOUND)
set(TBB_DEFINITIONS_RELEASE "")
set(TBB_DEFINITIONS_DEBUG "-DTBB_USE_DEBUG=1")
if(TBB_LIBRARIES_${TBB_BUILD_TYPE})
set(TBB_DEFINITIONS "${TBB_DEFINITIONS_${TBB_BUILD_TYPE}}")
set(TBB_LIBRARIES "${TBB_LIBRARIES_${TBB_BUILD_TYPE}}")
elseif(TBB_LIBRARIES_RELEASE)
set(TBB_DEFINITIONS "${TBB_DEFINITIONS_RELEASE}")
set(TBB_LIBRARIES "${TBB_LIBRARIES_RELEASE}")
elseif(TBB_LIBRARIES_DEBUG)
set(TBB_DEFINITIONS "${TBB_DEFINITIONS_DEBUG}")
set(TBB_LIBRARIES "${TBB_LIBRARIES_DEBUG}")
endif()
find_package_handle_standard_args(TBB
REQUIRED_VARS TBB_INCLUDE_DIRS TBB_LIBRARIES
HANDLE_COMPONENTS
VERSION_VAR TBB_VERSION)
##################################
# Create targets
##################################
if(NOT CMAKE_VERSION VERSION_LESS 3.0 AND TBB_FOUND)
# Start fix to support different targets for tbb, tbbmalloc, etc.
# (Jose Luis Blanco, Jan 2019)
# Iterate over tbb, tbbmalloc, etc.
foreach(libname ${TBB_SEARCH_COMPOMPONENTS})
if ((NOT TBB_${libname}_LIBRARY_RELEASE) AND (NOT TBB_${libname}_LIBRARY_DEBUG))
continue()
endif()
add_library(${libname} SHARED IMPORTED)
set_target_properties(${libname} PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES ${TBB_INCLUDE_DIRS}
IMPORTED_LOCATION ${TBB_${libname}_LIBRARY_RELEASE})
if(TBB_${libname}_LIBRARY_RELEASE AND TBB_${libname}_LIBRARY_DEBUG)
set_target_properties(${libname} PROPERTIES
INTERFACE_COMPILE_DEFINITIONS "$<$<OR:$<CONFIG:Debug>,$<CONFIG:RelWithDebInfo>>:TBB_USE_DEBUG=1>"
IMPORTED_LOCATION_DEBUG ${TBB_${libname}_LIBRARY_DEBUG}
IMPORTED_LOCATION_RELWITHDEBINFO ${TBB_${libname}_LIBRARY_DEBUG}
IMPORTED_LOCATION_RELEASE ${TBB_${libname}_LIBRARY_RELEASE}
IMPORTED_LOCATION_MINSIZEREL ${TBB_${libname}_LIBRARY_RELEASE}
)
elseif(TBB_${libname}_LIBRARY_RELEASE)
set_target_properties(${libname} PROPERTIES IMPORTED_LOCATION ${TBB_${libname}_LIBRARY_RELEASE})
else()
set_target_properties(${libname} PROPERTIES
INTERFACE_COMPILE_DEFINITIONS "${TBB_DEFINITIONS_DEBUG}"
IMPORTED_LOCATION ${TBB_${libname}_LIBRARY_DEBUG}
)
endif()
endforeach()
# End of fix to support different targets
endif()
mark_as_advanced(TBB_INCLUDE_DIRS TBB_LIBRARIES)
unset(TBB_ARCHITECTURE)
unset(TBB_BUILD_TYPE)
unset(TBB_LIB_PATH_SUFFIX)
unset(TBB_DEFAULT_SEARCH_DIR)
endif()

27
cmake/GtsamAddPch.cmake Normal file
View File

@ -0,0 +1,27 @@
###############################################################################
# Macro:
#
# gtsamAddPch(precompiledHeader precompiledSource sources)
#
# Adds a precompiled header to compile all sources with. Currently only on MSVC.
# Inspired by https://stackoverflow.com/questions/148570/
#
# Arguments:
# precompiledHeader: the header file that includes headers to be precompiled.
# precompiledSource: the source file that simply includes that header above.
# sources: the list of source files to apply this to.
#
macro(gtsamAddPch precompiledHeader precompiledSource sources)
get_filename_component(pchBasename ${precompiledHeader} NAME_WE)
SET(precompiledBinary "${CMAKE_CURRENT_BINARY_DIR}/${pchBasename}.pch")
IF(MSVC)
message(STATUS "Adding precompiled header for MSVC")
set_source_files_properties(${precompiledSource}
PROPERTIES COMPILE_FLAGS "/Yc\"${precompiledHeader}\" /Fp\"${precompiledBinary}\""
OBJECT_OUTPUTS "${precompiledBinary}")
set_source_files_properties(${sources}
PROPERTIES COMPILE_FLAGS "/Yu\"${precompiledHeader}\" /FI\"${precompiledHeader}\" /Fp\"${precompiledBinary}\""
OBJECT_DEPENDS "${precompiledBinary}")
ENDIF(MSVC)
endmacro(gtsamAddPch)

View File

@ -90,6 +90,12 @@ if(${CMAKE_CXX_COMPILER_ID} STREQUAL "Clang")
endif()
endif()
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" ON)
if(GTSAM_BUILD_WITH_MARCH_NATIVE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=native")
endif()
# Set up build type library postfixes
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type Debug Timing Profiling RelWithDebInfo MinSizeRel)

261
cmake/GtsamCythonWrap.cmake Normal file
View File

@ -0,0 +1,261 @@
# Check Cython version, need to be >=0.25.2
# Unset these cached variables to avoid surprises when the python/cython
# in the current environment are different from the cached!
unset(PYTHON_EXECUTABLE CACHE)
unset(CYTHON_EXECUTABLE CACHE)
unset(PYTHON_INCLUDE_DIR CACHE)
unset(PYTHON_MAJOR_VERSION CACHE)
if(GTSAM_PYTHON_VERSION STREQUAL "Default")
find_package(PythonInterp REQUIRED)
find_package(PythonLibs REQUIRED)
else()
find_package(PythonInterp ${GTSAM_PYTHON_VERSION} EXACT REQUIRED)
find_package(PythonLibs ${GTSAM_PYTHON_VERSION} EXACT REQUIRED)
endif()
find_package(Cython 0.25.2 REQUIRED)
execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
"from __future__ import print_function;import sys;print(sys.version[0], end='')"
OUTPUT_VARIABLE PYTHON_MAJOR_VERSION
)
# User-friendly Cython wrapping and installing function.
# Builds a Cython module from the provided interface_header.
# For example, for the interface header gtsam.h,
# this will build the wrap module 'gtsam'.
#
# Arguments:
#
# interface_header: The relative path to the wrapper interface definition file.
# extra_imports: extra header to import in the Cython pxd file.
# For example, to use Cython gtsam.pxd in your own module,
# use "from gtsam cimport *"
# install_path: destination to install the library
# libs: libraries to link with
# dependencies: Dependencies which need to be built before the wrapper
function(wrap_and_install_library_cython interface_header extra_imports install_path libs dependencies)
# Paths for generated files
get_filename_component(module_name "${interface_header}" NAME_WE)
set(generated_files_path "${PROJECT_BINARY_DIR}/cython/${module_name}")
wrap_library_cython("${interface_header}" "${generated_files_path}" "${extra_imports}" "${libs}" "${dependencies}")
install_cython_wrapped_library("${interface_header}" "${generated_files_path}" "${install_path}")
endfunction()
function(set_up_required_cython_packages)
# Set up building of cython module
include_directories(${PYTHON_INCLUDE_DIRS})
find_package(NumPy REQUIRED)
include_directories(${NUMPY_INCLUDE_DIRS})
endfunction()
# Convert pyx to cpp by executing cython
# This is the first step to compile cython from the command line
# as described at: http://cython.readthedocs.io/en/latest/src/reference/compilation.html
#
# Arguments:
# - target: The specified target for this step
# - pyx_file: The input pyx_file in full *absolute* path
# - generated_cpp: The output cpp file in full absolute path
# - include_dirs: Directories to include when executing cython
function(pyx_to_cpp target pyx_file generated_cpp include_dirs)
foreach(dir ${include_dirs})
set(includes_for_cython ${includes_for_cython} -I ${dir})
endforeach()
add_custom_command(
OUTPUT ${generated_cpp}
COMMAND
${CYTHON_EXECUTABLE} -X boundscheck=False -v --fast-fail --cplus -${PYTHON_MAJOR_VERSION} ${includes_for_cython} ${pyx_file} -o ${generated_cpp}
VERBATIM)
add_custom_target(${target} ALL DEPENDS ${generated_cpp})
endfunction()
# Build the cpp file generated by converting pyx using cython
# This is the second step to compile cython from the command line
# as described at: http://cython.readthedocs.io/en/latest/src/reference/compilation.html
#
# Arguments:
# - target: The specified target for this step
# - cpp_file: The input cpp_file in full *absolute* path
# - output_lib_we: The output lib filename only (without extension)
# - output_dir: The output directory
function(build_cythonized_cpp target cpp_file output_lib_we output_dir)
add_library(${target} MODULE ${cpp_file})
if(APPLE)
set(link_flags "-undefined dynamic_lookup")
endif()
set_target_properties(${target} PROPERTIES COMPILE_FLAGS "-w" LINK_FLAGS "${link_flags}"
OUTPUT_NAME ${output_lib_we} PREFIX "" LIBRARY_OUTPUT_DIRECTORY ${output_dir})
endfunction()
# Cythonize a pyx from the command line as described at
# http://cython.readthedocs.io/en/latest/src/reference/compilation.html
# Arguments:
# - target: The specified target
# - pyx_file: The input pyx_file in full *absolute* path
# - output_lib_we: The output lib filename only (without extension)
# - output_dir: The output directory
# - include_dirs: Directories to include when executing cython
# - libs: Libraries to link with
# - interface_header: For dependency. Any update in interface header will re-trigger cythonize
function(cythonize target pyx_file output_lib_we output_dir include_dirs libs interface_header dependencies)
get_filename_component(pyx_path "${pyx_file}" DIRECTORY)
get_filename_component(pyx_name "${pyx_file}" NAME_WE)
set(generated_cpp "${output_dir}/${pyx_name}.cpp")
set_up_required_cython_packages()
pyx_to_cpp(${target}_pyx2cpp ${pyx_file} ${generated_cpp} "${include_dirs}")
# Late dependency injection, to make sure this gets called whenever the interface header is updated
# See: https://stackoverflow.com/questions/40032593/cmake-does-not-rebuild-dependent-after-prerequisite-changes
add_custom_command(OUTPUT ${generated_cpp} DEPENDS ${interface_header} ${pyx_file} APPEND)
if (NOT "${dependencies}" STREQUAL "")
add_dependencies(${target}_pyx2cpp "${dependencies}")
endif()
build_cythonized_cpp(${target} ${generated_cpp} ${output_lib_we} ${output_dir})
if (NOT "${libs}" STREQUAL "")
target_link_libraries(${target} "${libs}")
endif()
add_dependencies(${target} ${target}_pyx2cpp)
endfunction()
# Internal function that wraps a library and compiles the wrapper
function(wrap_library_cython interface_header generated_files_path extra_imports libs dependencies)
# Wrap codegen interface
# Extract module path and name from interface header file name
# wrap requires interfacePath to be *absolute*
get_filename_component(interface_header "${interface_header}" ABSOLUTE)
get_filename_component(module_path "${interface_header}" PATH)
get_filename_component(module_name "${interface_header}" NAME_WE)
# Wrap module to Cython pyx
message(STATUS "Cython wrapper generating ${module_name}.pyx")
set(generated_pyx "${generated_files_path}/${module_name}.pyx")
file(MAKE_DIRECTORY "${generated_files_path}")
add_custom_command(
OUTPUT ${generated_pyx}
DEPENDS ${interface_header} wrap
COMMAND
wrap --cython ${module_path} ${module_name} ${generated_files_path} "${extra_imports}"
VERBATIM
WORKING_DIRECTORY ${generated_files_path}/../)
add_custom_target(cython_wrap_${module_name}_pyx ALL DEPENDS ${generated_pyx})
if(NOT "${dependencies}" STREQUAL "")
add_dependencies(cython_wrap_${module_name}_pyx ${dependencies})
endif()
message(STATUS "Cythonize and build ${module_name}.pyx")
get_property(include_dirs DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR} PROPERTY INCLUDE_DIRECTORIES)
cythonize(cythonize_${module_name} ${generated_pyx} ${module_name}
${generated_files_path} "${include_dirs}" "${libs}" ${interface_header} cython_wrap_${module_name}_pyx)
# distclean
add_custom_target(wrap_${module_name}_cython_distclean
COMMAND cmake -E remove_directory ${generated_files_path})
endfunction()
# Internal function that installs a wrap toolbox
function(install_cython_wrapped_library interface_header generated_files_path install_path)
get_filename_component(module_name "${interface_header}" NAME_WE)
# NOTE: only installs .pxd and .pyx and binary files (not .cpp) - the trailing slash on the directory name
# here prevents creating the top-level module name directory in the destination.
message(STATUS "Installing Cython Toolbox to ${install_path}") #${GTSAM_CYTHON_INSTALL_PATH}")
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
if(${build_type_upper} STREQUAL "RELEASE")
set(build_type_tag "") # Don't create release mode tag on installed directory
else()
set(build_type_tag "${build_type}")
endif()
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
get_filename_component(location "${install_path}" PATH)
get_filename_component(name "${install_path}" NAME)
install(DIRECTORY "${generated_files_path}/" DESTINATION "${location}/${name}${build_type_tag}"
CONFIGURATIONS "${build_type}"
PATTERN "build" EXCLUDE
PATTERN "CMakeFiles" EXCLUDE
PATTERN "Makefile" EXCLUDE
PATTERN "*.cmake" EXCLUDE
PATTERN "*.cpp" EXCLUDE
PATTERN "*.py" EXCLUDE)
endforeach()
else()
install(DIRECTORY "${generated_files_path}/" DESTINATION ${install_path}
PATTERN "build" EXCLUDE
PATTERN "CMakeFiles" EXCLUDE
PATTERN "Makefile" EXCLUDE
PATTERN "*.cmake" EXCLUDE
PATTERN "*.cpp" EXCLUDE
PATTERN "*.py" EXCLUDE)
endif()
endfunction()
# Helper function to install Cython scripts and handle multiple build types where the scripts
# should be installed to all build type toolboxes
#
# Arguments:
# source_directory: The source directory to be installed. "The last component of each directory
# name is appended to the destination directory but a trailing slash may be
# used to avoid this because it leaves the last component empty."
# (https://cmake.org/cmake/help/v3.3/command/install.html?highlight=install#installing-directories)
# dest_directory: The destination directory to install to.
# patterns: list of file patterns to install
function(install_cython_scripts source_directory dest_directory patterns)
set(patterns_args "")
set(exclude_patterns "")
foreach(pattern ${patterns})
list(APPEND patterns_args PATTERN "${pattern}")
endforeach()
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
if(${build_type_upper} STREQUAL "RELEASE")
set(build_type_tag "") # Don't create release mode tag on installed directory
else()
set(build_type_tag "${build_type}")
endif()
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
get_filename_component(location "${dest_directory}" PATH)
get_filename_component(name "${dest_directory}" NAME)
install(DIRECTORY "${source_directory}" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}"
FILES_MATCHING ${patterns_args} PATTERN "${exclude_patterns}" EXCLUDE)
endforeach()
else()
install(DIRECTORY "${source_directory}" DESTINATION "${dest_directory}" FILES_MATCHING ${patterns_args} PATTERN "${exclude_patterns}" EXCLUDE)
endif()
endfunction()
# Helper function to install specific files and handle multiple build types where the scripts
# should be installed to all build type toolboxes
#
# Arguments:
# source_files: The source files to be installed.
# dest_directory: The destination directory to install to.
function(install_cython_files source_files dest_directory)
if(GTSAM_BUILD_TYPE_POSTFIXES)
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
if(${build_type_upper} STREQUAL "RELEASE")
set(build_type_tag "") # Don't create release mode tag on installed directory
else()
set(build_type_tag "${build_type}")
endif()
# Split up filename to strip trailing '/' in GTSAM_CYTHON_INSTALL_PATH if there is one
get_filename_component(location "${dest_directory}" PATH)
get_filename_component(name "${dest_directory}" NAME)
install(FILES "${source_files}" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}")
endforeach()
else()
install(FILES "${source_files}" DESTINATION "${dest_directory}")
endif()
endfunction()

View File

@ -128,8 +128,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
## This needs to be fixed!!
if(UNIX AND NOT APPLE)
list(APPEND automaticDependencies ${Boost_SERIALIZATION_LIBRARY_RELEASE} ${Boost_FILESYSTEM_LIBRARY_RELEASE}
${Boost_SYSTEM_LIBRARY_RELEASE} ${Boost_THREAD_LIBRARY_RELEASE} ${Boost_DATE_TIME_LIBRARY_RELEASE}
${Boost_REGEX_LIBRARY_RELEASE})
${Boost_SYSTEM_LIBRARY_RELEASE} ${Boost_THREAD_LIBRARY_RELEASE} ${Boost_DATE_TIME_LIBRARY_RELEASE})
if(Boost_TIMER_LIBRARY_RELEASE AND NOT GTSAM_DISABLE_NEW_TIMERS) # Only present in Boost >= 1.48.0
list(APPEND automaticDependencies ${Boost_TIMER_LIBRARY_RELEASE} ${Boost_CHRONO_LIBRARY_RELEASE})
if(GTSAM_MEX_BUILD_STATIC_MODULE)
@ -209,7 +208,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
OUTPUT ${generated_cpp_file}
DEPENDS ${interfaceHeader} wrap ${module_library_target} ${otherLibraryTargets} ${otherSourcesAndObjects}
COMMAND
wrap
wrap --matlab
${modulePath}
${moduleName}
${generated_files_path}
@ -220,9 +219,9 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
# Set up building of mex module
string(REPLACE ";" " " extraMexFlagsSpaced "${extraMexFlags}")
string(REPLACE ";" " " mexFlagsSpaced "${GTSAM_BUILD_MEX_BINARY_FLAGS}")
add_library(${moduleName}_wrapper MODULE ${generated_cpp_file} ${interfaceHeader} ${otherSourcesAndObjects})
target_link_libraries(${moduleName}_wrapper ${correctedOtherLibraries})
set_target_properties(${moduleName}_wrapper PROPERTIES
add_library(${moduleName}_matlab_wrapper MODULE ${generated_cpp_file} ${interfaceHeader} ${otherSourcesAndObjects})
target_link_libraries(${moduleName}_matlab_wrapper ${correctedOtherLibraries})
set_target_properties(${moduleName}_matlab_wrapper PROPERTIES
OUTPUT_NAME "${moduleName}_wrapper"
PREFIX ""
SUFFIX ".${mexModuleExt}"
@ -230,12 +229,12 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
ARCHIVE_OUTPUT_DIRECTORY "${compiled_mex_modules_root}"
RUNTIME_OUTPUT_DIRECTORY "${compiled_mex_modules_root}"
CLEAN_DIRECT_OUTPUT 1)
set_property(TARGET ${moduleName}_wrapper APPEND_STRING PROPERTY COMPILE_FLAGS " ${extraMexFlagsSpaced} ${mexFlagsSpaced} \"-I${MATLAB_ROOT}/extern/include\" -DMATLAB_MEX_FILE -DMX_COMPAT_32")
set_property(TARGET ${moduleName}_wrapper APPEND PROPERTY INCLUDE_DIRECTORIES ${extraIncludeDirs})
set_property(TARGET ${moduleName}_matlab_wrapper APPEND_STRING PROPERTY COMPILE_FLAGS " ${extraMexFlagsSpaced} ${mexFlagsSpaced} \"-I${MATLAB_ROOT}/extern/include\" -DMATLAB_MEX_FILE -DMX_COMPAT_32")
set_property(TARGET ${moduleName}_matlab_wrapper APPEND PROPERTY INCLUDE_DIRECTORIES ${extraIncludeDirs})
# Disable build type postfixes for the mex module - we install in different directories for each build type instead
foreach(build_type ${CMAKE_CONFIGURATION_TYPES})
string(TOUPPER "${build_type}" build_type_upper)
set_target_properties(${moduleName}_wrapper PROPERTIES ${build_type_upper}_POSTFIX "")
set_target_properties(${moduleName}_matlab_wrapper PROPERTIES ${build_type_upper}_POSTFIX "")
endforeach()
# Set up platform-specific flags
if(MSVC)
@ -244,17 +243,17 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
else()
set(mxLibPath "${MATLAB_ROOT}/extern/lib/win32/microsoft")
endif()
target_link_libraries(${moduleName}_wrapper "${mxLibPath}/libmex.lib" "${mxLibPath}/libmx.lib" "${mxLibPath}/libmat.lib")
set_target_properties(${moduleName}_wrapper PROPERTIES LINK_FLAGS "/export:mexFunction")
target_link_libraries(${moduleName}_matlab_wrapper "${mxLibPath}/libmex.lib" "${mxLibPath}/libmx.lib" "${mxLibPath}/libmat.lib")
set_target_properties(${moduleName}_matlab_wrapper PROPERTIES LINK_FLAGS "/export:mexFunction")
set_property(SOURCE "${generated_cpp_file}" APPEND PROPERTY COMPILE_FLAGS "/bigobj")
elseif(APPLE)
set(mxLibPath "${MATLAB_ROOT}/bin/maci64")
target_link_libraries(${moduleName}_wrapper "${mxLibPath}/libmex.dylib" "${mxLibPath}/libmx.dylib" "${mxLibPath}/libmat.dylib")
target_link_libraries(${moduleName}_matlab_wrapper "${mxLibPath}/libmex.dylib" "${mxLibPath}/libmx.dylib" "${mxLibPath}/libmat.dylib")
endif()
# Hacking around output issue with custom command
# Deletes generated build folder
add_custom_target(wrap_${moduleName}_distclean
add_custom_target(wrap_${moduleName}_matlab_distclean
COMMAND cmake -E remove_directory ${generated_files_path}
COMMAND cmake -E remove_directory ${compiled_mex_modules_root})
endfunction()
@ -279,13 +278,13 @@ function(install_wrapped_library_internal interfaceHeader)
get_filename_component(location "${GTSAM_TOOLBOX_INSTALL_PATH}" PATH)
get_filename_component(name "${GTSAM_TOOLBOX_INSTALL_PATH}" NAME)
install(DIRECTORY "${generated_files_path}/" DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}" FILES_MATCHING PATTERN "*.m")
install(TARGETS ${moduleName}_wrapper
install(TARGETS ${moduleName}_matlab_wrapper
LIBRARY DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}"
RUNTIME DESTINATION "${location}/${name}${build_type_tag}" CONFIGURATIONS "${build_type}")
endforeach()
else()
install(DIRECTORY "${generated_files_path}/" DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH} FILES_MATCHING PATTERN "*.m")
install(TARGETS ${moduleName}_wrapper
install(TARGETS ${moduleName}_matlab_wrapper
LIBRARY DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH}
RUNTIME DESTINATION ${GTSAM_TOOLBOX_INSTALL_PATH})
endif()

View File

@ -101,6 +101,9 @@ mark_as_advanced(GTSAM_SINGLE_TEST_EXE)
# Enable make check (http://www.cmake.org/Wiki/CMakeEmulateMakeCheck)
if(GTSAM_BUILD_TESTS)
add_custom_target(check COMMAND ${CMAKE_CTEST_COMMAND} -C $<CONFIGURATION> --output-on-failure)
# Add target to build tests without running
add_custom_target(all.tests)
endif()
# Add examples target
@ -109,8 +112,6 @@ add_custom_target(examples)
# Add timing target
add_custom_target(timing)
# Add target to build tests without running
add_custom_target(all.tests)
# Implementations of this file's macros:

View File

@ -26,21 +26,30 @@
// class __declspec(dllexport) MyClass { ... };
// When included while compiling other code against GTSAM:
// class __declspec(dllimport) MyClass { ... };
#pragma once
// Whether GTSAM is compiled as static or DLL in windows.
// This will be used to decide whether include __declspec(dllimport) or not in headers
#cmakedefine BUILD_SHARED_LIBS
#ifdef _WIN32
# ifdef @library_name@_EXPORTS
# define @library_name@_EXPORT __declspec(dllexport)
# define @library_name@_EXTERN_EXPORT __declspec(dllexport) extern
# ifndef BUILD_SHARED_LIBS
# define @library_name@_EXPORT
# define @library_name@_EXTERN_EXPORT extern
# else
# ifndef @library_name@_IMPORT_STATIC
# ifdef @library_name@_EXPORTS
# define @library_name@_EXPORT __declspec(dllexport)
# define @library_name@_EXTERN_EXPORT __declspec(dllexport) extern
# else
# define @library_name@_EXPORT __declspec(dllimport)
# define @library_name@_EXTERN_EXPORT __declspec(dllimport)
# else /* @library_name@_IMPORT_STATIC */
# define @library_name@_EXPORT
# define @library_name@_EXTERN_EXPORT extern
# endif /* @library_name@_IMPORT_STATIC */
# endif /* @library_name@_EXPORTS */
#else /* _WIN32 */
# endif
# endif
#else
# define @library_name@_EXPORT
# define @library_name@_EXTERN_EXPORT extern
#endif
#undef BUILD_SHARED_LIBS

View File

@ -7,7 +7,7 @@
###################################################################################
# To create your own project, replace "example" with the actual name of your project
cmake_minimum_required(VERSION 2.6)
cmake_minimum_required(VERSION 3.0)
project(example CXX C)
# Include GTSAM CMake tools
@ -22,14 +22,20 @@ include_directories(BEFORE "${PROJECT_SOURCE_DIR}")
###################################################################################
# Find GTSAM components
find_package(GTSAM REQUIRED) # Uses installed package
include_directories(${GTSAM_INCLUDE_DIR})
# Note: Since Jan-2019, GTSAMConfig.cmake defines exported CMake targets
# that automatically do include the include_directories() without the need
# to call include_directories(), just target_link_libraries(NAME gtsam)
#include_directories(${GTSAM_INCLUDE_DIR})
###################################################################################
# Build static library from common sources
set(CONVENIENCE_LIB_NAME ${PROJECT_NAME})
add_library(${CONVENIENCE_LIB_NAME} STATIC example/PrintExamples.h example/PrintExamples.cpp)
add_library(${CONVENIENCE_LIB_NAME} SHARED example/PrintExamples.h example/PrintExamples.cpp)
target_link_libraries(${CONVENIENCE_LIB_NAME} gtsam)
# Install library
install(TARGETS ${CONVENIENCE_LIB_NAME} LIBRARY DESTINATION lib ARCHIVE DESTINATION lib RUNTIME DESTINATION bin)
###################################################################################
# Build tests (CMake tracks the dependecy to link with GTSAM through our project's static library)
gtsamAddTestsGlob("example" "tests/test*.cpp" "" "${CONVENIENCE_LIB_NAME}")

View File

@ -0,0 +1,32 @@
# MATLAB Wrapper Example Project
This project serves as a lightweight example for demonstrating how to wrap C++ code in MATLAB using GTSAM.
## Compiling
We follow the regular build procedure inside the `example_project` directory:
```sh
mkdir build && cd build
cmake ..
make -j8
sudo make install
sudo ldconfig # ensures the shared object file generated is correctly loaded
```
## Usage
Now you can open MATLAB and add the `gtsam_toolbox` to the MATLAB path
```matlab
addpath('/usr/local/gtsam_toolbox')
```
At this point you are ready to run the example project. Starting from the `example_project` directory inside MATLAB, simply run code like regular MATLAB, e.g.
```matlab
pe = example.PrintExamples();
pe.sayHello();
pe.sayGoodbye();
```

View File

@ -18,11 +18,14 @@
// This is an interface file for automatic MATLAB wrapper generation. See
// gtsam.h for full documentation and more examples.
#include <example/PrintExamples.h>
namespace example {
class PrintExamples {
void sayHello() const;
void sayGoodbye() const;
PrintExamples();
void sayHello() const;
void sayGoodbye() const;
};
}

View File

@ -17,6 +17,7 @@
#pragma once
#include <iostream>
#include <string>
namespace example {

43
cython/CMakeLists.txt Normal file
View File

@ -0,0 +1,43 @@
# Install cython components
include(GtsamCythonWrap)
# Create the cython toolbox for the gtsam library
if (GTSAM_INSTALL_CYTHON_TOOLBOX)
# build and include the eigency version of eigency
add_subdirectory(gtsam_eigency)
include_directories(${PROJECT_BINARY_DIR}/cython/gtsam_eigency)
# wrap gtsam
add_custom_target(gtsam_header DEPENDS "../gtsam.h")
wrap_and_install_library_cython("../gtsam.h" # interface_header
"" # extra imports
"${GTSAM_CYTHON_INSTALL_PATH}/gtsam" # install path
gtsam # library to link with
"wrap;cythonize_eigency;gtsam;gtsam_header" # dependencies which need to be built before wrapping
)
# wrap gtsam_unstable
if(GTSAM_BUILD_UNSTABLE)
add_custom_target(gtsam_unstable_header DEPENDS "../gtsam_unstable/gtsam_unstable.h")
wrap_and_install_library_cython("../gtsam_unstable/gtsam_unstable.h" # interface_header
"from gtsam.gtsam cimport *" # extra imports
"${GTSAM_CYTHON_INSTALL_PATH}/gtsam_unstable" # install path
gtsam_unstable # library to link with
"gtsam_unstable;gtsam_unstable_header;cythonize_gtsam" # dependencies to be built before wrapping
)
endif()
file(READ "${PROJECT_SOURCE_DIR}/cython/requirements.txt" CYTHON_INSTALL_REQUIREMENTS)
file(READ "${PROJECT_SOURCE_DIR}/README.md" README_CONTENTS)
# Install the custom-generated __init__.py
# This is to make the build/cython/gtsam folder a python package, so gtsam can be found while wrapping gtsam_unstable
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam/__init__.py ${PROJECT_BINARY_DIR}/cython/gtsam/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/gtsam_unstable/__init__.py ${PROJECT_BINARY_DIR}/cython/gtsam_unstable/__init__.py COPYONLY)
configure_file(${PROJECT_SOURCE_DIR}/cython/setup.py.in ${PROJECT_BINARY_DIR}/cython/setup.py)
install_cython_files("${PROJECT_BINARY_DIR}/cython/setup.py" "${GTSAM_CYTHON_INSTALL_PATH}")
# install scripts and tests
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")
install_cython_scripts("${PROJECT_SOURCE_DIR}/cython/gtsam_unstable" "${GTSAM_CYTHON_INSTALL_PATH}" "*.py")
endif ()

161
cython/README.md Normal file
View File

@ -0,0 +1,161 @@
This is the Cython/Python wrapper around the GTSAM C++ library.
INSTALL
=======
- if you want to build the gtsam python library for a specific python version (eg 2.7), use the `-DGTSAM_PYTHON_VERSION=2.7` option when running `cmake` otherwise the default interpreter will be used.
- If the interpreter is inside an environment (such as an anaconda environment or virtualenv environment) then the environment should be active while building gtsam.
- This wrapper needs Cython(>=0.25.2), backports_abc>=0.5, and numpy. These can be installed as follows:
```bash
pip install -r <gtsam_folder>/cython/requirements.txt
```
- For compatibility with gtsam's Eigen version, it contains its own cloned version of [Eigency](https://github.com/wouterboomsma/eigency.git),
named **gtsam_eigency**, to interface between C++'s Eigen and Python's numpy.
- Build and install gtsam using cmake with `GTSAM_INSTALL_CYTHON_TOOLBOX` enabled.
The wrapped module will be installed to `GTSAM_CYTHON_INSTALL_PATH`, which is
by default: `<your CMAKE_INSTALL_PREFIX>/cython`
- To use the library without installing system-wide: modify your `PYTHONPATH` to include the `GTSAM_CYTHON_INSTALL_PATH`:
```bash
export PYTHONPATH=$PYTHONPATH:<GTSAM_CYTHON_INSTALL_PATH>
```
- To install system-wide: run `make install` then navigate to `GTSAM_CYTHON_INSTALL_PATH` and run `python setup.py install`
- (the same command can be used to install into a virtual environment if it is active)
- note: if you don't want gtsam to install to a system directory such as `/usr/local`, pass `-DCMAKE_INSTALL_PREFIX="./install"` to cmake to install gtsam to a subdirectory of the build directory.
- if you run `setup.py` from the build directory rather than the installation directory, the script will warn you with the message: `setup.py is being run from an unexpected location`.
Before `make install` is run, not all the components of the package have been copied across, so running `setup.py` from the build directory would result in an incomplete package.
UNIT TESTS
==========
The Cython toolbox also has a small set of unit tests located in the
test directory. To run them:
```bash
cd <your GTSAM_CYTHON_INSTALL_PATH>
python -m unittest discover
```
WRITING YOUR OWN SCRIPTS
========================
See the tests for examples.
## Some important notes:
- Vector/Matrix:
+ GTSAM expects double-precision floating point vectors and matrices.
Hence, you should pass numpy matrices with dtype=float, or 'float64'.
+ Also, GTSAM expects *column-major* matrices, unlike the default storage
scheme in numpy. Hence, you should pass column-major matrices to gtsam using
the flag order='F'. And you always get column-major matrices back.
For more details, see: https://github.com/wouterboomsma/eigency#storage-layout---why-arrays-are-sometimes-transposed
+ Passing row-major matrices of different dtype, e.g. 'int', will also work
as the wrapper converts them to column-major and dtype float for you,
using numpy.array.astype(float, order='F', copy=False).
However, this will result a copy if your matrix is not in the expected type
and storage order.
- Inner namespace: Classes in inner namespace will be prefixed by <innerNamespace>_ in Python.
Examples: noiseModel_Gaussian, noiseModel_mEstimator_Tukey
- Casting from a base class to a derive class must be done explicitly.
Examples:
```Python
noiseBase = factor.noiseModel()
noiseGaussian = dynamic_cast_noiseModel_Gaussian_noiseModel_Base(noiseBase)
```
WRAPPING YOUR OWN PROJECT THAT USES GTSAM
=========================================
- Set PYTHONPATH to include ${GTSAM_CYTHON_INSTALL_PATH}
+ so that it can find gtsam Cython header: gtsam/gtsam.pxd
- In your CMakeList.txt
```cmake
find_package(GTSAM REQUIRED) # Make sure gtsam's install folder is in your PATH
set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" "${GTSAM_DIR}/../GTSAMCMakeTools")
# Wrap
include(GtsamCythonWrap)
include_directories(${GTSAM_EIGENCY_INSTALL_PATH})
wrap_and_install_library_cython("your_project_interface.h"
"from gtsam.gtsam cimport *" # extra import of gtsam/gtsam.pxd Cython header
"your_install_path"
"libraries_to_link_with_the_cython_module"
"dependencies_which_need_to_be_built_before_the_wrapper"
)
#Optional: install_cython_scripts and install_cython_files. See GtsamCythonWrap.cmake.
```
KNOWN ISSUES
============
- Doesn't work with python3 installed from homebrew
- size-related issue: can only wrap up to a certain number of classes: up to mEstimator!
- Guess: 64 vs 32b? disutils Compiler flags?
- Bug with Cython 0.24: instantiated factor classes return FastVector<size_t> for keys(), which can't be casted to FastVector<Key>
- Upgrading to 0.25 solves the problem
- Need default constructor and default copy constructor for almost every classes... :(
- support these constructors by default and declare "delete" for special classes?
TODO
=====
☐ allow duplication of parent' functions in child classes. Not allowed for now due to conflicts in Cython.
☐ a common header for boost shared_ptr? (Or wait until everything is switched to std::shared_ptr in gtsam?)
☐ inner namespaces ==> inner packages?
☐ Wrap fixed-size Matrices/Vectors?
Completed/Cancelled:
=====
✔ Fix Python tests: don't use " import <package> * ": Bad style!!! @done (18-03-17 19:50)
✔ Unit tests for cython wrappers @done (18-03-17 18:45) -- simply compare generated files
✔ Wrap unstable @done (18-03-17 15:30)
✔ Unify cython/gtsam.h and the original gtsam.h @done (18-03-17 15:30)
✔ 18-03-17: manage to unify the two versions by removing std container stubs from the matlab version,and keeping KeyList/KeyVector/KeySet as in the matlab version. Probably Cython 0.25 fixes the casting problem.
✔ 06-03-17: manage to remove the requirements for default and copy constructors
✘ 25-11-16:
Try to unify but failed. Main reasons are: Key/size_t, std containers, KeyVector/KeyList/KeySet.
Matlab doesn't need to know about Key, but I can't make Cython to ignore Key as it couldn't cast KeyVector, i.e. FastVector<Key>, to FastVector<size_t>.
✘ Marginal and JointMarginal: revert changes @failed (17-03-17 11:00) -- Cython does need a default constructor! It produces cpp code like this: ```gtsam::JointMarginal __pyx_t_1;``` Users don't have to wrap this constructor, however.
✔ Convert input numpy Matrix/Vector to float dtype and storage order 'F' automatically, cannot crash! @done (15-03-17 13:00)
✔ Remove requirements.txt - Frank: don't bother with only 2 packages and a special case for eigency! @done (08-03-17 10:30)
✔ CMake install script @done (25-11-16 02:30)
✘ [REFACTOR] better name for uninstantiateClass: very vague!! @cancelled (25-11-16 02:30) -- lazy
✘ forward declaration? @cancelled (23-11-16 13:00) - nothing to do, seem to work?
✔ wrap VariableIndex: why is it in inference? If need to, shouldn't have constructors to specific FactorGraphs @done (23-11-16 13:00)
✔ Global functions @done (22-11-16 21:00)
✔ [REFACTOR] typesEqual --> isSameSignature @done (22-11-16 21:00)
✔ Proper overloads (constructors, static methods, methods) @done (20-11-16 21:00)
✔ Allow overloading methods. The current solution is annoying!!! @done (20-11-16 21:00)
✔ Casting from parent and grandparents @done (16-11-16 17:00)
✔ Allow overloading constructors. The current solution is annoying!!! @done (16-11-16 17:00)
✔ Support "print obj" @done (16-11-16 17:00)
✔ methods for FastVector: at, [], ... @done (16-11-16 17:00)
✔ Cython: Key and size_t: traits<size_t> doesn't exist @done (16-09-12 18:34)
✔ KeyVector, KeyList, KeySet... @done (16-09-13 17:19)
✔ [Nice to have] parse typedef @done (16-09-13 17:19)
✔ ctypedef at correct places @done (16-09-12 18:34)
✔ expand template variable type in constructor/static methods? @done (16-09-12 18:34)
✔ NonlinearOptimizer: copy constructor deleted!!! @done (16-09-13 17:20)
✔ Value: no default constructor @done (16-09-13 17:20)
✔ ctypedef PriorFactor[Vector] PriorFactorVector @done (16-09-19 12:25)
✔ Delete duplicate methods in derived class @done (16-09-12 13:38)
✔ Fix return properly @done (16-09-11 17:14)
✔ handle pair @done (16-09-11 17:14)
✔ Eigency: ambiguous call: A(const T&) A(const Vector& v) and Eigency A(Map[Vector]& v) @done (16-09-11 07:59)
✔ Eigency: Constructor: ambiguous construct from Vector/Matrix @done (16-09-11 07:59)
✔ Eigency: Fix method template of Vector/Matrix: template argument is [Vector] while arugment is Map[Vector] @done (16-09-11 08:22)
✔ Robust noise: copy assignment operator is deleted because of shared_ptr of the abstract Base class @done (16-09-10 09:05)
✘ Cython: Constructor: generate default constructor? (hack: if it's serializable?) @cancelled (16-09-13 17:20)
✘ Eigency: Map[] to Block @created(16-09-10 07:59) @cancelled (16-09-11 08:28)
- inference before symbolic/linear
- what's the purpose of "virtual" ??
Installation:
☐ Prerequisite:
- Users create venv and pip install requirements before compiling
- Wrap cython script in gtsam/cython folder
☐ Install built module into venv?

26
cython/gtsam/__init__.py Normal file
View File

@ -0,0 +1,26 @@
from .gtsam import *
try:
import gtsam_unstable
def _deprecated_wrapper(item, name):
def wrapper(*args, **kwargs):
from warnings import warn
message = ('importing the unstable item "{}" directly from gtsam is deprecated. '.format(name) +
'Please import it from gtsam_unstable.')
warn(message)
return item(*args, **kwargs)
return wrapper
for name in dir(gtsam_unstable):
if not name.startswith('__'):
item = getattr(gtsam_unstable, name)
if callable(item):
item = _deprecated_wrapper(item, name)
globals()[name] = item
except ImportError:
pass

View File

@ -0,0 +1,118 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Example comparing DoglegOptimizer with Levenberg-Marquardt.
Author: Frank Dellaert
"""
# pylint: disable=no-member, invalid-name
import math
import argparse
import gtsam
import matplotlib.pyplot as plt
import numpy as np
def run(args):
"""Test Dogleg vs LM, inspired by issue #452."""
# print parameters
print("num samples = {}, deltaInitial = {}".format(
args.num_samples, args.delta))
# Ground truth solution
T11 = gtsam.Pose2(0, 0, 0)
T12 = gtsam.Pose2(1, 0, 0)
T21 = gtsam.Pose2(0, 1, 0)
T22 = gtsam.Pose2(1, 1, 0)
# Factor graph
graph = gtsam.NonlinearFactorGraph()
# Priors
prior = gtsam.noiseModel_Isotropic.Sigma(3, 1)
graph.add(gtsam.PriorFactorPose2(11, T11, prior))
graph.add(gtsam.PriorFactorPose2(21, T21, prior))
# Odometry
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.01, 0.01, 0.3]))
graph.add(gtsam.BetweenFactorPose2(11, 12, T11.between(T12), model))
graph.add(gtsam.BetweenFactorPose2(21, 22, T21.between(T22), model))
# Range
model_rho = gtsam.noiseModel_Isotropic.Sigma(1, 0.01)
graph.add(gtsam.RangeFactorPose2(12, 22, 1.0, model_rho))
params = gtsam.DoglegParams()
params.setDeltaInitial(args.delta) # default is 10
# Add progressively more noise to ground truth
sigmas = [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20]
n = len(sigmas)
p_dl, s_dl, p_lm, s_lm = [0]*n, [0]*n, [0]*n, [0]*n
for i, sigma in enumerate(sigmas):
dl_fails, lm_fails = 0, 0
# Attempt num_samples optimizations for both DL and LM
for _attempt in range(args.num_samples):
initial = gtsam.Values()
initial.insert(11, T11.retract(np.random.normal(0, sigma, 3)))
initial.insert(12, T12.retract(np.random.normal(0, sigma, 3)))
initial.insert(21, T21.retract(np.random.normal(0, sigma, 3)))
initial.insert(22, T22.retract(np.random.normal(0, sigma, 3)))
# Run dogleg optimizer
dl = gtsam.DoglegOptimizer(graph, initial, params)
result = dl.optimize()
dl_fails += graph.error(result) > 1e-9
# Run
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial)
result = lm.optimize()
lm_fails += graph.error(result) > 1e-9
# Calculate Bayes estimate of success probability
# using a beta prior of alpha=0.5, beta=0.5
alpha, beta = 0.5, 0.5
v = args.num_samples+alpha+beta
p_dl[i] = (args.num_samples-dl_fails+alpha)/v
p_lm[i] = (args.num_samples-lm_fails+alpha)/v
def stddev(p):
"""Calculate standard deviation."""
return math.sqrt(p*(1-p)/(1+v))
s_dl[i] = stddev(p_dl[i])
s_lm[i] = stddev(p_lm[i])
fmt = "sigma= {}:\tDL success {:.2f}% +/- {:.2f}%, LM success {:.2f}% +/- {:.2f}%"
print(fmt.format(sigma,
100*p_dl[i], 100*s_dl[i],
100*p_lm[i], 100*s_lm[i]))
if args.plot:
fig, ax = plt.subplots()
dl_plot = plt.errorbar(sigmas, p_dl, yerr=s_dl, label="Dogleg")
lm_plot = plt.errorbar(sigmas, p_lm, yerr=s_lm, label="LM")
plt.title("Dogleg emprical success vs. LM")
plt.legend(handles=[dl_plot, lm_plot])
ax.set_xlim(0, sigmas[-1]+1)
ax.set_ylim(0, 1)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Compare Dogleg and LM success rates")
parser.add_argument("-n", "--num_samples", type=int, default=1000,
help="Number of samples for each sigma")
parser.add_argument("-d", "--delta", type=float, default=10.0,
help="Initial delta for dogleg")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
run(args)

View File

@ -1,58 +1,75 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
A script validating the ImuFactor inference.
"""
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
from PreintegrationExample import PreintegrationExample, POSES_FIG
from gtsam.utils.plot import plot_pose3
from PreintegrationExample import POSES_FIG, PreintegrationExample
BIAS_KEY = int(gtsam.symbol(ord('b'), 0))
def X(key):
"""Create symbol for pose key."""
return gtsam.symbol(ord('x'), key)
def V(key):
"""Create symbol for velocity key."""
return gtsam.symbol(ord('v'), key)
# shorthand symbols:
BIAS_KEY = int(gtsam.Symbol('b', 0))
V = lambda j: int(gtsam.Symbol('v', j))
X = lambda i: int(gtsam.Symbol('x', i))
np.set_printoptions(precision=3, suppress=True)
class ImuFactorExample(PreintegrationExample):
def __init__(self):
self.velocity = np.array([2, 0, 0])
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
self.priorNoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
self.velNoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
# Choose one of these twists to change scenario:
# Choose one of these twists to change scenario:
zero_twist = (np.zeros(3), np.zeros(3))
forward_twist = (np.zeros(3), self.velocity)
loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity)
sick_twist = (np.array([math.radians(30), -math.radians(30), 0]), self.velocity)
sick_twist = (
np.array([math.radians(30), -math.radians(30), 0]), self.velocity)
accBias = np.array([-0.3, 0.1, 0.2])
gyroBias = np.array([0.1, 0.3, -0.1])
bias = gtsam.ConstantBias(accBias, gyroBias)
bias = gtsam.imuBias_ConstantBias(accBias, gyroBias)
dt = 1e-2
super(ImuFactorExample, self).__init__(sick_twist, bias, dt)
def addPrior(self, i, graph):
state = self.scenario.navState(i)
graph.push_back(gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
graph.push_back(gtsam.PriorFactorVector3(V(i), state.velocity(), self.velNoise))
graph.push_back(gtsam.PriorFactorPose3(
X(i), state.pose(), self.priorNoise))
graph.push_back(gtsam.PriorFactorVector(
V(i), state.velocity(), self.velNoise))
def run(self):
graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements
# initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
H9 = gtsam.OptionalJacobian9();
T = 12
num_poses = T + 1 # assumes 1 factor per second
initial = gtsam.Values()
@ -61,32 +78,32 @@ class ImuFactorExample(PreintegrationExample):
state_i = self.scenario.navState(float(i))
initial.insert(X(i), state_i.pose())
initial.insert(V(i), state_i.velocity())
# simulate the loop
i = 0 # state index
i = 0 # state index
actual_state_i = self.scenario.navState(0)
for k, t in enumerate(np.arange(0, T, self.dt)):
# get measurements and add them to PIM
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
# Plot IMU many times
if k % 10 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
# Plot every second
if k % int(1 / self.dt) == 0:
self.plotGroundTruthPose(t)
# create IMU factor every second
if (k + 1) % int(1 / self.dt) == 0:
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim)
factor = gtsam.ImuFactor(X(i), V(i), X(
i + 1), V(i + 1), BIAS_KEY, pim)
graph.push_back(factor)
if True:
print(factor)
H2 = gtsam.OptionalJacobian96();
print(pim.predict(actual_state_i, self.actualBias, H9, H2))
print(pim.predict(actual_state_i, self.actualBias))
pim.resetIntegration()
actual_state_i = self.scenario.navState(t + self.dt)
i += 1
@ -94,30 +111,33 @@ class ImuFactorExample(PreintegrationExample):
# add priors on beginning and end
self.addPrior(0, graph)
self.addPrior(num_poses - 1, graph)
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
# Calculate and print marginal covariances
marginals = gtsam.Marginals(graph, result)
print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY))
for i in range(num_poses):
print("Covariance on pose {}:\n{}\n".format(i, marginals.marginalCovariance(X(i))))
print("Covariance on vel {}:\n{}\n".format(i, marginals.marginalCovariance(V(i))))
print("Covariance on pose {}:\n{}\n".format(
i, marginals.marginalCovariance(X(i))))
print("Covariance on vel {}:\n{}\n".format(
i, marginals.marginalCovariance(V(i))))
# Plot resulting poses
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plotPose3(POSES_FIG, pose_i, 0.1)
plot_pose3(POSES_FIG, pose_i, 0.1)
i += 1
print(result.atConstantBias(BIAS_KEY))
print(result.atimuBias_ConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
if __name__ == '__main__':
ImuFactorExample().run()

View File

@ -0,0 +1,176 @@
"""
iSAM2 example with ImuFactor.
Author: Robert Truax (C++), Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
def X(key):
"""Create symbol for pose key."""
return gtsam.symbol(ord('x'), key)
def V(key):
"""Create symbol for velocity key."""
return gtsam.symbol(ord('v'), key)
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
def ISAM2_plot(values, fignum=0):
"""Plot poses."""
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
i = 0
min_bounds = 0, 0, 0
max_bounds = 0, 0, 0
while values.exists(X(i)):
pose_i = values.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
position = pose_i.translation().vector()
min_bounds = [min(v1, v2) for (v1, v2) in zip(position, min_bounds)]
max_bounds = [max(v1, v2) for (v1, v2) in zip(position, max_bounds)]
# max_bounds = min(pose_i.x(), max_bounds[0]), 0, 0
i += 1
# draw
axes.set_xlim3d(min_bounds[0]-1, max_bounds[0]+1)
axes.set_ylim3d(min_bounds[1]-1, max_bounds[1]+1)
axes.set_zlim3d(min_bounds[2]-1, max_bounds[2]+1)
plt.pause(1)
# IMU preintegration parameters
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
g = 9.81
n_gravity = vector3(0, 0, -g)
PARAMS = gtsam.PreintegrationParams.MakeSharedU(g)
I = np.eye(3)
PARAMS.setAccelerometerCovariance(I * 0.1)
PARAMS.setGyroscopeCovariance(I * 0.1)
PARAMS.setIntegrationCovariance(I * 0.1)
PARAMS.setUse2ndOrderCoriolis(False)
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))
BIAS_COVARIANCE = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
DELTA = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
gtsam.Point3(0.05, -0.10, 0.20))
def IMU_example():
"""Run iSAM 2 example with IMU factor."""
# Start with a camera on x-axis looking at origin
radius = 30
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
position = gtsam.Point3(radius, 0, 0)
camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
pose_0 = camera.pose()
# Create the set of ground-truth landmarks and poses
angular_velocity = math.radians(180) # rad/sec
delta_t = 1.0/18 # makes for 10 degrees per step
angular_velocity_vector = vector3(0, -angular_velocity, 0)
linear_velocity_vector = vector3(radius * angular_velocity, 0, 0)
scenario = gtsam.ConstantTwistScenario(
angular_velocity_vector, linear_velocity_vector, pose_0)
# Create a factor graph
newgraph = gtsam.NonlinearFactorGraph()
# Create (incremental) ISAM2 solver
isam = gtsam.ISAM2()
# Create the initial estimate to the solution
# Intentionally initialize the variables off from the ground truth
initialEstimate = gtsam.Values()
# Add a prior on pose x0. This indirectly specifies where the origin is.
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))
# Add imu priors
biasKey = gtsam.symbol(ord('b'), 0)
biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
biasnoise)
newgraph.push_back(biasprior)
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
# Calculate with correct initial velocity
n_velocity = vector3(0, angular_velocity * radius, 0)
velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
newgraph.push_back(velprior)
initialEstimate.insert(V(0), n_velocity)
accum = gtsam.PreintegratedImuMeasurements(PARAMS)
# Simulate poses and imu measurements, adding them to the factor graph
for i in range(80):
t = i * delta_t # simulation time
if i == 0: # First time add two poses
pose_1 = scenario.pose(delta_t)
initialEstimate.insert(X(0), pose_0.compose(DELTA))
initialEstimate.insert(X(1), pose_1.compose(DELTA))
elif i >= 2: # Add more poses as necessary
pose_i = scenario.pose(t)
initialEstimate.insert(X(i), pose_i.compose(DELTA))
if i > 0:
# Add Bias variables periodically
if i % 5 == 0:
biasKey += 1
factor = gtsam.BetweenFactorConstantBias(
biasKey - 1, biasKey, gtsam.imuBias_ConstantBias(), BIAS_COVARIANCE)
newgraph.add(factor)
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
# Predict acceleration and gyro measurements in (actual) body frame
nRb = scenario.rotation(t).matrix()
bRn = np.transpose(nRb)
measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
measuredOmega = scenario.omega_b(t)
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)
# Add Imu Factor
imufac = gtsam.ImuFactor(
X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
newgraph.add(imufac)
# insert new velocity, which is wrong
initialEstimate.insert(V(i), n_velocity)
accum.resetIntegration()
# Incremental solution
isam.update(newgraph, initialEstimate)
result = isam.calculateEstimate()
ISAM2_plot(result)
# reset
newgraph = gtsam.NonlinearFactorGraph()
initialEstimate.clear()
if __name__ == '__main__':
IMU_example()

View File

@ -0,0 +1,69 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Simple robot motion example, with prior and two odometry measurements
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
import matplotlib.pyplot as plt
import gtsam.utils.plot as gtsam_plot
# Create noise models
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
# Create an empty nonlinear factor graph
graph = gtsam.NonlinearFactorGraph()
# Add a prior on the first pose, setting it to the origin
# A prior factor consists of a mean and a noise model (covariance matrix)
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
graph.add(gtsam.PriorFactorPose2(1, priorMean, PRIOR_NOISE))
# Add odometry factors
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
# For simplicity, we will use the same noise model for each odometry factor
# Create odometry (Between) factors between consecutive poses
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, ODOMETRY_NOISE))
print("\nFactor Graph:\n{}".format(graph))
# Create the data structure to hold the initialEstimate estimate to the solution
# For illustrative purposes, these have been deliberately set to incorrect values
initial = gtsam.Values()
initial.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial.insert(3, gtsam.Pose2(4.1, 0.1, 0.1))
print("\nInitial Estimate:\n{}".format(initial))
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
print("\nFinal Result:\n{}".format(result))
# 5. Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
for i in range(1, 4):
print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i)))
fig = plt.figure(0)
for i in range(1, 4):
gtsam_plot.plot_pose2(0, result.atPose2(i), 0.5, marginals.marginalCovariance(i))
plt.axis('equal')
plt.show()

View File

@ -0,0 +1,334 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Kinematics of three-link manipulator with GTSAM poses and product of exponential maps.
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import unittest
from functools import reduce
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
from gtsam import Pose2
from gtsam.utils.test_case import GtsamTestCase
def vector3(x, y, z):
"""Create 3D double numpy array."""
return np.array([x, y, z], dtype=np.float)
def compose(*poses):
"""Compose all Pose2 transforms given as arguments from left to right."""
return reduce((lambda x, y: x.compose(y)), poses)
def vee(M):
"""Pose2 vee operator."""
return vector3(M[0, 2], M[1, 2], M[1, 0])
def delta(g0, g1):
"""Difference between x,y,,theta components of SE(2) poses."""
return vector3(g1.x() - g0.x(), g1.y() - g0.y(), g1.theta() - g0.theta())
def trajectory(g0, g1, N=20):
""" Create an interpolated trajectory in SE(2), treating x,y, and theta separately.
g0 and g1 are the initial and final pose, respectively.
N is the number of *intervals*
Returns N+1 poses
"""
e = delta(g0, g1)
return [Pose2(g0.x()+e[0]*t, g0.y()+e[1]*t, g0.theta()+e[2]*t) for t in np.linspace(0, 1, N)]
class ThreeLinkArm(object):
"""Three-link arm class."""
def __init__(self):
self.L1 = 3.5
self.L2 = 3.5
self.L3 = 2.5
self.xi1 = vector3(0, 0, 1)
self.xi2 = vector3(self.L1, 0, 1)
self.xi3 = vector3(self.L1+self.L2, 0, 1)
self.sXt0 = Pose2(0, self.L1+self.L2 + self.L3, math.radians(90))
def fk(self, q):
""" Forward kinematics.
Takes numpy array of joint angles, in radians.
"""
sXl1 = Pose2(0, 0, math.radians(90))
l1Zl1 = Pose2(0, 0, q[0])
l1Xl2 = Pose2(self.L1, 0, 0)
l2Zl2 = Pose2(0, 0, q[1])
l2Xl3 = Pose2(self.L2, 0, 0)
l3Zl3 = Pose2(0, 0, q[2])
l3Xt = Pose2(self.L3, 0, 0)
return compose(sXl1, l1Zl1, l1Xl2, l2Zl2, l2Xl3, l3Zl3, l3Xt)
def jacobian(self, q):
""" Calculate manipulator Jacobian.
Takes numpy array of joint angles, in radians.
"""
a = q[0]+q[1]
b = a+q[2]
return np.array([[-self.L1*math.cos(q[0]) - self.L2*math.cos(a)-self.L3*math.cos(b),
-self.L1*math.cos(a)-self.L3*math.cos(b),
- self.L3*math.cos(b)],
[-self.L1*math.sin(q[0]) - self.L2*math.sin(a)-self.L3*math.sin(b),
-self.L1*math.sin(a)-self.L3*math.sin(b),
- self.L3*math.sin(b)],
[1, 1, 1]], np.float)
def poe(self, q):
""" Forward kinematics.
Takes numpy array of joint angles, in radians.
"""
l1Zl1 = Pose2.Expmap(self.xi1 * q[0])
l2Zl2 = Pose2.Expmap(self.xi2 * q[1])
l3Zl3 = Pose2.Expmap(self.xi3 * q[2])
return compose(l1Zl1, l2Zl2, l3Zl3, self.sXt0)
def con(self, q):
""" Forward kinematics, conjugation form.
Takes numpy array of joint angles, in radians.
"""
def expmap(x, y, theta):
"""Implement exponential map via conjugation with axis (x,y)."""
return compose(Pose2(x, y, 0), Pose2(0, 0, theta), Pose2(-x, -y, 0))
l1Zl1 = expmap(0.0, 0.0, q[0])
l2Zl2 = expmap(0.0, self.L1, q[1])
l3Zl3 = expmap(0.0, self.L1+self.L2, q[2])
return compose(l1Zl1, l2Zl2, l3Zl3, self.sXt0)
def ik(self, sTt_desired, e=1e-9):
""" Inverse kinematics.
Takes desired Pose2 of tool T with respect to base S.
Optional: mu, gradient descent rate; e: error norm threshold
"""
q = np.radians(vector3(30, -30, 45)) # well within workspace
error = vector3(100, 100, 100)
while np.linalg.norm(error) > e:
error = delta(sTt_desired, self.fk(q))
J = self.jacobian(q)
q -= np.dot(np.linalg.pinv(J), error)
# return result in interval [-pi,pi)
return np.remainder(q+math.pi, 2*math.pi)-math.pi
def manipulator_jacobian(self, q):
""" Calculate manipulator Jacobian.
Takes numpy array of joint angles, in radians.
Returns the manipulator Jacobian of differential twists. When multiplied with
a vector of joint velocities, will yield a single differential twist which is
the spatial velocity d(sTt)/dt * inv(sTt) of the end-effector pose.
Just like always, differential twists can be hatted and multiplied with spatial
coordinates of a point to give the spatial velocity of the point.
"""
l1Zl1 = Pose2.Expmap(self.xi1 * q[0])
l2Zl2 = Pose2.Expmap(self.xi2 * q[1])
# l3Zl3 = Pose2.Expmap(self.xi3 * q[2])
p1 = self.xi1
# p1 = Pose2().Adjoint(self.xi1)
sTl1 = l1Zl1
p2 = sTl1.Adjoint(self.xi2)
sTl2 = compose(l1Zl1, l2Zl2)
p3 = sTl2.Adjoint(self.xi3)
differential_twists = [p1, p2, p3]
return np.stack(differential_twists, axis=1)
def plot(self, fignum, q):
""" Plot arm.
Takes figure number, and numpy array of joint angles, in radians.
"""
fig = plt.figure(fignum)
axes = fig.gca()
sXl1 = Pose2(0, 0, math.radians(90))
t = sXl1.translation()
p1 = np.array([t.x(), t.y()])
gtsam_plot.plot_pose2_on_axes(axes, sXl1)
def plot_line(p, g, color):
t = g.translation()
q = np.array([t.x(), t.y()])
line = np.append(p[np.newaxis], q[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], color)
return q
l1Zl1 = Pose2(0, 0, q[0])
l1Xl2 = Pose2(self.L1, 0, 0)
sTl2 = compose(sXl1, l1Zl1, l1Xl2)
p2 = plot_line(p1, sTl2, 'r-')
gtsam_plot.plot_pose2_on_axes(axes, sTl2)
l2Zl2 = Pose2(0, 0, q[1])
l2Xl3 = Pose2(self.L2, 0, 0)
sTl3 = compose(sTl2, l2Zl2, l2Xl3)
p3 = plot_line(p2, sTl3, 'g-')
gtsam_plot.plot_pose2_on_axes(axes, sTl3)
l3Zl3 = Pose2(0, 0, q[2])
l3Xt = Pose2(self.L3, 0, 0)
sTt = compose(sTl3, l3Zl3, l3Xt)
plot_line(p3, sTt, 'b-')
gtsam_plot.plot_pose2_on_axes(axes, sTt)
# Create common example configurations.
Q0 = vector3(0, 0, 0)
Q1 = np.radians(vector3(-30, -45, -90))
Q2 = np.radians(vector3(-90, 90, 0))
class TestPose2SLAMExample(GtsamTestCase):
"""Unit tests for functions used below."""
def setUp(self):
self.arm = ThreeLinkArm()
def assertPose2Equals(self, actual, expected, tol=1e-2):
"""Helper function that prints out actual and expected if not equal."""
equal = actual.equals(expected, tol)
if not equal:
raise self.failureException(
"Poses are not equal:\n{}!={}".format(actual, expected))
def test_fk_arm(self):
"""Make sure forward kinematics is correct for some known test configurations."""
# at rest
expected = Pose2(0, 2*3.5 + 2.5, math.radians(90))
sTt = self.arm.fk(Q0)
self.assertIsInstance(sTt, Pose2)
self.assertPose2Equals(sTt, expected)
# -30, -45, -90
expected = Pose2(5.78, 1.52, math.radians(-75))
sTt = self.arm.fk(Q1)
self.assertPose2Equals(sTt, expected)
def test_jacobian(self):
"""Test Jacobian calculation."""
# at rest
expected = np.array([[-9.5, -6, -2.5], [0, 0, 0], [1, 1, 1]], np.float)
J = self.arm.jacobian(Q0)
np.testing.assert_array_almost_equal(J, expected)
# at -90, 90, 0
expected = np.array([[-6, -6, -2.5], [3.5, 0, 0], [1, 1, 1]], np.float)
J = self.arm.jacobian(Q2)
np.testing.assert_array_almost_equal(J, expected)
def test_con_arm(self):
"""Make sure POE is correct for some known test configurations."""
# at rest
expected = Pose2(0, 2*3.5 + 2.5, math.radians(90))
sTt = self.arm.con(Q0)
self.assertIsInstance(sTt, Pose2)
self.assertPose2Equals(sTt, expected)
# -30, -45, -90
expected = Pose2(5.78, 1.52, math.radians(-75))
sTt = self.arm.con(Q1)
self.assertPose2Equals(sTt, expected)
def test_poe_arm(self):
"""Make sure POE is correct for some known test configurations."""
# at rest
expected = Pose2(0, 2*3.5 + 2.5, math.radians(90))
sTt = self.arm.poe(Q0)
self.assertIsInstance(sTt, Pose2)
self.assertPose2Equals(sTt, expected)
# -30, -45, -90
expected = Pose2(5.78, 1.52, math.radians(-75))
sTt = self.arm.poe(Q1)
self.assertPose2Equals(sTt, expected)
def test_ik(self):
"""Check iterative inverse kinematics function."""
# at rest
actual = self.arm.ik(Pose2(0, 2*3.5 + 2.5, math.radians(90)))
np.testing.assert_array_almost_equal(actual, Q0, decimal=2)
# -30, -45, -90
sTt_desired = Pose2(5.78, 1.52, math.radians(-75))
actual = self.arm.ik(sTt_desired)
self.assertPose2Equals(self.arm.fk(actual), sTt_desired)
np.testing.assert_array_almost_equal(actual, Q1, decimal=2)
def test_manipulator_jacobian(self):
"""Test Jacobian calculation."""
# at rest
expected = np.array([[0, 3.5, 7], [0, 0, 0], [1, 1, 1]], np.float)
J = self.arm.manipulator_jacobian(Q0)
np.testing.assert_array_almost_equal(J, expected)
# at -90, 90, 0
expected = np.array(
[[0, 0, 3.5], [0, -3.5, -3.5], [1, 1, 1]], np.float)
J = self.arm.manipulator_jacobian(Q2)
np.testing.assert_array_almost_equal(J, expected)
def run_example():
""" Use trajectory interpolation and then trajectory tracking a la Murray
to move a 3-link arm on a straight line.
"""
# Create arm
arm = ThreeLinkArm()
# Get initial pose using forward kinematics
q = np.radians(vector3(30, -30, 45))
sTt_initial = arm.fk(q)
# Create interpolated trajectory in task space to desired goal pose
sTt_goal = Pose2(2.4, 4.3, math.radians(0))
poses = trajectory(sTt_initial, sTt_goal, 50)
# Setup figure and plot initial pose
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca()
axes.set_xlim(-5, 5)
axes.set_ylim(0, 10)
gtsam_plot.plot_pose2(fignum, arm.fk(q))
# For all poses in interpolated trajectory, calculate dq to move to next pose.
# We do this by calculating the local Jacobian J and doing dq = inv(J)*delta(sTt, pose).
for pose in poses:
sTt = arm.fk(q)
error = delta(sTt, pose)
J = arm.jacobian(q)
q += np.dot(np.linalg.inv(J), error)
arm.plot(fignum, q)
plt.pause(0.01)
plt.pause(10)
if __name__ == "__main__":
run_example()
unittest.main()

View File

@ -0,0 +1,80 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Simple robotics example using odometry measurements and bearing-range (laser) measurements
Author: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
# Create noise models
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
MEASUREMENT_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.2]))
# Create an empty nonlinear factor graph
graph = gtsam.NonlinearFactorGraph()
# Create the keys corresponding to unknown variables in the factor graph
X1 = gtsam.symbol(ord('x'), 1)
X2 = gtsam.symbol(ord('x'), 2)
X3 = gtsam.symbol(ord('x'), 3)
L1 = gtsam.symbol(ord('l'), 4)
L2 = gtsam.symbol(ord('l'), 5)
# Add a prior on pose X1 at the origin. A prior factor consists of a mean and a noise model
graph.add(gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))
# Add odometry factors between X1,X2 and X2,X3, respectively
graph.add(gtsam.BetweenFactorPose2(
X1, X2, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
X2, X3, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
# Add Range-Bearing measurements to two different landmarks L1 and L2
graph.add(gtsam.BearingRangeFactor2D(
X1, L1, gtsam.Rot2.fromDegrees(45), np.sqrt(4.0+4.0), MEASUREMENT_NOISE))
graph.add(gtsam.BearingRangeFactor2D(
X2, L1, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
graph.add(gtsam.BearingRangeFactor2D(
X3, L2, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
# Print graph
print("Factor Graph:\n{}".format(graph))
# Create (deliberately inaccurate) initial estimate
initial_estimate = gtsam.Values()
initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))
# Print
print("Initial Estimate:\n{}".format(initial_estimate))
# Optimize using Levenberg-Marquardt optimization. The optimizer
# accepts an optional set of configuration parameters, controlling
# things like convergence criteria, the type of linear system solver
# to use, and the amount of information displayed during optimization.
# Here we will use the default set of parameters. See the
# documentation for the full set of parameters.
params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate, params)
result = optimizer.optimize()
print("\nFinal Result:\n{}".format(result))
# Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
for (key, str) in [(X1, "X1"), (X2, "X2"), (X3, "X3"), (L1, "L1"), (L2, "L2")]:
print("{} covariance:\n{}\n".format(str, marginals.marginalCovariance(key)))

View File

@ -0,0 +1,97 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Simple robotics example using odometry measurements and bearing-range (laser) measurements
Author: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import numpy as np
import gtsam
import matplotlib.pyplot as plt
import gtsam.utils.plot as gtsam_plot
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
# Create noise models
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.3, 0.3, 0.1))
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.2, 0.2, 0.1))
# 1. Create a factor graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
# 2a. Add a prior on the first pose, setting it to the origin
# A prior factor consists of a mean and a noise ODOMETRY_NOISE (covariance matrix)
graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), PRIOR_NOISE))
# 2b. Add odometry factors
# Create odometry (Between) factors between consecutive poses
graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2, 0, 0), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
2, 3, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
3, 4, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
4, 5, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
# 2c. Add the loop closure constraint
# This factor encodes the fact that we have returned to the same pose. In real
# systems, these constraints may be identified in many ways, such as appearance-based
# techniques with camera images. We will use another Between Factor to enforce this constraint:
graph.add(gtsam.BetweenFactorPose2(
5, 2, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
print("\nFactor Graph:\n{}".format(graph)) # print
# 3. Create the data structure to hold the initial_estimate estimate to the
# solution. For illustrative purposes, these have been deliberately set to incorrect values
initial_estimate = gtsam.Values()
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial_estimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial_estimate.insert(3, gtsam.Pose2(4.1, 0.1, math.pi / 2))
initial_estimate.insert(4, gtsam.Pose2(4.0, 2.0, math.pi))
initial_estimate.insert(5, gtsam.Pose2(2.1, 2.1, -math.pi / 2))
print("\nInitial Estimate:\n{}".format(initial_estimate)) # print
# 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
# The optimizer accepts an optional set of configuration parameters,
# controlling things like convergence criteria, the type of linear
# system solver to use, and the amount of information displayed during
# optimization. We will set a few parameters as a demonstration.
parameters = gtsam.GaussNewtonParams()
# Stop iterating once the change in error between steps is less than this value
parameters.setRelativeErrorTol(1e-5)
# Do not perform more than N iteration steps
parameters.setMaxIterations(100)
# Create the optimizer ...
optimizer = gtsam.GaussNewtonOptimizer(graph, initial_estimate, parameters)
# ... and optimize
result = optimizer.optimize()
print("Final Result:\n{}".format(result))
# 5. Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
for i in range(1, 6):
print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i)))
fig = plt.figure(0)
for i in range(1, 6):
gtsam_plot.plot_pose2(0, result.atPose2(i), 0.5, marginals.marginalCovariance(i))
plt.axis('equal')
plt.show()

View File

@ -0,0 +1,89 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph
and does the optimization. Output is written on a file, in g2o format
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import argparse
import math
import numpy as np
import matplotlib.pyplot as plt
import gtsam
from gtsam.utils import plot
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
parser = argparse.ArgumentParser(
description="A 2D Pose SLAM example that reads input from g2o, "
"converts it to a factor graph and does the optimization. "
"Output is written on a file, in g2o format")
parser.add_argument('-i', '--input', help='input file g2o format')
parser.add_argument('-o', '--output',
help="the path to the output file with optimized graph")
parser.add_argument('-m', '--maxiter', type=int,
help="maximum number of iterations for optimizer")
parser.add_argument('-k', '--kernel', choices=['none', 'huber', 'tukey'],
default="none", help="Type of kernel used")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt") if args.input is None\
else args.input
maxIterations = 100 if args.maxiter is None else args.maxiter
is3D = False
graph, initial = gtsam.readG2o(g2oFile, is3D)
assert args.kernel == "none", "Supplied kernel type is not yet implemented"
# Add prior on the pose having index (key) = 0
graphWithPrior = graph
priorModel = gtsam.noiseModel_Diagonal.Variances(vector3(1e-6, 1e-6, 1e-8))
graphWithPrior.add(gtsam.PriorFactorPose2(0, gtsam.Pose2(), priorModel))
params = gtsam.GaussNewtonParams()
params.setVerbosity("Termination")
params.setMaxIterations(maxIterations)
# parameters.setRelativeErrorTol(1e-5)
# Create the optimizer ...
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
# ... and optimize
result = optimizer.optimize()
print("Optimization complete")
print("initial error = ", graph.error(initial))
print("final error = ", graph.error(result))
if args.output is None:
print("\nFactor Graph:\n{}".format(graph))
print("\nInitial Estimate:\n{}".format(initial))
print("Final Result:\n{}".format(result))
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel, _ = gtsam.readG2o(g2oFile, is3D)
gtsam.writeG2o(graphNoKernel, result, outputFile)
print ("Done!")
if args.plot:
resultPoses = gtsam.extractPose2(result)
for i in range(resultPoses.shape[0]):
plot.plot_pose2(1, gtsam.Pose2(resultPoses[i, :]))
plt.show()

View File

@ -0,0 +1,72 @@
"""
* @file Pose3SLAMExample_initializePose3.cpp
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the
* Pose3 using InitializePose3
* @date Jan 17, 2019
* @author Vikrant Shah based on CPP example by Luca Carlone
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import argparse
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.utils import plot
def vector6(x, y, z, a, b, c):
"""Create 6d double numpy array."""
return np.array([x, y, z, a, b, c], dtype=np.float)
parser = argparse.ArgumentParser(
description="A 3D Pose SLAM example that reads input from g2o, and "
"initializes Pose3")
parser.add_argument('-i', '--input', help='input file g2o format')
parser.add_argument('-o', '--output',
help="the path to the output file with optimized graph")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
g2oFile = gtsam.findExampleDataFile("pose3example.txt") if args.input is None \
else args.input
is3D = True
graph, initial = gtsam.readG2o(g2oFile, is3D)
# Add Prior on the first key
priorModel = gtsam.noiseModel_Diagonal.Variances(vector6(1e-6, 1e-6, 1e-6,
1e-4, 1e-4, 1e-4))
print("Adding prior to g2o file ")
graphWithPrior = graph
firstKey = initial.keys().at(0)
graphWithPrior.add(gtsam.PriorFactorPose3(firstKey, gtsam.Pose3(), priorModel))
params = gtsam.GaussNewtonParams()
params.setVerbosity("Termination") # this will show info about stopping conds
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
result = optimizer.optimize()
print("Optimization complete")
print("initial error = ", graphWithPrior.error(initial))
print("final error = ", graphWithPrior.error(result))
if args.output is None:
print("Final Result:\n{}".format(result))
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel, _ = gtsam.readG2o(g2oFile, is3D)
gtsam.writeG2o(graphNoKernel, result, outputFile)
print ("Done!")
if args.plot:
resultPoses = gtsam.allPose3s(result)
for i in range(resultPoses.size()):
plot.plot_pose3(1, resultPoses.atPose3(i))
plt.show()

View File

@ -0,0 +1,35 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Initialize PoseSLAM with Chordal init
Author: Luca Carlone, Frank Dellaert (python port)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
# Read graph from file
g2oFile = gtsam.findExampleDataFile("pose3example.txt")
is3D = True
graph, initial = gtsam.readG2o(g2oFile, is3D)
# Add prior on the first key. TODO: assumes first key ios z
priorModel = gtsam.noiseModel_Diagonal.Variances(
np.array([1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4]))
firstKey = initial.keys().at(0)
graph.add(gtsam.PriorFactorPose3(0, gtsam.Pose3(), priorModel))
# Initializing Pose3 - chordal relaxation"
initialization = gtsam.InitializePose3.initialize(graph)
print(initialization)

View File

@ -1,19 +1,26 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
A script validating the Preintegration of IMU measurements
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
from gtsam.utils.plot import plot_pose3
IMU_FIG = 1
POSES_FIG = 2
class PreintegrationExample(object):
@staticmethod
@ -22,18 +29,21 @@ class PreintegrationExample(object):
params = gtsam.PreintegrationParams.MakeSharedU(g)
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
kAccelSigma = 0.1 / 60 # 10 cm VRW
params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float)
params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float)
params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float)
params.setGyroscopeCovariance(
kGyroSigma ** 2 * np.identity(3, np.float))
params.setAccelerometerCovariance(
kAccelSigma ** 2 * np.identity(3, np.float))
params.setIntegrationCovariance(
0.0000001 ** 2 * np.identity(3, np.float))
return params
def __init__(self, twist=None, bias=None, dt=1e-2):
"""Initialize with given twist, a pair(angularVelocityVector, velocityVector)."""
# setup interactive plotting
plt.ion()
# Setup loop as default scenario
# Setup loop as default scenario
if twist is not None:
(W, V) = twist
else:
@ -52,21 +62,21 @@ class PreintegrationExample(object):
# Create runner
self.g = 10 # simple gravity constant
self.params = self.defaultParams(self.g)
ptr = gtsam.ScenarioPointer(self.scenario)
if bias is not None:
self.actualBias = bias
else:
accBias = np.array([0, 0.1, 0])
gyroBias = np.array([0, 0, 0])
self.actualBias = gtsam.ConstantBias(accBias, gyroBias)
self.actualBias = gtsam.imuBias_ConstantBias(accBias, gyroBias)
self.runner = gtsam.ScenarioRunner(ptr, self.params, self.dt, self.actualBias)
self.runner = gtsam.ScenarioRunner(
self.scenario, self.params, self.dt, self.actualBias)
def plotImu(self, t, measuredOmega, measuredAcc):
plt.figure(IMU_FIG)
# plot angular velocity
# plot angular velocity
omega_b = self.scenario.omega_b(t)
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
plt.subplot(4, 3, i + 1)
@ -99,9 +109,9 @@ class PreintegrationExample(object):
def plotGroundTruthPose(self, t):
# plot ground truth pose, as well as prediction from integrated IMU measurements
actualPose = self.scenario.pose(t)
plotPose3(POSES_FIG, actualPose, 0.3)
plot_pose3(POSES_FIG, actualPose, 0.3)
t = actualPose.translation()
self.maxDim = max([abs(t[0]), abs(t[1]), abs(t[2]), self.maxDim])
self.maxDim = max([abs(t.x()), abs(t.y()), abs(t.z()), self.maxDim])
ax = plt.gca()
ax.set_xlim3d(-self.maxDim, self.maxDim)
ax.set_ylim3d(-self.maxDim, self.maxDim)
@ -120,10 +130,11 @@ class PreintegrationExample(object):
self.plotGroundTruthPose(t)
pim = self.runner.integrate(t, self.actualBias, True)
predictedNavState = self.runner.predict(pim, self.actualBias)
plotPose3(POSES_FIG, predictedNavState.pose(), 0.1)
plot_pose3(POSES_FIG, predictedNavState.pose(), 0.1)
plt.ioff()
plt.show()
if __name__ == '__main__':
PreintegrationExample().run()

View File

@ -0,0 +1,57 @@
These examples are almost identical to the old handwritten python wrapper
examples. However, there are just some slight name changes, for example
`noiseModel.Diagonal` becomes `noiseModel_Diagonal` etc...
Also, annoyingly, instead of `gtsam.Symbol('b', 0)` we now need to say `gtsam.symbol(ord('b'), 0))`
# Porting Progress
| C++ Example Name | Ported |
|-------------------------------------------------------|--------|
| CameraResectioning | |
| CreateSFMExampleData | |
| DiscreteBayesNet_FG | none of the required discrete functionality is exposed through cython |
| easyPoint2KalmanFilter | ExtendedKalmanFilter not exposed through cython |
| elaboratePoint2KalmanFilter | GaussianSequentialSolver not exposed through cython |
| ImuFactorExample2 | X |
| ImuFactorsExample | |
| ISAM2Example_SmartFactor | |
| ISAM2_SmartFactorStereo_IMU | |
| LocalizationExample | impossible? |
| METISOrderingExample | |
| OdometryExample | X |
| PlanarSLAMExample | X |
| Pose2SLAMExample | X |
| Pose2SLAMExampleExpressions | |
| Pose2SLAMExample_g2o | X |
| Pose2SLAMExample_graph | |
| Pose2SLAMExample_graphviz | |
| Pose2SLAMExample_lago | lago not exposed through cython |
| Pose2SLAMStressTest | |
| Pose2SLAMwSPCG | |
| Pose3SLAMExample_changeKeys | |
| Pose3SLAMExampleExpressions_BearingRangeWithTransform | |
| Pose3SLAMExample_g2o | X |
| Pose3SLAMExample_initializePose3Chordal | |
| Pose3SLAMExample_initializePose3Gradient | |
| RangeISAMExample_plaza2 | |
| SelfCalibrationExample | |
| SFMExample_bal_COLAMD_METIS | |
| SFMExample_bal | |
| SFMExample | X |
| SFMExampleExpressions_bal | |
| SFMExampleExpressions | |
| SFMExample_SmartFactor | |
| SFMExample_SmartFactorPCG | |
| SimpleRotation | X |
| SolverComparer | |
| StereoVOExample | |
| StereoVOExample_large | |
| TimeTBB | |
| UGM_chain | discrete functionality not exposed |
| UGM_small | discrete functionality not exposed |
| VisualISAM2Example | X |
| VisualISAMExample | X |
Extra Examples (with no C++ equivalent)
- PlanarManipulatorExample
- SFMData

View File

@ -0,0 +1,118 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A structure-from-motion problem on a simulated dataset
"""
from __future__ import print_function
import gtsam
import numpy as np
from gtsam.examples import SFMdata
from gtsam.gtsam import (Cal3_S2, DoglegOptimizer,
GenericProjectionFactorCal3_S2, NonlinearFactorGraph,
Point3, Pose3, PriorFactorPoint3, PriorFactorPose3,
Rot3, SimpleCamera, Values)
def symbol(name: str, index: int) -> int:
""" helper for creating a symbol without explicitly casting 'name' from str to int """
return gtsam.symbol(ord(name), index)
def main():
"""
Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
Each variable in the system (poses and landmarks) must be identified with a unique key.
We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
Here we will use Symbols
In GTSAM, measurement functions are represented as 'factors'. Several common factors
have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
Here we will use Projection factors to model the camera's landmark observations.
Also, we will initialize the robot at some location using a Prior factor.
When the factors are created, we will add them to a Factor Graph. As the factors we are using
are nonlinear factors, we will need a Nonlinear Factor Graph.
Finally, once all of the factors have been added to our factor graph, we will want to
solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
trust-region method known as Powell's Degleg
The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
nonlinear functions around an initial linearization point, then solve the linear system
to update the linearization point. This happens repeatedly until the solver converges
to a consistent set of variable values. This requires us to specify an initial guess
for each variable, held in a Values container.
"""
# Define the camera calibration parameters
K = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create a factor graph
graph = NonlinearFactorGraph()
# Add a prior on pose x1. This indirectly specifies where the origin is.
# 0.3 rad std on roll,pitch,yaw and 0.1m on x,y,z
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise)
graph.push_back(factor)
# Simulated measurements from each camera pose, adding them to the factor graph
for i, pose in enumerate(poses):
camera = SimpleCamera(pose, K)
for j, point in enumerate(points):
measurement = camera.project(point)
factor = GenericProjectionFactorCal3_S2(
measurement, measurement_noise, symbol('x', i), symbol('l', j), K)
graph.push_back(factor)
# Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
# Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
# between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise)
graph.push_back(factor)
graph.print_('Factor Graph:\n')
# Create the data structure to hold the initial estimate to the solution
# Intentionally initialize the variables off from the ground truth
initial_estimate = Values()
for i, pose in enumerate(poses):
r = Rot3.Rodrigues(-0.1, 0.2, 0.25)
t = Point3(0.05, -0.10, 0.20)
transformed_pose = pose.compose(Pose3(r, t))
initial_estimate.insert(symbol('x', i), transformed_pose)
for j, point in enumerate(points):
transformed_point = Point3(point.vector() + np.array([-0.25, 0.20, 0.15]))
initial_estimate.insert(symbol('l', j), transformed_point)
initial_estimate.print_('Initial Estimates:\n')
# Optimize the graph and print results
params = gtsam.DoglegParams()
params.setVerbosity('TERMINATION')
optimizer = DoglegOptimizer(graph, initial_estimate, params)
print('Optimizing:')
result = optimizer.optimize()
result.print_('Final results:\n')
print('initial error = {}'.format(graph.error(initial_estimate)))
print('final error = {}'.format(graph.error(result)))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,38 @@
"""
A structure-from-motion example with landmarks
- The landmarks form a 10 meter cube
- The robot rotates around the landmarks, always facing towards the cube
"""
# pylint: disable=invalid-name, E1101
import numpy as np
import gtsam
def createPoints():
# Create the set of ground-truth landmarks
points = [gtsam.Point3(10.0, 10.0, 10.0),
gtsam.Point3(-10.0, 10.0, 10.0),
gtsam.Point3(-10.0, -10.0, 10.0),
gtsam.Point3(10.0, -10.0, 10.0),
gtsam.Point3(10.0, 10.0, -10.0),
gtsam.Point3(-10.0, 10.0, -10.0),
gtsam.Point3(-10.0, -10.0, -10.0),
gtsam.Point3(10.0, -10.0, -10.0)]
return points
def createPoses(K):
# Create the set of ground-truth poses
radius = 30.0
angles = np.linspace(0, 2*np.pi, 8, endpoint=False)
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
poses = []
for theta in angles:
position = gtsam.Point3(radius*np.cos(theta),
radius*np.sin(theta), 0.0)
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
poses.append(camera.pose())
return poses

View File

@ -0,0 +1,84 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
This example will perform a relatively trivial optimization on
a single variable with a single factor.
"""
import numpy as np
import gtsam
def main():
"""
Step 1: Create a factor to express a unary constraint
The "prior" in this case is the measurement from a sensor,
with a model of the noise on the measurement.
The "Key" created here is a label used to associate parts of the
state (stored in "RotValues") with particular factors. They require
an index to allow for lookup, and should be unique.
In general, creating a factor requires:
- A key or set of keys labeling the variables that are acted upon
- A measurement value
- A measurement model with the correct dimensionality for the factor
"""
prior = gtsam.Rot2.fromAngle(np.deg2rad(30))
prior.print_('goal angle')
model = gtsam.noiseModel_Isotropic.Sigma(dim=1, sigma=np.deg2rad(1))
key = gtsam.symbol(ord('x'), 1)
factor = gtsam.PriorFactorRot2(key, prior, model)
"""
Step 2: Create a graph container and add the factor to it
Before optimizing, all factors need to be added to a Graph container,
which provides the necessary top-level functionality for defining a
system of constraints.
In this case, there is only one factor, but in a practical scenario,
many more factors would be added.
"""
graph = gtsam.NonlinearFactorGraph()
graph.push_back(factor)
graph.print_('full graph')
"""
Step 3: Create an initial estimate
An initial estimate of the solution for the system is necessary to
start optimization. This system state is the "Values" instance,
which is similar in structure to a dictionary, in that it maps
keys (the label created in step 1) to specific values.
The initial estimate provided to optimization will be used as
a linearization point for optimization, so it is important that
all of the variables in the graph have a corresponding value in
this structure.
"""
initial = gtsam.Values()
initial.insert(key, gtsam.Rot2.fromAngle(np.deg2rad(20)))
initial.print_('initial estimate')
"""
Step 4: Optimize
After formulating the problem with a graph of constraints
and an initial estimate, executing optimization is as simple
as calling a general optimization function with the graph and
initial estimate. This will yield a new RotValues structure
with the final state of the optimization.
"""
result = gtsam.LevenbergMarquardtOptimizer(graph, initial).optimize()
result.print_('final result')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,163 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
An example of running visual SLAM using iSAM2.
Author: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
from gtsam.examples import SFMdata
def X(i):
"""Create key for pose i."""
return int(gtsam.symbol(ord('x'), i))
def L(j):
"""Create key for landmark j."""
return int(gtsam.symbol(ord('l'), j))
def visual_ISAM2_plot(result):
"""
VisualISAMPlot plots current state of ISAM2 object
Author: Ellon Paiva
Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
"""
# Declare an id for the figure
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
# Plot points
# Can't use data because current frame might not see all points
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
# gtsam.plot_3d_points(result, [], marginals)
gtsam_plot.plot_3d_points(fignum, result, 'rx')
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
i += 1
# draw
axes.set_xlim3d(-40, 40)
axes.set_ylim3d(-40, 40)
axes.set_zlim3d(-40, 40)
plt.pause(1)
def visual_ISAM2_example():
plt.ion()
# Define the camera calibration parameters
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
# to maintain proper linearization and efficient variable ordering, iSAM2
# performs partial relinearization/reordering at each step. A parameter
# structure is available that allows the user to set various properties, such
# as the relinearization threshold and type of linear solver. For this
# example, we we set the relinearization threshold small so the iSAM2 result
# will approach the batch result.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.01)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# Create a Factor Graph and Values to hold the new data
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
# Add factors for each landmark observation
for j, point in enumerate(points):
camera = gtsam.PinholeCameraCal3_S2(pose, K)
measurement = camera.project(point)
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(
measurement, measurement_noise, X(i), L(j), K))
# Add an initial guess for the current pose
# Intentionally initialize the variables off from the ground truth
initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# If this is the first iteration, add a prior on the first pose to set the
# coordinate frame and a prior on the first landmark to set the scale.
# Also, as iSAM solves incrementally, we must wait until each is observed
# at least twice before adding it to iSAM.
if i == 0:
# Add a prior on pose x0
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
[0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))
# Add a prior on landmark l0
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
graph.push_back(gtsam.PriorFactorPoint3(
L(0), points[0], point_noise)) # add directly to graph
# Add initial guesses to all observed landmarks
# Intentionally initialize the variables off from the ground truth
for j, point in enumerate(points):
initial_estimate.insert(L(j), gtsam.Point3(
point.x()-0.25, point.y()+0.20, point.z()+0.15))
else:
# Update iSAM with the new factors
isam.update(graph, initial_estimate)
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
# If accuracy is desired at the expense of time, update(*) can be called additional
# times to perform multiple optimizer iterations every step.
isam.update()
current_estimate = isam.calculateEstimate()
print("****************************************************")
print("Frame", i, ":")
for j in range(i + 1):
print(X(j), ":", current_estimate.atPose3(X(j)))
for j in range(len(points)):
print(L(j), ":", current_estimate.atPoint3(L(j)))
visual_ISAM2_plot(current_estimate)
# Clear the factor graph and values for the next iteration
graph.resize(0)
initial_estimate.clear()
plt.ioff()
plt.show()
if __name__ == '__main__':
visual_ISAM2_example()

View File

@ -0,0 +1,106 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A visualSLAM example for the structure-from-motion problem on a simulated dataset
This version uses iSAM to solve the problem incrementally
"""
from __future__ import print_function
import numpy as np
import gtsam
from gtsam.examples import SFMdata
from gtsam.gtsam import (Cal3_S2, GenericProjectionFactorCal3_S2,
NonlinearFactorGraph, NonlinearISAM, Point3, Pose3,
PriorFactorPoint3, PriorFactorPose3, Rot3,
SimpleCamera, Values)
def symbol(name: str, index: int) -> int:
""" helper for creating a symbol without explicitly casting 'name' from str to int """
return gtsam.symbol(ord(name), index)
def main():
"""
A structure-from-motion example with landmarks
- The landmarks form a 10 meter cube
- The robot rotates around the landmarks, always facing towards the cube
"""
# Define the camera calibration parameters
K = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
camera_noise = gtsam.noiseModel_Isotropic.Sigma(2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create a NonlinearISAM object which will relinearize and reorder the variables
# every "reorderInterval" updates
isam = NonlinearISAM(reorderInterval=3)
# Create a Factor Graph and Values to hold the new data
graph = NonlinearFactorGraph()
initial_estimate = Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
camera = SimpleCamera(pose, K)
# Add factors for each landmark observation
for j, point in enumerate(points):
measurement = camera.project(point)
factor = GenericProjectionFactorCal3_S2(measurement, camera_noise, symbol('x', i), symbol('l', j), K)
graph.push_back(factor)
# Intentionally initialize the variables off from the ground truth
noise = Pose3(r=Rot3.Rodrigues(-0.1, 0.2, 0.25), t=Point3(0.05, -0.10, 0.20))
initial_xi = pose.compose(noise)
# Add an initial guess for the current pose
initial_estimate.insert(symbol('x', i), initial_xi)
# If this is the first iteration, add a prior on the first pose to set the coordinate frame
# and a prior on the first landmark to set the scale
# Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
# adding it to iSAM.
if i == 0:
# Add a prior on pose x0, with 0.3 rad std on roll,pitch,yaw and 0.1m x,y,z
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise)
graph.push_back(factor)
# Add a prior on landmark l0
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise)
graph.push_back(factor)
# Add initial guesses to all observed landmarks
noise = np.array([-0.25, 0.20, 0.15])
for j, point in enumerate(points):
# Intentionally initialize the variables off from the ground truth
initial_lj = points[j].vector() + noise
initial_estimate.insert(symbol('l', j), Point3(initial_lj))
else:
# Update iSAM with the new factors
isam.update(graph, initial_estimate)
current_estimate = isam.estimate()
print('*' * 50)
print('Frame {}:'.format(i))
current_estimate.print_('Current estimate: ')
# Clear the factor graph and values for the next iteration
graph.resize(0)
initial_estimate.clear()
if __name__ == '__main__':
main()

View File

View File

View File

@ -0,0 +1,47 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
ScenarioRunner unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import math
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestScenarioRunner(GtsamTestCase):
def setUp(self):
self.g = 10 # simple gravity constant
def test_loop_runner(self):
# Forward velocity 2m/s
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
v = 2
w = math.radians(6)
W = np.array([0, -w, 0])
V = np.array([v, 0, 0])
scenario = gtsam.ConstantTwistScenario(W, V)
dt = 0.1
params = gtsam.PreintegrationParams.MakeSharedU(self.g)
bias = gtsam.imuBias_ConstantBias()
runner = gtsam.ScenarioRunner(
scenario, params, dt, bias)
# Test specific force at time 0: a is pointing up
t = 0.0
a = w * v
np.testing.assert_almost_equal(
np.array([0, 0, a + self.g]), runner.actualSpecificForce(t))
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,38 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Cal3Unified unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestCal3Unified(GtsamTestCase):
def test_Cal3Unified(self):
K = gtsam.Cal3Unified()
self.assertEqual(K.fx(), 1.)
self.assertEqual(K.fx(), 1.)
def test_retract(self):
expected = gtsam.Cal3Unified(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6,
1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10, 0.1 + 1)
K = gtsam.Cal3Unified(100, 105, 0.0, 320, 240,
1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3, 0.1)
d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10, 1], order='F')
actual = K.retract(d)
self.gtsamAssertEquals(actual, expected)
np.testing.assert_allclose(d, K.localCoordinates(actual))
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,92 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
JacobianFactor unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestJacobianFactor(GtsamTestCase):
def test_eliminate(self):
# Recommended way to specify a matrix (see cython/README)
Ax2 = np.array(
[[-5., 0.],
[+0., -5.],
[10., 0.],
[+0., 10.]], order='F')
# This is good too
Al1 = np.array(
[[5, 0],
[0, 5],
[0, 0],
[0, 0]], dtype=float, order = 'F')
# Not recommended for performance reasons, but should still work
# as the wrapper should convert it to the correct type and storage order
Ax1 = np.array(
[[0, 0], # f4
[0, 0], # f4
[-10, 0], # f2
[0, -10]]) # f2
x2 = 1
l1 = 2
x1 = 3
# the RHS
b2 = np.array([-1., 1.5, 2., -1.])
sigmas = np.array([1., 1., 1., 1.])
model4 = gtsam.noiseModel_Diagonal.Sigmas(sigmas)
combined = gtsam.JacobianFactor(x2, Ax2, l1, Al1, x1, Ax1, b2, model4)
# eliminate the first variable (x2) in the combined factor, destructive
# !
ord = gtsam.Ordering()
ord.push_back(x2)
actualCG, lf = combined.eliminate(ord)
# create expected Conditional Gaussian
R11 = np.array([[11.1803, 0.00],
[0.00, 11.1803]])
S12 = np.array([[-2.23607, 0.00],
[+0.00, -2.23607]])
S13 = np.array([[-8.94427, 0.00],
[+0.00, -8.94427]])
d = np.array([2.23607, -1.56525])
expectedCG = gtsam.GaussianConditional(
x2, d, R11, l1, S12, x1, S13, gtsam.noiseModel_Unit.Create(2))
# check if the result matches
self.gtsamAssertEquals(actualCG, expectedCG, 1e-4)
# the expected linear factor
Bl1 = np.array([[4.47214, 0.00],
[0.00, 4.47214]])
Bx1 = np.array(
# x1
[[-4.47214, 0.00],
[+0.00, -4.47214]])
# the RHS
b1 = np.array([0.0, 0.894427])
model2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([1., 1.]))
expectedLF = gtsam.JacobianFactor(l1, Bl1, x1, Bx1, b1, model2)
# check if the result matches the combined (reduced) factor
self.gtsamAssertEquals(lf, expectedLF, 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,83 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
KalmanFilter unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestKalmanFilter(GtsamTestCase):
def test_KalmanFilter(self):
F = np.eye(2)
B = np.eye(2)
u = np.array([1.0, 0.0])
modelQ = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1]))
Q = 0.01 * np.eye(2)
H = np.eye(2)
z1 = np.array([1.0, 0.0])
z2 = np.array([2.0, 0.0])
z3 = np.array([3.0, 0.0])
modelR = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1]))
R = 0.01 * np.eye(2)
# Create the set of expected output TestValues
expected0 = np.array([0.0, 0.0])
P00 = 0.01 * np.eye(2)
expected1 = np.array([1.0, 0.0])
P01 = P00 + Q
I11 = np.linalg.inv(P01) + np.linalg.inv(R)
expected2 = np.array([2.0, 0.0])
P12 = np.linalg.inv(I11) + Q
I22 = np.linalg.inv(P12) + np.linalg.inv(R)
expected3 = np.array([3.0, 0.0])
P23 = np.linalg.inv(I22) + Q
I33 = np.linalg.inv(P23) + np.linalg.inv(R)
# Create an KalmanFilter object
KF = gtsam.KalmanFilter(n=2)
# Create the Kalman Filter initialization point
x_initial = np.array([0.0, 0.0])
P_initial = 0.01 * np.eye(2)
# Create an KF object
state = KF.init(x_initial, P_initial)
self.assertTrue(np.allclose(expected0, state.mean()))
self.assertTrue(np.allclose(P00, state.covariance()))
# Run iteration 1
state = KF.predict(state, F, B, u, modelQ)
self.assertTrue(np.allclose(expected1, state.mean()))
self.assertTrue(np.allclose(P01, state.covariance()))
state = KF.update(state, H, z1, modelR)
self.assertTrue(np.allclose(expected1, state.mean()))
self.assertTrue(np.allclose(I11, state.information()))
# Run iteration 2
state = KF.predict(state, F, B, u, modelQ)
self.assertTrue(np.allclose(expected2, state.mean()))
state = KF.update(state, H, z2, modelR)
self.assertTrue(np.allclose(expected2, state.mean()))
# Run iteration 3
state = KF.predict(state, F, B, u, modelQ)
self.assertTrue(np.allclose(expected3, state.mean()))
state = KF.update(state, H, z3, modelR)
self.assertTrue(np.allclose(expected3, state.mean()))
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,64 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Localization unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestLocalizationExample(GtsamTestCase):
def test_LocalizationExample(self):
# Create the graph (defined in pose2SLAM.h, derived from
# NonlinearFactorGraph)
graph = gtsam.NonlinearFactorGraph()
# Add two odometry factors
# create a measurement for both factors (the same in this case)
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.2, 0.2, 0.1])) # 20cm std on x,y, 0.1 rad on theta
graph.add(gtsam.BetweenFactorPose2(0, 1, odometry, odometryNoise))
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, odometryNoise))
# Add three "GPS" measurements
# We use Pose2 Priors here with high variance on theta
groundTruth = gtsam.Values()
groundTruth.insert(0, gtsam.Pose2(0.0, 0.0, 0.0))
groundTruth.insert(1, gtsam.Pose2(2.0, 0.0, 0.0))
groundTruth.insert(2, gtsam.Pose2(4.0, 0.0, 0.0))
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 10.]))
for i in range(3):
graph.add(gtsam.PriorFactorPose2(i, groundTruth.atPose2(i), model))
# Initialize to noisy points
initialEstimate = gtsam.Values()
initialEstimate.insert(0, gtsam.Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(1, gtsam.Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(2, gtsam.Pose2(4.1, 0.1, 0.1))
# Optimize using Levenberg-Marquardt optimization with an ordering from
# colamd
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimizeSafely()
# Plot Covariance Ellipses
marginals = gtsam.Marginals(graph, result)
P = [None] * result.size()
for i in range(0, result.size()):
pose_i = result.atPose2(i)
self.gtsamAssertEquals(pose_i, groundTruth.atPose2(i), 1e-4)
P[i] = marginals.marginalCovariance(i)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,72 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for IMU testing scenarios.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
# pylint: disable=invalid-name, no-name-in-module
from __future__ import print_function
import unittest
import gtsam
from gtsam import (DoglegOptimizer, DoglegParams, GaussNewtonOptimizer,
GaussNewtonParams, LevenbergMarquardtOptimizer,
LevenbergMarquardtParams, NonlinearFactorGraph, Ordering,
Point2, PriorFactorPoint2, Values)
from gtsam.utils.test_case import GtsamTestCase
KEY1 = 1
KEY2 = 2
class TestScenario(GtsamTestCase):
def test_optimize(self):
"""Do trivial test with three optimizer variants."""
fg = NonlinearFactorGraph()
model = gtsam.noiseModel_Unit.Create(2)
fg.add(PriorFactorPoint2(KEY1, Point2(0, 0), model))
# test error at minimum
xstar = Point2(0, 0)
optimal_values = Values()
optimal_values.insert(KEY1, xstar)
self.assertEqual(0.0, fg.error(optimal_values), 0.0)
# test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
x0 = Point2(3, 3)
initial_values = Values()
initial_values.insert(KEY1, x0)
self.assertEqual(9.0, fg.error(initial_values), 1e-3)
# optimize parameters
ordering = Ordering()
ordering.push_back(KEY1)
# Gauss-Newton
gnParams = GaussNewtonParams()
gnParams.setOrdering(ordering)
actual1 = GaussNewtonOptimizer(fg, initial_values, gnParams).optimize()
self.assertAlmostEqual(0, fg.error(actual1))
# Levenberg-Marquardt
lmParams = LevenbergMarquardtParams.CeresDefaults()
lmParams.setOrdering(ordering)
actual2 = LevenbergMarquardtOptimizer(
fg, initial_values, lmParams).optimize()
self.assertAlmostEqual(0, fg.error(actual2))
# Dogleg
dlParams = DoglegParams()
dlParams.setOrdering(ordering)
actual3 = DoglegOptimizer(fg, initial_values, dlParams).optimize()
self.assertAlmostEqual(0, fg.error(actual3))
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,59 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Odometry unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestOdometryExample(GtsamTestCase):
def test_OdometryExample(self):
# Create the graph (defined in pose2SLAM.h, derived from
# NonlinearFactorGraph)
graph = gtsam.NonlinearFactorGraph()
# Add a Gaussian prior on pose x_1
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior mean is at origin
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.3, 0.3, 0.1])) # 30cm std on x,y, 0.1 rad on theta
# add directly to graph
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
# Add two odometry factors
# create a measurement for both factors (the same in this case)
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.2, 0.2, 0.1])) # 20cm std on x,y, 0.1 rad on theta
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, odometryNoise))
graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, odometryNoise))
# Initialize to noisy points
initialEstimate = gtsam.Values()
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, 0.1))
# Optimize using Levenberg-Marquardt optimization with an ordering from
# colamd
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimizeSafely()
marginals = gtsam.Marginals(graph, result)
marginals.marginalCovariance(1)
# Check first pose equality
pose_1 = result.atPose2(1)
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,78 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
PlanarSLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
from math import pi
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestPlanarSLAM(GtsamTestCase):
def test_PlanarSLAM(self):
# Assumptions
# - All values are axis aligned
# - Robot poses are facing along the X axis (horizontal, to the right in images)
# - We have full odometry for measurements
# - The robot is on a grid, moving 2 meters each step
# Create graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
# Add prior
# gaussian for prior
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
# add directly to graph
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
# Add odometry
# general noisemodel for odometry
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(gtsam.BetweenFactorPose2(
1, 2, gtsam.Pose2(2.0, 0.0, 0.0), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
2, 3, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
3, 4, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
4, 5, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
# Add pose constraint
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2.0, 0.0, pi / 2), model))
# Initialize to noisy points
initialEstimate = gtsam.Values()
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, pi / 2))
initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi / 2))
# Optimize using Levenberg-Marquardt optimization with an ordering from
# colamd
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimizeSafely()
# Plot Covariance Ellipses
marginals = gtsam.Marginals(graph, result)
P = marginals.marginalCovariance(1)
pose_1 = result.atPose2(1)
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,32 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose2 unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam import Pose2
from gtsam.utils.test_case import GtsamTestCase
class TestPose2(GtsamTestCase):
"""Test selected Pose2 methods."""
def test_adjoint(self):
"""Test adjoint method."""
xi = np.array([1, 2, 3])
expected = np.dot(Pose2.adjointMap_(xi), xi)
actual = Pose2.adjoint_(xi, xi)
np.testing.assert_array_equal(actual, expected)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,76 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose2SLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
from math import pi
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestPose2SLAMExample(GtsamTestCase):
def test_Pose2SLAMExample(self):
# Assumptions
# - All values are axis aligned
# - Robot poses are facing along the X axis (horizontal, to the right in images)
# - We have full odometry for measurements
# - The robot is on a grid, moving 2 meters each step
# Create graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
# Add prior
# gaussian for prior
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
# add directly to graph
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
# Add odometry
# general noisemodel for odometry
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(gtsam.BetweenFactorPose2(
1, 2, gtsam.Pose2(2.0, 0.0, 0.0), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
2, 3, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
3, 4, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
4, 5, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
# Add pose constraint
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2.0, 0.0, pi / 2), model))
# Initialize to noisy points
initialEstimate = gtsam.Values()
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, pi / 2))
initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi / 2))
# Optimize using Levenberg-Marquardt optimization with an ordering from
# colamd
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimizeSafely()
# Plot Covariance Ellipses
marginals = gtsam.Marginals(graph, result)
P = marginals.marginalCovariance(1)
pose_1 = result.atPose2(1)
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,69 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose3 unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import math
import unittest
import numpy as np
import gtsam
from gtsam import Point3, Pose3, Rot3
from gtsam.utils.test_case import GtsamTestCase
class TestPose3(GtsamTestCase):
"""Test selected Pose3 methods."""
def test_between(self):
"""Test between method."""
T2 = Pose3(Rot3.Rodrigues(0.3, 0.2, 0.1), Point3(3.5, -8.2, 4.2))
T3 = Pose3(Rot3.Rodrigues(-90, 0, 0), Point3(1, 2, 3))
expected = T2.inverse().compose(T3)
actual = T2.between(T3)
self.gtsamAssertEquals(actual, expected, 1e-6)
def test_transform_to(self):
"""Test transformTo method."""
transform = Pose3(Rot3.Rodrigues(0, 0, -1.570796), Point3(2, 4, 0))
actual = transform.transformTo(Point3(3, 2, 10))
expected = Point3(2, 1, 10)
self.gtsamAssertEquals(actual, expected, 1e-6)
def test_range(self):
"""Test range method."""
l1 = Point3(1, 0, 0)
l2 = Point3(1, 1, 0)
x1 = Pose3()
xl1 = Pose3(Rot3.Ypr(0.0, 0.0, 0.0), Point3(1, 0, 0))
xl2 = Pose3(Rot3.Ypr(0.0, 1.0, 0.0), Point3(1, 1, 0))
# establish range is indeed zero
self.assertEqual(1, x1.range(point=l1))
# establish range is indeed sqrt2
self.assertEqual(math.sqrt(2.0), x1.range(point=l2))
# establish range is indeed zero
self.assertEqual(1, x1.range(pose=xl1))
# establish range is indeed sqrt2
self.assertEqual(math.sqrt(2.0), x1.range(pose=xl2))
def test_adjoint(self):
"""Test adjoint method."""
xi = np.array([1, 2, 3, 4, 5, 6])
expected = np.dot(Pose3.adjointMap_(xi), xi)
actual = Pose3.adjoint_(xi, xi)
np.testing.assert_array_equal(actual, expected)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,60 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
PoseSLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
from math import pi
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
from gtsam.utils.circlePose3 import *
class TestPose3SLAMExample(GtsamTestCase):
def test_Pose3SLAMExample(self):
# Create a hexagon of poses
hexagon = circlePose3(6, 1.0)
p0 = hexagon.atPose3(0)
p1 = hexagon.atPose3(1)
# create a Pose graph with one equality constraint and one measurement
fg = gtsam.NonlinearFactorGraph()
fg.add(gtsam.NonlinearEqualityPose3(0, p0))
delta = p0.between(p1)
covariance = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05, 5. * pi / 180, 5. * pi / 180, 5. * pi / 180]))
fg.add(gtsam.BetweenFactorPose3(0, 1, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(1, 2, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(2, 3, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(3, 4, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(4, 5, delta, covariance))
fg.add(gtsam.BetweenFactorPose3(5, 0, delta, covariance))
# Create initial config
initial = gtsam.Values()
s = 0.10
initial.insert(0, p0)
initial.insert(1, hexagon.atPose3(1).retract(s * np.random.randn(6, 1)))
initial.insert(2, hexagon.atPose3(2).retract(s * np.random.randn(6, 1)))
initial.insert(3, hexagon.atPose3(3).retract(s * np.random.randn(6, 1)))
initial.insert(4, hexagon.atPose3(4).retract(s * np.random.randn(6, 1)))
initial.insert(5, hexagon.atPose3(5).retract(s * np.random.randn(6, 1)))
# optimize
optimizer = gtsam.LevenbergMarquardtOptimizer(fg, initial)
result = optimizer.optimizeSafely()
pose_1 = result.atPose3(1)
self.gtsamAssertEquals(pose_1, p1, 1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,39 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
PriorFactor unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestPriorFactor(GtsamTestCase):
def test_PriorFactor(self):
values = gtsam.Values()
key = 5
priorPose3 = gtsam.Pose3()
model = gtsam.noiseModel_Unit.Create(6)
factor = gtsam.PriorFactorPose3(key, priorPose3, model)
values.insert(key, priorPose3)
self.assertEqual(factor.error(values), 0)
key = 3
priorVector = np.array([0., 0., 0.])
model = gtsam.noiseModel_Unit.Create(3)
factor = gtsam.PriorFactorVector(key, priorVector, model)
values.insert(key, priorVector)
self.assertEqual(factor.error(values), 0)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,82 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
SFM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
import gtsam.utils.visual_data_generator as generator
from gtsam import symbol
from gtsam.utils.test_case import GtsamTestCase
class TestSFMExample(GtsamTestCase):
def test_SFMExample(self):
options = generator.Options()
options.triangle = False
options.nrCameras = 10
[data, truth] = generator.generate_data(options)
measurementNoiseSigma = 1.0
pointNoiseSigma = 0.1
poseNoiseSigmas = np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1])
graph = gtsam.NonlinearFactorGraph()
# Add factors for all measurements
measurementNoise = gtsam.noiseModel_Isotropic.Sigma(2, measurementNoiseSigma)
for i in range(len(data.Z)):
for k in range(len(data.Z[i])):
j = data.J[i][k]
graph.add(gtsam.GenericProjectionFactorCal3_S2(
data.Z[i][k], measurementNoise,
symbol(ord('x'), i), symbol(ord('p'), j), data.K))
posePriorNoise = gtsam.noiseModel_Diagonal.Sigmas(poseNoiseSigmas)
graph.add(gtsam.PriorFactorPose3(symbol(ord('x'), 0),
truth.cameras[0].pose(), posePriorNoise))
pointPriorNoise = gtsam.noiseModel_Isotropic.Sigma(3, pointNoiseSigma)
graph.add(gtsam.PriorFactorPoint3(symbol(ord('p'), 0),
truth.points[0], pointPriorNoise))
# Initial estimate
initialEstimate = gtsam.Values()
for i in range(len(truth.cameras)):
pose_i = truth.cameras[i].pose()
initialEstimate.insert(symbol(ord('x'), i), pose_i)
for j in range(len(truth.points)):
point_j = truth.points[j]
initialEstimate.insert(symbol(ord('p'), j), point_j)
# Optimization
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
for i in range(5):
optimizer.iterate()
result = optimizer.values()
# Marginalization
marginals = gtsam.Marginals(graph, result)
marginals.marginalCovariance(symbol(ord('p'), 0))
marginals.marginalCovariance(symbol(ord('x'), 0))
# Check optimized results, should be equal to ground truth
for i in range(len(truth.cameras)):
pose_i = result.atPose3(symbol(ord('x'), i))
self.gtsamAssertEquals(pose_i, truth.cameras[i].pose(), 1e-5)
for j in range(len(truth.points)):
point_j = result.atPoint3(symbol(ord('p'), j))
self.gtsamAssertEquals(point_j, truth.points[j], 1e-5)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,53 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Scenario unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
from __future__ import print_function
import math
import unittest
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
# pylint: disable=invalid-name, E1101
class TestScenario(GtsamTestCase):
def setUp(self):
pass
def test_loop(self):
# Forward velocity 2m/s
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
v = 2
w = math.radians(6)
W = np.array([0, -w, 0])
V = np.array([v, 0, 0])
scenario = gtsam.ConstantTwistScenario(W, V)
T = 30
np.testing.assert_almost_equal(W, scenario.omega_b(T))
np.testing.assert_almost_equal(V, scenario.velocity_b(T))
np.testing.assert_almost_equal(
np.cross(W, V), scenario.acceleration_b(T))
# R = v/w, so test if loop crests at 2*R
R = v / w
T30 = scenario.pose(T)
np.testing.assert_almost_equal(
np.array([math.pi, 0, math.pi]), T30.rotation().xyz())
self.gtsamAssertEquals(gtsam.Point3(
0, 0, 2.0 * R), T30.translation(), 1e-9)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,45 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
SimpleCamera unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import math
import unittest
import numpy as np
import gtsam
from gtsam import Cal3_S2, Point3, Pose2, Pose3, Rot3, SimpleCamera
from gtsam.utils.test_case import GtsamTestCase
K = Cal3_S2(625, 625, 0, 0, 0)
class TestSimpleCamera(GtsamTestCase):
def test_constructor(self):
pose1 = Pose3(Rot3(np.diag([1, -1, -1])), Point3(0, 0, 0.5))
camera = SimpleCamera(pose1, K)
self.gtsamAssertEquals(camera.calibration(), K, 1e-9)
self.gtsamAssertEquals(camera.pose(), pose1, 1e-9)
def test_level2(self):
# Create a level camera, looking in Y-direction
pose2 = Pose2(0.4,0.3,math.pi/2.0)
camera = SimpleCamera.Level(K, pose2, 0.1)
# expected
x = Point3(1,0,0)
y = Point3(0,0,-1)
z = Point3(0,1,0)
wRc = Rot3(x,y,z)
expected = Pose3(wRc,Point3(0.4,0.3,0.1))
self.gtsamAssertEquals(camera.pose(), expected, 1e-9)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,82 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Stereo VO unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam import symbol
from gtsam.utils.test_case import GtsamTestCase
class TestStereoVOExample(GtsamTestCase):
def test_StereoVOExample(self):
## Assumptions
# - For simplicity this example is in the camera's coordinate frame
# - X: right, Y: down, Z: forward
# - Pose x1 is at the origin, Pose 2 is 1 meter forward (along Z-axis)
# - x1 is fixed with a constraint, x2 is initialized with noisy values
# - No noise on measurements
## Create keys for variables
x1 = symbol(ord('x'),1)
x2 = symbol(ord('x'),2)
l1 = symbol(ord('l'),1)
l2 = symbol(ord('l'),2)
l3 = symbol(ord('l'),3)
## Create graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
## add a constraint on the starting pose
first_pose = gtsam.Pose3()
graph.add(gtsam.NonlinearEqualityPose3(x1, first_pose))
## Create realistic calibration and measurement noise model
# format: fx fy skew cx cy baseline
K = gtsam.Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2)
stereo_model = gtsam.noiseModel_Diagonal.Sigmas(np.array([1.0, 1.0, 1.0]))
## Add measurements
# pose 1
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(520, 480, 440), stereo_model, x1, l1, K))
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(120, 80, 440), stereo_model, x1, l2, K))
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(320, 280, 140), stereo_model, x1, l3, K))
#pose 2
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(570, 520, 490), stereo_model, x2, l1, K))
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K))
graph.add(gtsam.GenericStereoFactor3D(gtsam.StereoPoint2(320, 270, 115), stereo_model, x2, l3, K))
## Create initial estimate for camera poses and landmarks
initialEstimate = gtsam.Values()
initialEstimate.insert(x1, first_pose)
# noisy estimate for pose 2
initialEstimate.insert(x2, gtsam.Pose3(gtsam.Rot3(), gtsam.Point3(0.1,-.1,1.1)))
expected_l1 = gtsam.Point3( 1, 1, 5)
initialEstimate.insert(l1, expected_l1)
initialEstimate.insert(l2, gtsam.Point3(-1, 1, 5))
initialEstimate.insert(l3, gtsam.Point3( 0,-.5, 5))
## optimize
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimize()
## check equality for the first pose and point
pose_x1 = result.atPose3(x1)
self.gtsamAssertEquals(pose_x1, first_pose,1e-4)
point_l1 = result.atPoint3(l1)
self.gtsamAssertEquals(point_l1, expected_l1,1e-4)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,86 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Values unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
# pylint: disable=invalid-name, E1101, E0611
import unittest
import numpy as np
import gtsam
from gtsam import (Cal3_S2, Cal3Bundler, Cal3DS2, EssentialMatrix, Point2,
Point3, Pose2, Pose3, Rot2, Rot3, Unit3, Values,
imuBias_ConstantBias)
from gtsam.utils.test_case import GtsamTestCase
class TestValues(GtsamTestCase):
def test_values(self):
values = Values()
E = EssentialMatrix(Rot3(), Unit3())
tol = 1e-9
values.insert(0, Point2(0, 0))
values.insert(1, Point3(0, 0, 0))
values.insert(2, Rot2())
values.insert(3, Pose2())
values.insert(4, Rot3())
values.insert(5, Pose3())
values.insert(6, Cal3_S2())
values.insert(7, Cal3DS2())
values.insert(8, Cal3Bundler())
values.insert(9, E)
values.insert(10, imuBias_ConstantBias())
# Special cases for Vectors and Matrices
# Note that gtsam's Eigen Vectors and Matrices requires double-precision
# floating point numbers in column-major (Fortran style) storage order,
# whereas by default, numpy.array is in row-major order and the type is
# in whatever the number input type is, e.g. np.array([1,2,3])
# will have 'int' type.
#
# The wrapper will automatically fix the type and storage order for you,
# but for performance reasons, it's recommended to specify the correct
# type and storage order.
# for vectors, the order is not important, but dtype still is
vec = np.array([1., 2., 3.])
values.insert(11, vec)
mat = np.array([[1., 2.], [3., 4.]], order='F')
values.insert(12, mat)
# Test with dtype int and the default order='C'
# This still works as the wrapper converts to the correct type and order for you
# but is nornally not recommended!
mat2 = np.array([[1, 2, ], [3, 5]])
values.insert(13, mat2)
self.gtsamAssertEquals(values.atPoint2(0), Point2(0,0), tol)
self.gtsamAssertEquals(values.atPoint3(1), Point3(0,0,0), tol)
self.gtsamAssertEquals(values.atRot2(2), Rot2(), tol)
self.gtsamAssertEquals(values.atPose2(3), Pose2(), tol)
self.gtsamAssertEquals(values.atRot3(4), Rot3(), tol)
self.gtsamAssertEquals(values.atPose3(5), Pose3(), tol)
self.gtsamAssertEquals(values.atCal3_S2(6), Cal3_S2(), tol)
self.gtsamAssertEquals(values.atCal3DS2(7), Cal3DS2(), tol)
self.gtsamAssertEquals(values.atCal3Bundler(8), Cal3Bundler(), tol)
self.gtsamAssertEquals(values.atEssentialMatrix(9), E, tol)
self.gtsamAssertEquals(values.atimuBias_ConstantBias(
10), imuBias_ConstantBias(), tol)
# special cases for Vector and Matrix:
actualVector = values.atVector(11)
np.testing.assert_allclose(vec, actualVector, tol)
actualMatrix = values.atMatrix(12)
np.testing.assert_allclose(mat, actualMatrix, tol)
actualMatrix2 = values.atMatrix(13)
np.testing.assert_allclose(mat2, actualMatrix2, tol)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,57 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
visual_isam unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
import gtsam.utils.visual_data_generator as generator
import gtsam.utils.visual_isam as visual_isam
from gtsam import symbol
from gtsam.utils.test_case import GtsamTestCase
class TestVisualISAMExample(GtsamTestCase):
def test_VisualISAMExample(self):
# Data Options
options = generator.Options()
options.triangle = False
options.nrCameras = 20
# iSAM Options
isamOptions = visual_isam.Options()
isamOptions.hardConstraint = False
isamOptions.pointPriors = False
isamOptions.batchInitialization = True
isamOptions.reorderInterval = 10
isamOptions.alwaysRelinearize = False
# Generate data
data, truth = generator.generate_data(options)
# Initialize iSAM with the first pose and points
isam, result, nextPose = visual_isam.initialize(data, truth, isamOptions)
# Main loop for iSAM: stepping through all poses
for currentPose in range(nextPose, options.nrCameras):
isam, result = visual_isam.step(data, isam, result, truth, currentPose)
for i in range(len(truth.cameras)):
pose_i = result.atPose3(symbol(ord('x'), i))
self.gtsamAssertEquals(pose_i, truth.cameras[i].pose(), 1e-5)
for j in range(len(truth.points)):
point_j = result.atPoint3(symbol(ord('l'), j))
self.gtsamAssertEquals(point_j, truth.points[j], 1e-5)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,45 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for testing dataset access.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
from __future__ import print_function
import unittest
import gtsam
from gtsam import BetweenFactorPose3, BetweenFactorPose3s
from gtsam.utils.test_case import GtsamTestCase
class TestDataset(GtsamTestCase):
"""Tests for datasets.h wrapper."""
def setUp(self):
"""Get some common paths."""
self.pose3_example_g2o_file = gtsam.findExampleDataFile(
"pose3example.txt")
def test_readG2o3D(self):
"""Test reading directly into factor graph."""
is3D = True
graph, initial = gtsam.readG2o(self.pose3_example_g2o_file, is3D)
self.assertEqual(graph.size(), 6)
self.assertEqual(initial.size(), 5)
def test_parse3Dfactors(self):
"""Test parsing into data structure."""
factors = gtsam.parse3DFactors(self.pose3_example_g2o_file)
self.assertEqual(factors.size(), 6)
self.assertIsInstance(factors.at(0), BetweenFactorPose3)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,38 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for Disjoint Set Forest.
Author: Frank Dellaert & Varun Agrawal
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
from __future__ import print_function
import unittest
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestDSFMap(GtsamTestCase):
"""Tests for DSFMap."""
def test_all(self):
"""Test everything in DFSMap."""
def key(index_pair):
return index_pair.i(), index_pair.j()
dsf = gtsam.DSFMapIndexPair()
pair1 = gtsam.IndexPair(1, 18)
self.assertEqual(key(dsf.find(pair1)), key(pair1))
pair2 = gtsam.IndexPair(2, 2)
dsf.merge(pair1, pair2)
self.assertTrue(dsf.find(pair1), dsf.find(pair1))
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,89 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for 3D SLAM initialization, using rotation relaxation.
Author: Luca Carlone and Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101, E0611
import unittest
import numpy as np
import gtsam
from gtsam import NonlinearFactorGraph, Point3, Pose3, Rot3, Values
from gtsam.utils.test_case import GtsamTestCase
x0, x1, x2, x3 = 0, 1, 2, 3
class TestValues(GtsamTestCase):
def setUp(self):
model = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
# We consider a small graph:
# symbolic FG
# x2 0 1
# / | \ 1 2
# / | \ 2 3
# x3 | x1 2 0
# \ | / 0 3
# \ | /
# x0
#
p0 = Point3(0, 0, 0)
self.R0 = Rot3.Expmap(np.array([0.0, 0.0, 0.0]))
p1 = Point3(1, 2, 0)
self.R1 = Rot3.Expmap(np.array([0.0, 0.0, 1.570796]))
p2 = Point3(0, 2, 0)
self.R2 = Rot3.Expmap(np.array([0.0, 0.0, 3.141593]))
p3 = Point3(-1, 1, 0)
self.R3 = Rot3.Expmap(np.array([0.0, 0.0, 4.712389]))
pose0 = Pose3(self.R0, p0)
pose1 = Pose3(self.R1, p1)
pose2 = Pose3(self.R2, p2)
pose3 = Pose3(self.R3, p3)
g = NonlinearFactorGraph()
g.add(gtsam.BetweenFactorPose3(x0, x1, pose0.between(pose1), model))
g.add(gtsam.BetweenFactorPose3(x1, x2, pose1.between(pose2), model))
g.add(gtsam.BetweenFactorPose3(x2, x3, pose2.between(pose3), model))
g.add(gtsam.BetweenFactorPose3(x2, x0, pose2.between(pose0), model))
g.add(gtsam.BetweenFactorPose3(x0, x3, pose0.between(pose3), model))
g.add(gtsam.PriorFactorPose3(x0, pose0, model))
self.graph = g
def test_buildPose3graph(self):
pose3graph = gtsam.InitializePose3.buildPose3graph(self.graph)
def test_orientations(self):
pose3Graph = gtsam.InitializePose3.buildPose3graph(self.graph)
initial = gtsam.InitializePose3.computeOrientationsChordal(pose3Graph)
# comparison is up to M_PI, that's why we add some multiples of 2*M_PI
self.gtsamAssertEquals(initial.atRot3(x0), self.R0, 1e-6)
self.gtsamAssertEquals(initial.atRot3(x1), self.R1, 1e-6)
self.gtsamAssertEquals(initial.atRot3(x2), self.R2, 1e-6)
self.gtsamAssertEquals(initial.atRot3(x3), self.R3, 1e-6)
def test_initializePoses(self):
g2oFile = gtsam.findExampleDataFile("pose3example-grid")
is3D = True
inputGraph, expectedValues = gtsam.readG2o(g2oFile, is3D)
priorModel = gtsam.noiseModel_Unit.Create(6)
inputGraph.add(gtsam.PriorFactorPose3(0, Pose3(), priorModel))
initial = gtsam.InitializePose3.initialize(inputGraph)
# TODO(frank): very loose !!
self.gtsamAssertEquals(initial, expectedValues, 0.1)
if __name__ == "__main__":
unittest.main()

View File

View File

@ -0,0 +1,38 @@
import gtsam
import numpy as np
from math import pi, cos, sin
def circlePose3(numPoses=8, radius=1.0, symbolChar=0):
"""
circlePose3 generates a set of poses in a circle. This function
returns those poses inside a gtsam.Values object, with sequential
keys starting from 0. An optional character may be provided, which
will be stored in the msb of each key (i.e. gtsam.Symbol).
We use aerospace/navlab convention, X forward, Y right, Z down
First pose will be at (R,0,0)
^y ^ X
| |
z-->xZ--> Y (z pointing towards viewer, Z pointing away from viewer)
Vehicle at p0 is looking towards y axis (X-axis points towards world y)
"""
# Force symbolChar to be a single character
if type(symbolChar) is str:
symbolChar = ord(symbolChar[0])
values = gtsam.Values()
theta = 0.0
dtheta = 2 * pi / numPoses
gRo = gtsam.Rot3(
np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1.]], order='F'))
for i in range(numPoses):
key = gtsam.symbol(symbolChar, i)
gti = gtsam.Point3(radius * cos(theta), radius * sin(theta), 0)
oRi = gtsam.Rot3.Yaw(
-theta) # negative yaw goes counterclockwise, with Z down !
gTi = gtsam.Pose3(gRo.compose(oRi), gti)
values.insert(key, gTi)
theta = theta + dtheta
return values

116
cython/gtsam/utils/plot.py Normal file
View File

@ -0,0 +1,116 @@
"""Various plotting utlities."""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import patches
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None):
"""Plot a 2D pose on given axis 'axes' with given 'axis_length'."""
# get rotation and translation (center)
gRp = pose.rotation().matrix() # rotation from pose to global
t = pose.translation()
origin = np.array([t.x(), t.y()])
# draw the camera axes
x_axis = origin + gRp[:, 0] * axis_length
line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], 'r-')
y_axis = origin + gRp[:, 1] * axis_length
line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], 'g-')
if covariance is not None:
pPp = covariance[0:2, 0:2]
gPp = np.matmul(np.matmul(gRp, pPp), gRp.T)
w, v = np.linalg.eig(gPp)
# k = 2.296
k = 5.0
angle = np.arctan2(v[1, 0], v[0, 0])
e1 = patches.Ellipse(origin, np.sqrt(w[0]*k), np.sqrt(w[1]*k),
np.rad2deg(angle), fill=False)
axes.add_patch(e1)
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None):
"""Plot a 2D pose on given figure with given 'axis_length'."""
# get figure object
fig = plt.figure(fignum)
axes = fig.gca()
plot_pose2_on_axes(axes, pose, axis_length, covariance)
def plot_point3_on_axes(axes, point, linespec):
"""Plot a 3D point on given axis 'axes' with given 'linespec'."""
axes.plot([point.x()], [point.y()], [point.z()], linespec)
def plot_point3(fignum, point, linespec):
"""Plot a 3D point on given figure with given 'linespec'."""
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_point3_on_axes(axes, point, linespec)
def plot_3d_points(fignum, values, linespec, marginals=None):
"""
Plots the Point3s in 'values', with optional covariances.
Finds all the Point3 objects in the given Values object and plots them.
If a Marginals object is given, this function will also plot marginal
covariance ellipses for each point.
"""
keys = values.keys()
# Plot points and covariance matrices
for i in range(keys.size()):
try:
p = values.atPoint3(keys.at(i))
# if haveMarginals
# P = marginals.marginalCovariance(key);
# gtsam.plot_point3(p, linespec, P);
# else
plot_point3(fignum, p, linespec)
except RuntimeError:
continue
# I guess it's not a Point3
def plot_pose3_on_axes(axes, pose, axis_length=0.1):
"""Plot a 3D pose on given axis 'axes' with given 'axis_length'."""
# get rotation and translation (center)
gRp = pose.rotation().matrix() # rotation from pose to global
t = pose.translation()
origin = np.array([t.x(), t.y(), t.z()])
# draw the camera axes
x_axis = origin + gRp[:, 0] * axis_length
line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'r-')
y_axis = origin + gRp[:, 1] * axis_length
line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'g-')
z_axis = origin + gRp[:, 2] * axis_length
line = np.append(origin[np.newaxis], z_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'b-')
# plot the covariance
# TODO (dellaert): make this work
# if (nargin>2) && (~isempty(P))
# pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
# gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
# gtsam.covarianceEllipse3D(origin,gPp);
# end
def plot_pose3(fignum, pose, axis_length=0.1):
"""Plot a 3D pose on given figure with given 'axis_length'."""
# get figure object
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_pose3_on_axes(axes, pose, axis_length)

View File

@ -0,0 +1,27 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
TestCase class with GTSAM assert utils.
Author: Frank Dellaert
"""
import unittest
class GtsamTestCase(unittest.TestCase):
"""TestCase class with GTSAM assert utils."""
def gtsamAssertEquals(self, actual, expected, tol=1e-9):
""" AssertEqual function that prints out actual and expected if not equal.
Usage:
self.gtsamAssertEqual(actual,expected)
Keyword Arguments:
tol {float} -- tolerance passed to 'equals', default 1e-9
"""
equal = actual.equals(expected, tol)
if not equal:
raise self.failureException(
"Values are not equal:\n{}!={}".format(actual, expected))

View File

@ -0,0 +1,117 @@
from __future__ import print_function
import numpy as np
from math import pi, cos, sin
import gtsam
class Options:
"""
Options to generate test scenario
"""
def __init__(self, triangle=False, nrCameras=3, K=gtsam.Cal3_S2()):
"""
Options to generate test scenario
@param triangle: generate a triangle scene with 3 points if True, otherwise
a cube with 8 points
@param nrCameras: number of cameras to generate
@param K: camera calibration object
"""
self.triangle = triangle
self.nrCameras = nrCameras
class GroundTruth:
"""
Object holding generated ground-truth data
"""
def __init__(self, K=gtsam.Cal3_S2(), nrCameras=3, nrPoints=4):
self.K = K
self.cameras = [gtsam.Pose3()] * nrCameras
self.points = [gtsam.Point3()] * nrPoints
def print_(self, s=""):
print(s)
print("K = ", self.K)
print("Cameras: ", len(self.cameras))
for camera in self.cameras:
print("\t", camera)
print("Points: ", len(self.points))
for point in self.points:
print("\t", point)
pass
class Data:
"""
Object holding generated measurement data
"""
class NoiseModels:
pass
def __init__(self, K=gtsam.Cal3_S2(), nrCameras=3, nrPoints=4):
self.K = K
self.Z = [x[:] for x in [[gtsam.Point2()] * nrPoints] * nrCameras]
self.J = [x[:] for x in [[0] * nrPoints] * nrCameras]
self.odometry = [gtsam.Pose3()] * nrCameras
# Set Noise parameters
self.noiseModels = Data.NoiseModels()
self.noiseModels.posePrior = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1]))
# noiseModels.odometry = gtsam.noiseModel_Diagonal.Sigmas(
# np.array([0.001,0.001,0.001,0.1,0.1,0.1]))
self.noiseModels.odometry = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05, 0.2, 0.2, 0.2]))
self.noiseModels.pointPrior = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
self.noiseModels.measurement = gtsam.noiseModel_Isotropic.Sigma(2, 1.0)
def generate_data(options):
""" Generate ground-truth and measurement data. """
K = gtsam.Cal3_S2(500, 500, 0, 640. / 2., 480. / 2.)
nrPoints = 3 if options.triangle else 8
truth = GroundTruth(K=K, nrCameras=options.nrCameras, nrPoints=nrPoints)
data = Data(K, nrCameras=options.nrCameras, nrPoints=nrPoints)
# Generate simulated data
if options.triangle: # Create a triangle target, just 3 points on a plane
r = 10
for j in range(len(truth.points)):
theta = j * 2 * pi / nrPoints
truth.points[j] = gtsam.Point3(r * cos(theta), r * sin(theta), 0)
else: # 3D landmarks as vertices of a cube
truth.points = [
gtsam.Point3(10, 10, 10), gtsam.Point3(-10, 10, 10),
gtsam.Point3(-10, -10, 10), gtsam.Point3(10, -10, 10),
gtsam.Point3(10, 10, -10), gtsam.Point3(-10, 10, -10),
gtsam.Point3(-10, -10, -10), gtsam.Point3(10, -10, -10)
]
# Create camera cameras on a circle around the triangle
height = 10
r = 40
for i in range(options.nrCameras):
theta = i * 2 * pi / options.nrCameras
t = gtsam.Point3(r * cos(theta), r * sin(theta), height)
truth.cameras[i] = gtsam.SimpleCamera.Lookat(t,
gtsam.Point3(),
gtsam.Point3(0, 0, 1),
truth.K)
# Create measurements
for j in range(nrPoints):
# All landmarks seen in every frame
data.Z[i][j] = truth.cameras[i].project(truth.points[j])
data.J[i][j] = j
# Calculate odometry between cameras
for i in range(1, options.nrCameras):
data.odometry[i] = truth.cameras[i - 1].pose().between(
truth.cameras[i].pose())
return data, truth

View File

@ -0,0 +1,131 @@
import gtsam
from gtsam import symbol
class Options:
""" Options for visual isam example. """
def __init__(self):
self.hardConstraint = False
self.pointPriors = False
self.batchInitialization = True
self.reorderInterval = 10
self.alwaysRelinearize = False
def initialize(data, truth, options):
# Initialize iSAM
params = gtsam.ISAM2Params()
if options.alwaysRelinearize:
params.setRelinearizeSkip(1)
isam = gtsam.ISAM2(params=params)
# Add constraints/priors
# TODO: should not be from ground truth!
newFactors = gtsam.NonlinearFactorGraph()
initialEstimates = gtsam.Values()
for i in range(2):
ii = symbol(ord('x'), i)
if i == 0:
if options.hardConstraint: # add hard constraint
newFactors.add(
gtsam.NonlinearEqualityPose3(ii, truth.cameras[0].pose()))
else:
newFactors.add(
gtsam.PriorFactorPose3(ii, truth.cameras[i].pose(),
data.noiseModels.posePrior))
initialEstimates.insert(ii, truth.cameras[i].pose())
nextPoseIndex = 2
# Add visual measurement factors from two first poses and initialize
# observed landmarks
for i in range(2):
ii = symbol(ord('x'), i)
for k in range(len(data.Z[i])):
j = data.J[i][k]
jj = symbol(ord('l'), j)
newFactors.add(
gtsam.GenericProjectionFactorCal3_S2(data.Z[i][
k], data.noiseModels.measurement, ii, jj, data.K))
# TODO: initial estimates should not be from ground truth!
if not initialEstimates.exists(jj):
initialEstimates.insert(jj, truth.points[j])
if options.pointPriors: # add point priors
newFactors.add(
gtsam.PriorFactorPoint3(jj, truth.points[j],
data.noiseModels.pointPrior))
# Add odometry between frames 0 and 1
newFactors.add(
gtsam.BetweenFactorPose3(
symbol(ord('x'), 0),
symbol(ord('x'), 1), data.odometry[1], data.noiseModels.odometry))
# Update ISAM
if options.batchInitialization: # Do a full optimize for first two poses
batchOptimizer = gtsam.LevenbergMarquardtOptimizer(newFactors,
initialEstimates)
fullyOptimized = batchOptimizer.optimize()
isam.update(newFactors, fullyOptimized)
else:
isam.update(newFactors, initialEstimates)
# figure(1)tic
# t=toc plot(frame_i,t,'r.') tic
result = isam.calculateEstimate()
# t=toc plot(frame_i,t,'g.')
return isam, result, nextPoseIndex
def step(data, isam, result, truth, currPoseIndex):
'''
Do one step isam update
@param[in] data: measurement data (odometry and visual measurements and their noiseModels)
@param[in/out] isam: current isam object, will be updated
@param[in/out] result: current result object, will be updated
@param[in] truth: ground truth data, used to initialize new variables
@param[currPoseIndex]: index of the current pose
'''
# iSAM expects us to give it a new set of factors
# along with initial estimates for any new variables introduced.
newFactors = gtsam.NonlinearFactorGraph()
initialEstimates = gtsam.Values()
# Add odometry
prevPoseIndex = currPoseIndex - 1
odometry = data.odometry[prevPoseIndex]
newFactors.add(
gtsam.BetweenFactorPose3(
symbol(ord('x'), prevPoseIndex),
symbol(ord('x'), currPoseIndex), odometry,
data.noiseModels.odometry))
# Add visual measurement factors and initializations as necessary
for k in range(len(data.Z[currPoseIndex])):
zij = data.Z[currPoseIndex][k]
j = data.J[currPoseIndex][k]
jj = symbol(ord('l'), j)
newFactors.add(
gtsam.GenericProjectionFactorCal3_S2(
zij, data.noiseModels.measurement,
symbol(ord('x'), currPoseIndex), jj, data.K))
# TODO: initialize with something other than truth
if not result.exists(jj) and not initialEstimates.exists(jj):
lmInit = truth.points[j]
initialEstimates.insert(jj, lmInit)
# Initial estimates for the new pose.
prevPose = result.atPose3(symbol(ord('x'), prevPoseIndex))
initialEstimates.insert(
symbol(ord('x'), currPoseIndex), prevPose.compose(odometry))
# Update ISAM
# figure(1)tic
isam.update(newFactors, initialEstimates)
# t=toc plot(frame_i,t,'r.') tic
newResult = isam.calculateEstimate()
# t=toc plot(frame_i,t,'g.')
return isam, newResult

View File

@ -0,0 +1,49 @@
include(GtsamCythonWrap)
# Copy eigency's sources to the build folder
# so that the cython-generated header "conversions_api.h" can be found when cythonizing eigency's core
# and eigency's cython pxd headers can be found when cythonizing gtsam
file(COPY "." DESTINATION ".")
set(OUTPUT_DIR "${PROJECT_BINARY_DIR}/cython/gtsam_eigency")
set(EIGENCY_INCLUDE_DIR ${OUTPUT_DIR})
# This is to make the build/cython/gtsam_eigency folder a python package
configure_file(__init__.py.in ${PROJECT_BINARY_DIR}/cython/gtsam_eigency/__init__.py)
# include eigency headers
include_directories(${EIGENCY_INCLUDE_DIR})
# Cythonize and build eigency
message(STATUS "Cythonize and build eigency")
# Important trick: use "../gtsam_eigency/conversions.pyx" to let cython know that the conversions module is
# a part of the gtsam_eigency package and generate the function call import_gtsam_igency__conversions()
# in conversions_api.h correctly!!!
cythonize(cythonize_eigency_conversions "../gtsam_eigency/conversions.pyx" "conversions"
"${OUTPUT_DIR}" "${EIGENCY_INCLUDE_DIR}" "" "" "")
cythonize(cythonize_eigency_core "../gtsam_eigency/core.pyx" "core"
${OUTPUT_DIR} "${EIGENCY_INCLUDE_DIR}" "" "" "")
# Include Eigen headers:
target_include_directories(cythonize_eigency_conversions PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
target_include_directories(cythonize_eigency_core PUBLIC
$<BUILD_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_BUILD}>
$<INSTALL_INTERFACE:${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}>
)
add_dependencies(cythonize_eigency_core cythonize_eigency_conversions)
add_custom_target(cythonize_eigency)
add_dependencies(cythonize_eigency cythonize_eigency_conversions cythonize_eigency_core)
# install
install(DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}
PATTERN "CMakeLists.txt" EXCLUDE
PATTERN "__init__.py.in" EXCLUDE)
install(TARGETS cythonize_eigency_core cythonize_eigency_conversions
DESTINATION "${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency")
install(FILES ${OUTPUT_DIR}/conversions_api.h DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)
configure_file(__init__.py.in ${OUTPUT_DIR}/__init__.py)
install(FILES ${OUTPUT_DIR}/__init__.py DESTINATION ${GTSAM_CYTHON_INSTALL_PATH}/gtsam_eigency)

View File

@ -0,0 +1,20 @@
Copyright (c) 2016 Wouter Boomsma
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,13 @@
import os
import numpy as np
__eigen_dir__ = "${GTSAM_EIGEN_INCLUDE_FOR_INSTALL}"
def get_includes(include_eigen=True):
root = os.path.dirname(__file__)
parent = os.path.join(root, "..")
path = [root, parent, np.get_include()]
if include_eigen:
path.append(os.path.join(root, __eigen_dir__))
return path

View File

@ -0,0 +1,62 @@
cimport numpy as np
cdef api np.ndarray[double, ndim=2] ndarray_double_C(double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[double, ndim=2] ndarray_double_F(double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[double, ndim=2] ndarray_copy_double_C(const double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[double, ndim=2] ndarray_copy_double_F(const double *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_float_C(float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_float_F(float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_copy_float_C(const float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[float, ndim=2] ndarray_copy_float_F(const float *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_long_C(long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_long_F(long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_copy_long_C(const long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[long, ndim=2] ndarray_copy_long_F(const long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_ulong_C(unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_ulong_F(unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_C(const unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_F(const unsigned long *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_int_C(int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_int_F(int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_copy_int_C(const int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[int, ndim=2] ndarray_copy_int_F(const int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_uint_C(unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_uint_F(unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_C(const unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_F(const unsigned int *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_short_C(short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_short_F(short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_copy_short_C(const short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[short, ndim=2] ndarray_copy_short_F(const short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_ushort_C(unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_ushort_F(unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_C(const unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_F(const unsigned short *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_schar_C(signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_schar_F(signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_copy_schar_C(const signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[signed char, ndim=2] ndarray_copy_schar_F(const signed char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_uchar_C(unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_uchar_F(unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_C(const unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_F(const unsigned char *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_C(np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_F(np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_C(const np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_F(const np.complex128_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_C(np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_F(np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_C(const np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)
cdef api np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_F(const np.complex64_t *data, long rows, long cols, long outer_stride, long inner_stride)

View File

@ -0,0 +1,327 @@
cimport cython
import numpy as np
from numpy.lib.stride_tricks import as_strided
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_double_C(double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[:,:] mem_view = <double[:rows,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_double_F(double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[::1,:] mem_view = <double[:rows:1,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_copy_double_C(const double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[:,:] mem_view = <double[:rows,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[double, ndim=2] ndarray_copy_double_F(const double *data, long rows, long cols, long row_stride, long col_stride):
cdef double[::1,:] mem_view = <double[:rows:1,:cols]>data
dtype = 'double'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_float_C(float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[:,:] mem_view = <float[:rows,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_float_F(float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[::1,:] mem_view = <float[:rows:1,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_copy_float_C(const float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[:,:] mem_view = <float[:rows,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[float, ndim=2] ndarray_copy_float_F(const float *data, long rows, long cols, long row_stride, long col_stride):
cdef float[::1,:] mem_view = <float[:rows:1,:cols]>data
dtype = 'float'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_long_C(long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[:,:] mem_view = <long[:rows,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_long_F(long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[::1,:] mem_view = <long[:rows:1,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_copy_long_C(const long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[:,:] mem_view = <long[:rows,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[long, ndim=2] ndarray_copy_long_F(const long *data, long rows, long cols, long row_stride, long col_stride):
cdef long[::1,:] mem_view = <long[:rows:1,:cols]>data
dtype = 'int_'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_ulong_C(unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[:,:] mem_view = <unsigned long[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_ulong_F(unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[::1,:] mem_view = <unsigned long[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_C(const unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[:,:] mem_view = <unsigned long[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned long, ndim=2] ndarray_copy_ulong_F(const unsigned long *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned long[::1,:] mem_view = <unsigned long[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_int_C(int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[:,:] mem_view = <int[:rows,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_int_F(int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[::1,:] mem_view = <int[:rows:1,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_copy_int_C(const int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[:,:] mem_view = <int[:rows,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[int, ndim=2] ndarray_copy_int_F(const int *data, long rows, long cols, long row_stride, long col_stride):
cdef int[::1,:] mem_view = <int[:rows:1,:cols]>data
dtype = 'int'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_uint_C(unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[:,:] mem_view = <unsigned int[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_uint_F(unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[::1,:] mem_view = <unsigned int[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_C(const unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[:,:] mem_view = <unsigned int[:rows,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned int, ndim=2] ndarray_copy_uint_F(const unsigned int *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned int[::1,:] mem_view = <unsigned int[:rows:1,:cols]>data
dtype = 'uint'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_short_C(short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[:,:] mem_view = <short[:rows,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_short_F(short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[::1,:] mem_view = <short[:rows:1,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_copy_short_C(const short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[:,:] mem_view = <short[:rows,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[short, ndim=2] ndarray_copy_short_F(const short *data, long rows, long cols, long row_stride, long col_stride):
cdef short[::1,:] mem_view = <short[:rows:1,:cols]>data
dtype = 'short'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_ushort_C(unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[:,:] mem_view = <unsigned short[:rows,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_ushort_F(unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[::1,:] mem_view = <unsigned short[:rows:1,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_C(const unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[:,:] mem_view = <unsigned short[:rows,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned short, ndim=2] ndarray_copy_ushort_F(const unsigned short *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned short[::1,:] mem_view = <unsigned short[:rows:1,:cols]>data
dtype = 'ushort'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_schar_C(signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[:,:] mem_view = <signed char[:rows,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_schar_F(signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[::1,:] mem_view = <signed char[:rows:1,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_copy_schar_C(const signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[:,:] mem_view = <signed char[:rows,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[signed char, ndim=2] ndarray_copy_schar_F(const signed char *data, long rows, long cols, long row_stride, long col_stride):
cdef signed char[::1,:] mem_view = <signed char[:rows:1,:cols]>data
dtype = 'int8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_uchar_C(unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[:,:] mem_view = <unsigned char[:rows,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_uchar_F(unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[::1,:] mem_view = <unsigned char[:rows:1,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_C(const unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[:,:] mem_view = <unsigned char[:rows,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[unsigned char, ndim=2] ndarray_copy_uchar_F(const unsigned char *data, long rows, long cols, long row_stride, long col_stride):
cdef unsigned char[::1,:] mem_view = <unsigned char[:rows:1,:cols]>data
dtype = 'uint8'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_C(np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[:,:] mem_view = <np.complex128_t[:rows,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_complex_double_F(np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[::1,:] mem_view = <np.complex128_t[:rows:1,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_C(const np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[:,:] mem_view = <np.complex128_t[:rows,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex128_t, ndim=2] ndarray_copy_complex_double_F(const np.complex128_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex128_t[::1,:] mem_view = <np.complex128_t[:rows:1,:cols]>data
dtype = 'complex128'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_C(np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[:,:] mem_view = <np.complex64_t[:rows,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_complex_float_F(np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[::1,:] mem_view = <np.complex64_t[:rows:1,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize])
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_C(const np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[:,:] mem_view = <np.complex64_t[:rows,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="C"), strides=[row_stride*itemsize, col_stride*itemsize]))
@cython.boundscheck(False)
cdef np.ndarray[np.complex64_t, ndim=2] ndarray_copy_complex_float_F(const np.complex64_t *data, long rows, long cols, long row_stride, long col_stride):
cdef np.complex64_t[::1,:] mem_view = <np.complex64_t[:rows:1,:cols]>data
dtype = 'complex64'
cdef int itemsize = np.dtype(dtype).itemsize
return np.copy(as_strided(np.asarray(mem_view, dtype=dtype, order="F"), strides=[row_stride*itemsize, col_stride*itemsize]))

View File

@ -0,0 +1,917 @@
cimport cython
cimport numpy as np
ctypedef signed char schar;
ctypedef unsigned char uchar;
ctypedef fused dtype:
uchar
schar
short
int
long
float
double
ctypedef fused DenseType:
Matrix
Array
ctypedef fused Rows:
_1
_2
_3
_4
_5
_6
_7
_8
_9
_10
_11
_12
_13
_14
_15
_16
_17
_18
_19
_20
_21
_22
_23
_24
_25
_26
_27
_28
_29
_30
_31
_32
Dynamic
ctypedef Rows Cols
ctypedef Rows StrideOuter
ctypedef Rows StrideInner
ctypedef fused DenseTypeShort:
Vector1i
Vector2i
Vector3i
Vector4i
VectorXi
RowVector1i
RowVector2i
RowVector3i
RowVector4i
RowVectorXi
Matrix1i
Matrix2i
Matrix3i
Matrix4i
MatrixXi
Vector1f
Vector2f
Vector3f
Vector4f
VectorXf
RowVector1f
RowVector2f
RowVector3f
RowVector4f
RowVectorXf
Matrix1f
Matrix2f
Matrix3f
Matrix4f
MatrixXf
Vector1d
Vector2d
Vector3d
Vector4d
VectorXd
RowVector1d
RowVector2d
RowVector3d
RowVector4d
RowVectorXd
Matrix1d
Matrix2d
Matrix3d
Matrix4d
MatrixXd
Vector1cf
Vector2cf
Vector3cf
Vector4cf
VectorXcf
RowVector1cf
RowVector2cf
RowVector3cf
RowVector4cf
RowVectorXcf
Matrix1cf
Matrix2cf
Matrix3cf
Matrix4cf
MatrixXcf
Vector1cd
Vector2cd
Vector3cd
Vector4cd
VectorXcd
RowVector1cd
RowVector2cd
RowVector3cd
RowVector4cd
RowVectorXcd
Matrix1cd
Matrix2cd
Matrix3cd
Matrix4cd
MatrixXcd
Array22i
Array23i
Array24i
Array2Xi
Array32i
Array33i
Array34i
Array3Xi
Array42i
Array43i
Array44i
Array4Xi
ArrayX2i
ArrayX3i
ArrayX4i
ArrayXXi
Array2i
Array3i
Array4i
ArrayXi
Array22f
Array23f
Array24f
Array2Xf
Array32f
Array33f
Array34f
Array3Xf
Array42f
Array43f
Array44f
Array4Xf
ArrayX2f
ArrayX3f
ArrayX4f
ArrayXXf
Array2f
Array3f
Array4f
ArrayXf
Array22d
Array23d
Array24d
Array2Xd
Array32d
Array33d
Array34d
Array3Xd
Array42d
Array43d
Array44d
Array4Xd
ArrayX2d
ArrayX3d
ArrayX4d
ArrayXXd
Array2d
Array3d
Array4d
ArrayXd
Array22cf
Array23cf
Array24cf
Array2Xcf
Array32cf
Array33cf
Array34cf
Array3Xcf
Array42cf
Array43cf
Array44cf
Array4Xcf
ArrayX2cf
ArrayX3cf
ArrayX4cf
ArrayXXcf
Array2cf
Array3cf
Array4cf
ArrayXcf
Array22cd
Array23cd
Array24cd
Array2Xcd
Array32cd
Array33cd
Array34cd
Array3Xcd
Array42cd
Array43cd
Array44cd
Array4Xcd
ArrayX2cd
ArrayX3cd
ArrayX4cd
ArrayXXcd
Array2cd
Array3cd
Array4cd
ArrayXcd
ctypedef fused StorageOrder:
RowMajor
ColMajor
ctypedef fused MapOptions:
Aligned
Unaligned
cdef extern from "eigency_cpp.h" namespace "eigency":
cdef cppclass _1 "1":
pass
cdef cppclass _2 "2":
pass
cdef cppclass _3 "3":
pass
cdef cppclass _4 "4":
pass
cdef cppclass _5 "5":
pass
cdef cppclass _6 "6":
pass
cdef cppclass _7 "7":
pass
cdef cppclass _8 "8":
pass
cdef cppclass _9 "9":
pass
cdef cppclass _10 "10":
pass
cdef cppclass _11 "11":
pass
cdef cppclass _12 "12":
pass
cdef cppclass _13 "13":
pass
cdef cppclass _14 "14":
pass
cdef cppclass _15 "15":
pass
cdef cppclass _16 "16":
pass
cdef cppclass _17 "17":
pass
cdef cppclass _18 "18":
pass
cdef cppclass _19 "19":
pass
cdef cppclass _20 "20":
pass
cdef cppclass _21 "21":
pass
cdef cppclass _22 "22":
pass
cdef cppclass _23 "23":
pass
cdef cppclass _24 "24":
pass
cdef cppclass _25 "25":
pass
cdef cppclass _26 "26":
pass
cdef cppclass _27 "27":
pass
cdef cppclass _28 "28":
pass
cdef cppclass _29 "29":
pass
cdef cppclass _30 "30":
pass
cdef cppclass _31 "31":
pass
cdef cppclass _32 "32":
pass
cdef cppclass PlainObjectBase:
pass
cdef cppclass Map[DenseTypeShort](PlainObjectBase):
Map() except +
Map(np.ndarray array) except +
cdef cppclass FlattenedMap[DenseType, dtype, Rows, Cols]:
FlattenedMap() except +
FlattenedMap(np.ndarray array) except +
cdef cppclass FlattenedMapWithOrder "eigency::FlattenedMap" [DenseType, dtype, Rows, Cols, StorageOrder]:
FlattenedMapWithOrder() except +
FlattenedMapWithOrder(np.ndarray array) except +
cdef cppclass FlattenedMapWithStride "eigency::FlattenedMap" [DenseType, dtype, Rows, Cols, StorageOrder, MapOptions, StrideOuter, StrideInner]:
FlattenedMapWithStride() except +
FlattenedMapWithStride(np.ndarray array) except +
cdef np.ndarray ndarray_view(PlainObjectBase &)
cdef np.ndarray ndarray_copy(PlainObjectBase &)
cdef np.ndarray ndarray(PlainObjectBase &)
cdef extern from "eigency_cpp.h" namespace "Eigen":
cdef cppclass Dynamic:
pass
cdef cppclass RowMajor:
pass
cdef cppclass ColMajor:
pass
cdef cppclass Aligned:
pass
cdef cppclass Unaligned:
pass
cdef cppclass Matrix(PlainObjectBase):
pass
cdef cppclass Array(PlainObjectBase):
pass
cdef cppclass VectorXd(PlainObjectBase):
pass
cdef cppclass Vector1i(PlainObjectBase):
pass
cdef cppclass Vector2i(PlainObjectBase):
pass
cdef cppclass Vector3i(PlainObjectBase):
pass
cdef cppclass Vector4i(PlainObjectBase):
pass
cdef cppclass VectorXi(PlainObjectBase):
pass
cdef cppclass RowVector1i(PlainObjectBase):
pass
cdef cppclass RowVector2i(PlainObjectBase):
pass
cdef cppclass RowVector3i(PlainObjectBase):
pass
cdef cppclass RowVector4i(PlainObjectBase):
pass
cdef cppclass RowVectorXi(PlainObjectBase):
pass
cdef cppclass Matrix1i(PlainObjectBase):
pass
cdef cppclass Matrix2i(PlainObjectBase):
pass
cdef cppclass Matrix3i(PlainObjectBase):
pass
cdef cppclass Matrix4i(PlainObjectBase):
pass
cdef cppclass MatrixXi(PlainObjectBase):
pass
cdef cppclass Vector1f(PlainObjectBase):
pass
cdef cppclass Vector2f(PlainObjectBase):
pass
cdef cppclass Vector3f(PlainObjectBase):
pass
cdef cppclass Vector4f(PlainObjectBase):
pass
cdef cppclass VectorXf(PlainObjectBase):
pass
cdef cppclass RowVector1f(PlainObjectBase):
pass
cdef cppclass RowVector2f(PlainObjectBase):
pass
cdef cppclass RowVector3f(PlainObjectBase):
pass
cdef cppclass RowVector4f(PlainObjectBase):
pass
cdef cppclass RowVectorXf(PlainObjectBase):
pass
cdef cppclass Matrix1f(PlainObjectBase):
pass
cdef cppclass Matrix2f(PlainObjectBase):
pass
cdef cppclass Matrix3f(PlainObjectBase):
pass
cdef cppclass Matrix4f(PlainObjectBase):
pass
cdef cppclass MatrixXf(PlainObjectBase):
pass
cdef cppclass Vector1d(PlainObjectBase):
pass
cdef cppclass Vector2d(PlainObjectBase):
pass
cdef cppclass Vector3d(PlainObjectBase):
pass
cdef cppclass Vector4d(PlainObjectBase):
pass
cdef cppclass VectorXd(PlainObjectBase):
pass
cdef cppclass RowVector1d(PlainObjectBase):
pass
cdef cppclass RowVector2d(PlainObjectBase):
pass
cdef cppclass RowVector3d(PlainObjectBase):
pass
cdef cppclass RowVector4d(PlainObjectBase):
pass
cdef cppclass RowVectorXd(PlainObjectBase):
pass
cdef cppclass Matrix1d(PlainObjectBase):
pass
cdef cppclass Matrix2d(PlainObjectBase):
pass
cdef cppclass Matrix3d(PlainObjectBase):
pass
cdef cppclass Matrix4d(PlainObjectBase):
pass
cdef cppclass MatrixXd(PlainObjectBase):
pass
cdef cppclass Vector1cf(PlainObjectBase):
pass
cdef cppclass Vector2cf(PlainObjectBase):
pass
cdef cppclass Vector3cf(PlainObjectBase):
pass
cdef cppclass Vector4cf(PlainObjectBase):
pass
cdef cppclass VectorXcf(PlainObjectBase):
pass
cdef cppclass RowVector1cf(PlainObjectBase):
pass
cdef cppclass RowVector2cf(PlainObjectBase):
pass
cdef cppclass RowVector3cf(PlainObjectBase):
pass
cdef cppclass RowVector4cf(PlainObjectBase):
pass
cdef cppclass RowVectorXcf(PlainObjectBase):
pass
cdef cppclass Matrix1cf(PlainObjectBase):
pass
cdef cppclass Matrix2cf(PlainObjectBase):
pass
cdef cppclass Matrix3cf(PlainObjectBase):
pass
cdef cppclass Matrix4cf(PlainObjectBase):
pass
cdef cppclass MatrixXcf(PlainObjectBase):
pass
cdef cppclass Vector1cd(PlainObjectBase):
pass
cdef cppclass Vector2cd(PlainObjectBase):
pass
cdef cppclass Vector3cd(PlainObjectBase):
pass
cdef cppclass Vector4cd(PlainObjectBase):
pass
cdef cppclass VectorXcd(PlainObjectBase):
pass
cdef cppclass RowVector1cd(PlainObjectBase):
pass
cdef cppclass RowVector2cd(PlainObjectBase):
pass
cdef cppclass RowVector3cd(PlainObjectBase):
pass
cdef cppclass RowVector4cd(PlainObjectBase):
pass
cdef cppclass RowVectorXcd(PlainObjectBase):
pass
cdef cppclass Matrix1cd(PlainObjectBase):
pass
cdef cppclass Matrix2cd(PlainObjectBase):
pass
cdef cppclass Matrix3cd(PlainObjectBase):
pass
cdef cppclass Matrix4cd(PlainObjectBase):
pass
cdef cppclass MatrixXcd(PlainObjectBase):
pass
cdef cppclass Array22i(PlainObjectBase):
pass
cdef cppclass Array23i(PlainObjectBase):
pass
cdef cppclass Array24i(PlainObjectBase):
pass
cdef cppclass Array2Xi(PlainObjectBase):
pass
cdef cppclass Array32i(PlainObjectBase):
pass
cdef cppclass Array33i(PlainObjectBase):
pass
cdef cppclass Array34i(PlainObjectBase):
pass
cdef cppclass Array3Xi(PlainObjectBase):
pass
cdef cppclass Array42i(PlainObjectBase):
pass
cdef cppclass Array43i(PlainObjectBase):
pass
cdef cppclass Array44i(PlainObjectBase):
pass
cdef cppclass Array4Xi(PlainObjectBase):
pass
cdef cppclass ArrayX2i(PlainObjectBase):
pass
cdef cppclass ArrayX3i(PlainObjectBase):
pass
cdef cppclass ArrayX4i(PlainObjectBase):
pass
cdef cppclass ArrayXXi(PlainObjectBase):
pass
cdef cppclass Array2i(PlainObjectBase):
pass
cdef cppclass Array3i(PlainObjectBase):
pass
cdef cppclass Array4i(PlainObjectBase):
pass
cdef cppclass ArrayXi(PlainObjectBase):
pass
cdef cppclass Array22f(PlainObjectBase):
pass
cdef cppclass Array23f(PlainObjectBase):
pass
cdef cppclass Array24f(PlainObjectBase):
pass
cdef cppclass Array2Xf(PlainObjectBase):
pass
cdef cppclass Array32f(PlainObjectBase):
pass
cdef cppclass Array33f(PlainObjectBase):
pass
cdef cppclass Array34f(PlainObjectBase):
pass
cdef cppclass Array3Xf(PlainObjectBase):
pass
cdef cppclass Array42f(PlainObjectBase):
pass
cdef cppclass Array43f(PlainObjectBase):
pass
cdef cppclass Array44f(PlainObjectBase):
pass
cdef cppclass Array4Xf(PlainObjectBase):
pass
cdef cppclass ArrayX2f(PlainObjectBase):
pass
cdef cppclass ArrayX3f(PlainObjectBase):
pass
cdef cppclass ArrayX4f(PlainObjectBase):
pass
cdef cppclass ArrayXXf(PlainObjectBase):
pass
cdef cppclass Array2f(PlainObjectBase):
pass
cdef cppclass Array3f(PlainObjectBase):
pass
cdef cppclass Array4f(PlainObjectBase):
pass
cdef cppclass ArrayXf(PlainObjectBase):
pass
cdef cppclass Array22d(PlainObjectBase):
pass
cdef cppclass Array23d(PlainObjectBase):
pass
cdef cppclass Array24d(PlainObjectBase):
pass
cdef cppclass Array2Xd(PlainObjectBase):
pass
cdef cppclass Array32d(PlainObjectBase):
pass
cdef cppclass Array33d(PlainObjectBase):
pass
cdef cppclass Array34d(PlainObjectBase):
pass
cdef cppclass Array3Xd(PlainObjectBase):
pass
cdef cppclass Array42d(PlainObjectBase):
pass
cdef cppclass Array43d(PlainObjectBase):
pass
cdef cppclass Array44d(PlainObjectBase):
pass
cdef cppclass Array4Xd(PlainObjectBase):
pass
cdef cppclass ArrayX2d(PlainObjectBase):
pass
cdef cppclass ArrayX3d(PlainObjectBase):
pass
cdef cppclass ArrayX4d(PlainObjectBase):
pass
cdef cppclass ArrayXXd(PlainObjectBase):
pass
cdef cppclass Array2d(PlainObjectBase):
pass
cdef cppclass Array3d(PlainObjectBase):
pass
cdef cppclass Array4d(PlainObjectBase):
pass
cdef cppclass ArrayXd(PlainObjectBase):
pass
cdef cppclass Array22cf(PlainObjectBase):
pass
cdef cppclass Array23cf(PlainObjectBase):
pass
cdef cppclass Array24cf(PlainObjectBase):
pass
cdef cppclass Array2Xcf(PlainObjectBase):
pass
cdef cppclass Array32cf(PlainObjectBase):
pass
cdef cppclass Array33cf(PlainObjectBase):
pass
cdef cppclass Array34cf(PlainObjectBase):
pass
cdef cppclass Array3Xcf(PlainObjectBase):
pass
cdef cppclass Array42cf(PlainObjectBase):
pass
cdef cppclass Array43cf(PlainObjectBase):
pass
cdef cppclass Array44cf(PlainObjectBase):
pass
cdef cppclass Array4Xcf(PlainObjectBase):
pass
cdef cppclass ArrayX2cf(PlainObjectBase):
pass
cdef cppclass ArrayX3cf(PlainObjectBase):
pass
cdef cppclass ArrayX4cf(PlainObjectBase):
pass
cdef cppclass ArrayXXcf(PlainObjectBase):
pass
cdef cppclass Array2cf(PlainObjectBase):
pass
cdef cppclass Array3cf(PlainObjectBase):
pass
cdef cppclass Array4cf(PlainObjectBase):
pass
cdef cppclass ArrayXcf(PlainObjectBase):
pass
cdef cppclass Array22cd(PlainObjectBase):
pass
cdef cppclass Array23cd(PlainObjectBase):
pass
cdef cppclass Array24cd(PlainObjectBase):
pass
cdef cppclass Array2Xcd(PlainObjectBase):
pass
cdef cppclass Array32cd(PlainObjectBase):
pass
cdef cppclass Array33cd(PlainObjectBase):
pass
cdef cppclass Array34cd(PlainObjectBase):
pass
cdef cppclass Array3Xcd(PlainObjectBase):
pass
cdef cppclass Array42cd(PlainObjectBase):
pass
cdef cppclass Array43cd(PlainObjectBase):
pass
cdef cppclass Array44cd(PlainObjectBase):
pass
cdef cppclass Array4Xcd(PlainObjectBase):
pass
cdef cppclass ArrayX2cd(PlainObjectBase):
pass
cdef cppclass ArrayX3cd(PlainObjectBase):
pass
cdef cppclass ArrayX4cd(PlainObjectBase):
pass
cdef cppclass ArrayXXcd(PlainObjectBase):
pass
cdef cppclass Array2cd(PlainObjectBase):
pass
cdef cppclass Array3cd(PlainObjectBase):
pass
cdef cppclass Array4cd(PlainObjectBase):
pass
cdef cppclass ArrayXcd(PlainObjectBase):
pass

View File

@ -0,0 +1,504 @@
#include <Eigen/Dense>
#include <iostream>
#include <stdexcept>
#include <complex>
typedef ::std::complex< double > __pyx_t_double_complex;
typedef ::std::complex< float > __pyx_t_float_complex;
#include "conversions_api.h"
#ifndef EIGENCY_CPP
#define EIGENCY_CPP
namespace eigency {
template<typename Scalar>
inline PyArrayObject *_ndarray_view(Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
template<typename Scalar>
inline PyArrayObject *_ndarray_copy(const Scalar *, long rows, long cols, bool is_row_major, long outer_stride=0, long inner_stride=0);
// Strides:
// Eigen and numpy differ in their way of dealing with strides. Eigen has the concept of outer and
// inner strides, which are dependent on whether the array/matrix is row-major of column-major:
// Inner stride: denotes the offset between succeeding elements in each row (row-major) or column (column-major).
// Outer stride: denotes the offset between succeeding rows (row-major) or succeeding columns (column-major).
// In contrast, numpy's stride is simply a measure of how fast each dimension should be incremented.
// Consequently, a switch in numpy storage order from row-major to column-major involves a switch
// in strides, while it does not affect the stride in Eigen.
template<>
inline PyArrayObject *_ndarray_view<double>(double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major) {
// Eigen row-major mode: row_stride=outer_stride, and col_stride=inner_stride
// If no stride is given, the row_stride is set to the number of columns.
return ndarray_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
} else {
// Eigen column-major mode: row_stride=outer_stride, and col_stride=inner_stride
// If no stride is given, the cow_stride is set to the number of rows.
return ndarray_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
}
template<>
inline PyArrayObject *_ndarray_copy<double>(const double *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<float>(float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<float>(const float *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<long>(long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<long>(const long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_long_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_long_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned long>(unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned long>(const unsigned long *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_ulong_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_ulong_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<int>(int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<int>(const int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_int_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_int_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned int>(unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned int>(const unsigned int *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_uint_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_uint_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<short>(short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<short>(const short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_short_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_short_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned short>(unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned short>(const unsigned short *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_ushort_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_ushort_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<signed char>(signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<signed char>(const signed char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_schar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_schar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<unsigned char>(unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<unsigned char>(const unsigned char *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_uchar_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_uchar_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<std::complex<double> >(std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<std::complex<double> >(const std::complex<double> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_complex_double_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_complex_double_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_view<std::complex<float> >(std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template<>
inline PyArrayObject *_ndarray_copy<std::complex<float> >(const std::complex<float> *data, long rows, long cols, bool is_row_major, long outer_stride, long inner_stride) {
if (is_row_major)
return ndarray_copy_complex_float_C(data, rows, cols, outer_stride>0?outer_stride:cols, inner_stride>0?inner_stride:1);
else
return ndarray_copy_complex_float_F(data, rows, cols, inner_stride>0?inner_stride:1, outer_stride>0?outer_stride:rows);
}
template <typename Derived>
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
// If C++11 is available, check if m is an r-value reference, in
// which case a copy should always be made
#if __cplusplus >= 201103L
template <typename Derived>
inline PyArrayObject *ndarray(Eigen::PlainObjectBase<Derived> &&m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
#endif
template <typename Derived>
inline PyArrayObject *ndarray(const Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived>
inline PyArrayObject *ndarray_view(Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived>
inline PyArrayObject *ndarray_view(const Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived>
inline PyArrayObject *ndarray_copy(const Eigen::PlainObjectBase<Derived> &m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor);
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray(Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray(const Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
// Since this is a map, we assume that ownership is correctly taken care
// of, and we avoid taking a copy
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray_view(Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray_view(const Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_view(const_cast<typename Derived::Scalar*>(m.data()), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename Derived, int MapOptions, typename Stride>
inline PyArrayObject *ndarray_copy(const Eigen::Map<Derived, MapOptions, Stride> &m) {
import_gtsam_eigency__conversions();
return _ndarray_copy(m.data(), m.rows(), m.cols(), m.IsRowMajor, m.outerStride(), m.innerStride());
}
template <typename MatrixType,
int _MapOptions = Eigen::Unaligned,
typename _StrideType=Eigen::Stride<0,0> >
class MapBase: public Eigen::Map<MatrixType, _MapOptions, _StrideType> {
public:
typedef Eigen::Map<MatrixType, _MapOptions, _StrideType> Base;
typedef typename Base::Scalar Scalar;
MapBase(Scalar* data,
long rows,
long cols,
_StrideType stride=_StrideType())
: Base(data,
// If both dimensions are dynamic or dimensions match, accept dimensions as they are
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
? rows
// otherwise, test if swapping them makes them fit
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
? cols
: rows),
((Base::RowsAtCompileTime==Eigen::Dynamic && Base::ColsAtCompileTime==Eigen::Dynamic) ||
(Base::RowsAtCompileTime==rows && Base::ColsAtCompileTime==cols))
? cols
: ((Base::RowsAtCompileTime==cols || Base::ColsAtCompileTime==rows)
? rows
: cols),
stride
) {}
MapBase &operator=(const MatrixType &other) {
Base::operator=(other);
return *this;
}
virtual ~MapBase() { }
};
template <template<class,int,int,int,int,int> class EigencyDenseBase,
typename Scalar,
int _Rows, int _Cols,
int _Options = Eigen::AutoAlign |
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
// The error would only show up with EIGEN_DEFAULT_TO_ROW_MAJOR is defined
// (when EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION is RowMajor)
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
#if EIGEN_VERSION_AT_LEAST(3,2,90)
: !(_Cols==1 && _Rows!=1) ? EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
#else
: !(_Cols==1 && _Rows!=1) ? Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION
#endif
: ColMajor ),
#else
( (_Rows==1 && _Cols!=1) ? Eigen::RowMajor
: (_Cols==1 && _Rows!=1) ? Eigen::ColMajor
// EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION contains explicit namespace since Eigen 3.1.19
#if EIGEN_VERSION_AT_LEAST(3,2,90)
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#else
: Eigen::EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
#endif
#endif
int _MapOptions = Eigen::Unaligned,
int _StrideOuter=0, int _StrideInner=0,
int _MaxRows = _Rows,
int _MaxCols = _Cols>
class FlattenedMap: public MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > {
public:
typedef MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base;
FlattenedMap()
: Base(NULL, 0, 0),
object_(NULL) {}
FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0)
: Base(data, rows, cols,
Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)),
object_(NULL) {
}
FlattenedMap(PyArrayObject *object)
: Base((Scalar *)((PyArrayObject*)object)->data,
// : Base(_from_numpy<Scalar>((PyArrayObject*)object),
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0],
Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
_StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])),
object_(object) {
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
Py_XINCREF(object_);
}
FlattenedMap &operator=(const FlattenedMap &other) {
if (other.object_) {
new (this) FlattenedMap(other.object_);
} else {
// Replace the memory that we point to (not a memory allocation)
new (this) FlattenedMap(const_cast<Scalar*>(other.data()),
other.rows(),
other.cols(),
other.outerStride(),
other.innerStride());
}
return *this;
}
operator Base() const {
return static_cast<Base>(*this);
}
operator Base&() const {
return static_cast<Base&>(*this);
}
operator EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const {
return EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this));
}
virtual ~FlattenedMap() {
Py_XDECREF(object_);
}
private:
PyArrayObject * const object_;
};
template <typename MatrixType>
class Map: public MapBase<MatrixType> {
public:
typedef MapBase<MatrixType> Base;
typedef typename MatrixType::Scalar Scalar;
enum {
RowsAtCompileTime = Base::Base::RowsAtCompileTime,
ColsAtCompileTime = Base::Base::ColsAtCompileTime
};
Map()
: Base(NULL,
(RowsAtCompileTime == Eigen::Dynamic) ? 0 : RowsAtCompileTime,
(ColsAtCompileTime == Eigen::Dynamic) ? 0 : ColsAtCompileTime),
object_(NULL) {
}
Map(Scalar *data, long rows, long cols)
: Base(data, rows, cols),
object_(NULL) {}
Map(PyArrayObject *object)
: Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data,
// ROW: If array is in row-major order, transpose (see README)
(PyObject*)object == Py_None? 0 :
(!PyArray_IS_F_CONTIGUOUS(object)
? ((object->nd == 1)
? 1 // ROW: If 1D row-major numpy array, set to 1 (row vector)
: object->dimensions[1])
: object->dimensions[0]),
// COLUMN: If array is in row-major order: transpose (see README)
(PyObject*)object == Py_None? 0 :
(!PyArray_IS_F_CONTIGUOUS(object)
? object->dimensions[0]
: ((object->nd == 1)
? 1 // COLUMN: If 1D col-major numpy array, set to length (column vector)
: object->dimensions[1]))),
object_(object) {
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
Py_XINCREF(object_);
}
Map &operator=(const Map &other) {
if (other.object_) {
new (this) Map(other.object_);
} else {
// Replace the memory that we point to (not a memory allocation)
new (this) Map(const_cast<Scalar*>(other.data()),
other.rows(),
other.cols());
}
return *this;
}
Map &operator=(const MatrixType &other) {
MapBase<MatrixType>::operator=(other);
return *this;
}
operator Base() const {
return static_cast<Base>(*this);
}
operator Base&() const {
return static_cast<Base&>(*this);
}
operator MatrixType() const {
return MatrixType(static_cast<Base>(*this));
}
virtual ~Map() {
Py_XDECREF(object_);
}
private:
PyArrayObject * const object_;
};
}
#endif

View File

@ -0,0 +1 @@
from .gtsam_unstable import *

View File

@ -0,0 +1,102 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Demonstration of the fixed-lag smoothers using a planar robot example
and multiple odometry-like sensors
Author: Frank Dellaert (C++), Jeremy Aguilon (Python)
"""
import numpy as np
import gtsam
import gtsam_unstable
def _timestamp_key_value(key, value):
"""
"""
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
key, value
)
def BatchFixedLagSmootherExample():
"""
Runs a batch fixed smoother on an agent with two odometry
sensors that is simply moving to the
"""
# Define a batch fixed lag smoother, which uses
# Levenberg-Marquardt to perform the nonlinear optimization
lag = 2.0
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
# Create containers to store the factors and linearization points
# that will be sent to the smoothers
new_factors = gtsam.NonlinearFactorGraph()
new_values = gtsam.Values()
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
# Create a prior on the first pose, placing it at the origin
prior_mean = gtsam.Pose2(0, 0, 0)
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
X1 = 0
new_factors.push_back(gtsam.PriorFactorPose2(X1, prior_mean, prior_noise))
new_values.insert(X1, prior_mean)
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
delta_time = 0.25
time = 0.25
while time <= 3.0:
previous_key = 1000 * (time - delta_time)
current_key = 1000 * time
# assign current key to the current timestamp
new_timestamps.insert(_timestamp_key_value(current_key, time))
# Add a guess for this pose to the new values
# Assume that the robot moves at 2 m/s. Position is time[s] * 2[m/s]
current_pose = gtsam.Pose2(time * 2, 0, 0)
new_values.insert(current_key, current_pose)
# Add odometry factors from two different sources with different error
# stats
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.1, 0.1, 0.05]))
new_factors.push_back(gtsam.BetweenFactorPose2(
previous_key, current_key, odometry_measurement_1, odometry_noise_1
))
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05]))
new_factors.push_back(gtsam.BetweenFactorPose2(
previous_key, current_key, odometry_measurement_2, odometry_noise_2
))
# Update the smoothers with the new factors. In this case,
# one iteration must pass for Levenberg-Marquardt to accurately
# estimate
if time >= 0.50:
smoother_batch.update(new_factors, new_values, new_timestamps)
print("Timestamp = " + str(time) + ", Key = " + str(current_key))
print(smoother_batch.calculateEstimatePose2(current_key))
new_timestamps.clear()
new_values.clear()
new_factors.resize(0)
time += delta_time
if __name__ == '__main__':
BatchFixedLagSmootherExample()
print("Example complete")

View File

View File

@ -0,0 +1,135 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Cal3Unified unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
import numpy as np
import gtsam
import gtsam_unstable
from gtsam.utils.test_case import GtsamTestCase
def _timestamp_key_value(key, value):
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
key, value
)
class TestFixedLagSmootherExample(GtsamTestCase):
'''
Tests the fixed lag smoother wrapper
'''
def test_FixedLagSmootherExample(self):
'''
Simple test that checks for equality between C++ example
file and the Python implementation. See
gtsam_unstable/examples/FixedLagSmootherExample.cpp
'''
# Define a batch fixed lag smoother, which uses
# Levenberg-Marquardt to perform the nonlinear optimization
lag = 2.0
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
# Create containers to store the factors and linearization points
# that will be sent to the smoothers
new_factors = gtsam.NonlinearFactorGraph()
new_values = gtsam.Values()
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
# Create a prior on the first pose, placing it at the origin
prior_mean = gtsam.Pose2(0, 0, 0)
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.3, 0.3, 0.1]))
X1 = 0
new_factors.push_back(
gtsam.PriorFactorPose2(
X1, prior_mean, prior_noise))
new_values.insert(X1, prior_mean)
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
delta_time = 0.25
time = 0.25
i = 0
ground_truth = [
gtsam.Pose2(0.995821, 0.0231012, 0.0300001),
gtsam.Pose2(1.49284, 0.0457247, 0.045),
gtsam.Pose2(1.98981, 0.0758879, 0.06),
gtsam.Pose2(2.48627, 0.113502, 0.075),
gtsam.Pose2(2.98211, 0.158558, 0.09),
gtsam.Pose2(3.47722, 0.211047, 0.105),
gtsam.Pose2(3.97149, 0.270956, 0.12),
gtsam.Pose2(4.4648, 0.338272, 0.135),
gtsam.Pose2(4.95705, 0.41298, 0.15),
gtsam.Pose2(5.44812, 0.495063, 0.165),
gtsam.Pose2(5.9379, 0.584503, 0.18),
]
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
# In each iteration, the agent moves at a constant speed
# and its two odometers measure the change. The smoothed
# result is then compared to the ground truth
while time <= 3.0:
previous_key = 1000 * (time - delta_time)
current_key = 1000 * time
# assign current key to the current timestamp
new_timestamps.insert(_timestamp_key_value(current_key, time))
# Add a guess for this pose to the new values
# Assume that the robot moves at 2 m/s. Position is time[s] *
# 2[m/s]
current_pose = gtsam.Pose2(time * 2, 0, 0)
new_values.insert(current_key, current_pose)
# Add odometry factors from two different sources with different
# error stats
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.1, 0.1, 0.05]))
new_factors.push_back(
gtsam.BetweenFactorPose2(
previous_key,
current_key,
odometry_measurement_1,
odometry_noise_1))
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.05, 0.05, 0.05]))
new_factors.push_back(
gtsam.BetweenFactorPose2(
previous_key,
current_key,
odometry_measurement_2,
odometry_noise_2))
# Update the smoothers with the new factors. In this case,
# one iteration must pass for Levenberg-Marquardt to accurately
# estimate
if time >= 0.50:
smoother_batch.update(new_factors, new_values, new_timestamps)
estimate = smoother_batch.calculateEstimatePose2(current_key)
self.assertTrue(estimate.equals(ground_truth[i], 1e-4))
i += 1
new_timestamps.clear()
new_values.clear()
new_factors.resize(0)
time += delta_time
if __name__ == "__main__":
unittest.main()

3
cython/requirements.txt Normal file
View File

@ -0,0 +1,3 @@
Cython>=0.25.2
backports_abc>=0.5
numpy>=1.12.0

49
cython/setup.py.in Normal file
View File

@ -0,0 +1,49 @@
import os
import sys
try:
from setuptools import setup, find_packages
except ImportError:
from distutils.core import setup, find_packages
if 'SETUP_PY_NO_CHECK' not in os.environ:
script_path = os.path.abspath(os.path.realpath(__file__))
install_path = os.path.abspath(os.path.realpath(os.path.join('${GTSAM_CYTHON_INSTALL_PATH}', 'setup.py')))
if script_path != install_path:
print('setup.py is being run from an unexpected location: "{}"'.format(script_path))
print('please run `make install` and run the script from there')
sys.exit(1)
packages = find_packages()
setup(
name='gtsam',
description='Georgia Tech Smoothing And Mapping library',
url='https://bitbucket.org/gtborg/gtsam',
version='${GTSAM_VERSION_STRING}', # https://www.python.org/dev/peps/pep-0440/
license='Simplified BSD license',
keywords='slam sam robotics localization mapping optimization',
long_description='''${README_CONTENTS}''',
# https://pypi.org/pypi?%3Aaction=list_classifiers
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Education',
'Intended Audience :: Developers',
'Intended Audience :: Science/Research',
'Operating System :: MacOS',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 3',
],
packages=packages,
package_data={package:
[f for f in os.listdir(package.replace('.', os.path.sep)) if os.path.splitext(f)[1] in ('.so', '.dll')]
for package in packages
},
install_requires=[line.strip() for line in '''
${CYTHON_INSTALL_REQUIREMENTS}
'''.splitlines() if len(line.strip()) > 0 and not line.strip().startswith('#')]
)

View File

@ -0,0 +1,7 @@
// add unary measurement factors, like GPS, on all three poses
noiseModel::Diagonal::shared_ptr unaryNoise =
noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));

Some files were not shown because too many files have changed in this diff Show More