Merge pull request #1830 from borglab/hybrid-renaming

release/4.3a0
Varun Agrawal 2024-09-13 16:33:26 -04:00 committed by GitHub
commit 525ff7cc11
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
39 changed files with 511 additions and 479 deletions

View File

@ -191,17 +191,17 @@ E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error}
\end_layout
\begin_layout Subsubsection*
GaussianMixture
HybridGaussianConditional
\end_layout
\begin_layout Standard
A
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
(maybe to be renamed to
\emph on
GaussianMixtureComponent
HybridGaussianConditionalComponent
\emph default
) just indexes into a number of
\emph on
@ -233,7 +233,7 @@ GaussianConditional
to a set of discrete variables.
As
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
is a
\emph on
@ -324,7 +324,7 @@ The key point here is that
\color inherit
is the log-normalization constant for the complete
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
across all values of
\begin_inset Formula $m$
@ -548,15 +548,15 @@ with
\end_layout
\begin_layout Subsubsection*
GaussianMixtureFactor
HybridGaussianFactor
\end_layout
\begin_layout Standard
Analogously, a
\emph on
GaussianMixtureFactor
HybridGaussianFactor
\emph default
typically results from a GaussianMixture by having known values
typically results from a HybridGaussianConditional by having known values
\begin_inset Formula $\bar{x}$
\end_inset
@ -817,7 +817,7 @@ E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_
\end_inset
which is identical to the GaussianMixture error
which is identical to the HybridGaussianConditional error
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_error"

View File

@ -168,11 +168,11 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
DecisionTreeFactor prunedDiscreteProbs =
this->pruneDiscreteConditionals(maxNrLeaves);
/* To prune, we visitWith every leaf in the GaussianMixture.
/* To prune, we visitWith every leaf in the HybridGaussianConditional.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
*
* We can later check the GaussianMixture for just nullptrs.
* We can later check the HybridGaussianConditional for just nullptrs.
*/
HybridBayesNet prunedBayesNetFragment;
@ -182,14 +182,16 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// Make a copy of the Gaussian mixture and prune it!
auto prunedGaussianMixture = std::make_shared<GaussianMixture>(*gm);
prunedGaussianMixture->prune(prunedDiscreteProbs); // imperative :-(
auto prunedHybridGaussianConditional =
std::make_shared<HybridGaussianConditional>(*gm);
prunedHybridGaussianConditional->prune(
prunedDiscreteProbs); // imperative :-(
// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(prunedGaussianMixture);
prunedBayesNetFragment.push_back(prunedHybridGaussianConditional);
} else {
// Add the non-GaussianMixture conditional
// Add the non-HybridGaussianConditional conditional
prunedBayesNetFragment.push_back(conditional);
}
}

View File

@ -79,7 +79,7 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
*
* Example:
* auto shared_ptr_to_a_conditional =
* std::make_shared<GaussianMixture>(...);
* std::make_shared<HybridGaussianConditional>(...);
* hbn.push_back(shared_ptr_to_a_conditional);
*/
void push_back(HybridConditional &&conditional) {
@ -106,7 +106,7 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
* Preferred: Emplace a conditional directly using arguments.
*
* Examples:
* hbn.emplace_shared<GaussianMixture>(...)));
* hbn.emplace_shared<HybridGaussianConditional>(...)));
* hbn.emplace_shared<GaussianConditional>(...)));
* hbn.emplace_shared<DiscreteConditional>(...)));
*/

View File

@ -55,7 +55,7 @@ HybridConditional::HybridConditional(
/* ************************************************************************ */
HybridConditional::HybridConditional(
const std::shared_ptr<GaussianMixture> &gaussianMixture)
const std::shared_ptr<HybridGaussianConditional> &gaussianMixture)
: BaseFactor(KeyVector(gaussianMixture->keys().begin(),
gaussianMixture->keys().begin() +
gaussianMixture->nrContinuous()),
@ -157,10 +157,10 @@ double HybridConditional::logNormalizationConstant() const {
return gc->logNormalizationConstant();
}
if (auto gm = asMixture()) {
return gm->logNormalizationConstant(); // 0.0!
return gm->logNormalizationConstant(); // 0.0!
}
if (auto dc = asDiscrete()) {
return dc->logNormalizationConstant(); // 0.0!
return dc->logNormalizationConstant(); // 0.0!
}
throw std::runtime_error(
"HybridConditional::logProbability: conditional type not handled");

View File

@ -18,8 +18,8 @@
#pragma once
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/Key.h>
@ -39,7 +39,7 @@ namespace gtsam {
* As a type-erased variant of:
* - DiscreteConditional
* - GaussianConditional
* - GaussianMixture
* - HybridGaussianConditional
*
* The reason why this is important is that `Conditional<T>` is a CRTP class.
* CRTP is static polymorphism such that all CRTP classes, while bearing the
@ -127,7 +127,8 @@ class GTSAM_EXPORT HybridConditional
* @param gaussianMixture Gaussian Mixture Conditional used to create the
* HybridConditional.
*/
HybridConditional(const std::shared_ptr<GaussianMixture>& gaussianMixture);
HybridConditional(
const std::shared_ptr<HybridGaussianConditional>& gaussianMixture);
/// @}
/// @name Testable
@ -146,12 +147,12 @@ class GTSAM_EXPORT HybridConditional
/// @{
/**
* @brief Return HybridConditional as a GaussianMixture
* @brief Return HybridConditional as a HybridGaussianConditional
* @return nullptr if not a mixture
* @return GaussianMixture::shared_ptr otherwise
* @return HybridGaussianConditional::shared_ptr otherwise
*/
GaussianMixture::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<GaussianMixture>(inner_);
HybridGaussianConditional::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<HybridGaussianConditional>(inner_);
}
/**
@ -222,8 +223,10 @@ class GTSAM_EXPORT HybridConditional
boost::serialization::void_cast_register<GaussianConditional, Factor>(
static_cast<GaussianConditional*>(NULL), static_cast<Factor*>(NULL));
} else {
boost::serialization::void_cast_register<GaussianMixture, Factor>(
static_cast<GaussianMixture*>(NULL), static_cast<Factor*>(NULL));
boost::serialization::void_cast_register<HybridGaussianConditional,
Factor>(
static_cast<HybridGaussianConditional*>(NULL),
static_cast<Factor*>(NULL));
}
}
#endif

View File

@ -35,8 +35,8 @@ class GTSAM_EXPORT HybridEliminationTree
public:
typedef EliminationTree<HybridBayesNet, HybridGaussianFactorGraph>
Base; ///< Base class
typedef HybridEliminationTree This; ///< This class
Base; ///< Base class
typedef HybridEliminationTree This; ///< This class
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
/// @name Constructors

View File

@ -45,9 +45,9 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
* Base class for *truly* hybrid probabilistic factors
*
* Examples:
* - MixtureFactor
* - GaussianMixtureFactor
* - GaussianMixture
* - HybridNonlinearFactor
* - HybridGaussianFactor
* - HybridGaussianConditional
*
* @ingroup hybrid
*/

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixture.cpp
* @file HybridGaussianConditional.cpp
* @brief A hybrid conditional in the Conditional Linear Gaussian scheme
* @author Fan Jiang
* @author Varun Agrawal
@ -20,8 +20,8 @@
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/linear/GaussianBayesNet.h>
@ -29,10 +29,10 @@
namespace gtsam {
GaussianMixture::GaussianMixture(
HybridGaussianConditional::HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const GaussianMixture::Conditionals &conditionals)
const HybridGaussianConditional::Conditionals &conditionals)
: BaseFactor(CollectKeys(continuousFrontals, continuousParents),
discreteParents),
BaseConditional(continuousFrontals.size()),
@ -50,30 +50,33 @@ GaussianMixture::GaussianMixture(
}
/* *******************************************************************************/
const GaussianMixture::Conditionals &GaussianMixture::conditionals() const {
const HybridGaussianConditional::Conditionals &
HybridGaussianConditional::conditionals() const {
return conditionals_;
}
/* *******************************************************************************/
GaussianMixture::GaussianMixture(
HybridGaussianConditional::HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionals)) {}
: HybridGaussianConditional(continuousFrontals, continuousParents,
discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
GaussianMixture::GaussianMixture(
HybridGaussianConditional::HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionals)) {}
: HybridGaussianConditional(continuousFrontals, continuousParents,
discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
// TODO(dellaert): This is copy/paste: GaussianMixture should be derived from
// GaussianMixtureFactor, no?
GaussianFactorGraphTree GaussianMixture::add(
// TODO(dellaert): This is copy/paste: HybridGaussianConditional should be
// derived from HybridGaussianFactor, no?
GaussianFactorGraphTree HybridGaussianConditional::add(
const GaussianFactorGraphTree &sum) const {
using Y = GaussianFactorGraph;
auto add = [](const Y &graph1, const Y &graph2) {
@ -86,7 +89,8 @@ GaussianFactorGraphTree GaussianMixture::add(
}
/* *******************************************************************************/
GaussianFactorGraphTree GaussianMixture::asGaussianFactorGraphTree() const {
GaussianFactorGraphTree HybridGaussianConditional::asGaussianFactorGraphTree()
const {
auto wrap = [this](const GaussianConditional::shared_ptr &gc) {
// First check if conditional has not been pruned
if (gc) {
@ -109,7 +113,7 @@ GaussianFactorGraphTree GaussianMixture::asGaussianFactorGraphTree() const {
}
/* *******************************************************************************/
size_t GaussianMixture::nrComponents() const {
size_t HybridGaussianConditional::nrComponents() const {
size_t total = 0;
conditionals_.visit([&total](const GaussianFactor::shared_ptr &node) {
if (node) total += 1;
@ -118,7 +122,7 @@ size_t GaussianMixture::nrComponents() const {
}
/* *******************************************************************************/
GaussianConditional::shared_ptr GaussianMixture::operator()(
GaussianConditional::shared_ptr HybridGaussianConditional::operator()(
const DiscreteValues &discreteValues) const {
auto &ptr = conditionals_(discreteValues);
if (!ptr) return nullptr;
@ -127,11 +131,12 @@ GaussianConditional::shared_ptr GaussianMixture::operator()(
return conditional;
else
throw std::logic_error(
"A GaussianMixture unexpectedly contained a non-conditional");
"A HybridGaussianConditional unexpectedly contained a non-conditional");
}
/* *******************************************************************************/
bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
bool HybridGaussianConditional::equals(const HybridFactor &lf,
double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
if (e == nullptr) return false;
@ -149,8 +154,8 @@ bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
}
/* *******************************************************************************/
void GaussianMixture::print(const std::string &s,
const KeyFormatter &formatter) const {
void HybridGaussianConditional::print(const std::string &s,
const KeyFormatter &formatter) const {
std::cout << (s.empty() ? "" : s + "\n");
if (isContinuous()) std::cout << "Continuous ";
if (isDiscrete()) std::cout << "Discrete ";
@ -177,7 +182,7 @@ void GaussianMixture::print(const std::string &s,
}
/* ************************************************************************* */
KeyVector GaussianMixture::continuousParents() const {
KeyVector HybridGaussianConditional::continuousParents() const {
// Get all parent keys:
const auto range = parents();
KeyVector continuousParentKeys(range.begin(), range.end());
@ -193,7 +198,8 @@ KeyVector GaussianMixture::continuousParents() const {
}
/* ************************************************************************* */
bool GaussianMixture::allFrontalsGiven(const VectorValues &given) const {
bool HybridGaussianConditional::allFrontalsGiven(
const VectorValues &given) const {
for (auto &&kv : given) {
if (given.find(kv.first) == given.end()) {
return false;
@ -203,16 +209,17 @@ bool GaussianMixture::allFrontalsGiven(const VectorValues &given) const {
}
/* ************************************************************************* */
std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
std::shared_ptr<HybridGaussianFactor> HybridGaussianConditional::likelihood(
const VectorValues &given) const {
if (!allFrontalsGiven(given)) {
throw std::runtime_error(
"GaussianMixture::likelihood: given values are missing some frontals.");
"HybridGaussianConditional::likelihood: given values are missing some "
"frontals.");
}
const DiscreteKeys discreteParentKeys = discreteKeys();
const KeyVector continuousParentKeys = continuousParents();
const GaussianMixtureFactor::Factors likelihoods(
const HybridGaussianFactor::Factors likelihoods(
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
const auto likelihood_m = conditional->likelihood(given);
const double Cgm_Kgcm =
@ -231,7 +238,7 @@ std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
return std::make_shared<JacobianFactor>(gfg);
}
});
return std::make_shared<GaussianMixtureFactor>(
return std::make_shared<HybridGaussianFactor>(
continuousParentKeys, discreteParentKeys, likelihoods);
}
@ -252,7 +259,7 @@ std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys) {
*/
std::function<GaussianConditional::shared_ptr(
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
HybridGaussianConditional::prunerFunc(const DecisionTreeFactor &discreteProbs) {
// Get the discrete keys as sets for the decision tree
// and the gaussian mixture.
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
@ -303,7 +310,7 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
}
/* *******************************************************************************/
void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
void HybridGaussianConditional::prune(const DecisionTreeFactor &discreteProbs) {
// Functional which loops over all assignments and create a set of
// GaussianConditionals
auto pruner = prunerFunc(discreteProbs);
@ -313,7 +320,7 @@ void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
}
/* *******************************************************************************/
AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
AlgebraicDecisionTree<Key> HybridGaussianConditional::logProbability(
const VectorValues &continuousValues) const {
// functor to calculate (double) logProbability value from
// GaussianConditional.
@ -331,7 +338,7 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
}
/* ************************************************************************* */
double GaussianMixture::conditionalError(
double HybridGaussianConditional::conditionalError(
const GaussianConditional::shared_ptr &conditional,
const VectorValues &continuousValues) const {
// Check if valid pointer
@ -348,7 +355,7 @@ double GaussianMixture::conditionalError(
}
/* *******************************************************************************/
AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
AlgebraicDecisionTree<Key> HybridGaussianConditional::errorTree(
const VectorValues &continuousValues) const {
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
return conditionalError(conditional, continuousValues);
@ -358,20 +365,21 @@ AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
}
/* *******************************************************************************/
double GaussianMixture::error(const HybridValues &values) const {
double HybridGaussianConditional::error(const HybridValues &values) const {
// Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
return conditionalError(conditional, values.continuous());
}
/* *******************************************************************************/
double GaussianMixture::logProbability(const HybridValues &values) const {
double HybridGaussianConditional::logProbability(
const HybridValues &values) const {
auto conditional = conditionals_(values.discrete());
return conditional->logProbability(values.continuous());
}
/* *******************************************************************************/
double GaussianMixture::evaluate(const HybridValues &values) const {
double HybridGaussianConditional::evaluate(const HybridValues &values) const {
auto conditional = conditionals_(values.discrete());
return conditional->evaluate(values.continuous());
}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixture.h
* @file HybridGaussianConditional.h
* @brief A hybrid conditional in the Conditional Linear Gaussian scheme
* @author Fan Jiang
* @author Varun Agrawal
@ -23,8 +23,8 @@
#include <gtsam/discrete/DecisionTree.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/linear/GaussianConditional.h>
@ -50,14 +50,14 @@ class HybridValues;
*
* @ingroup hybrid
*/
class GTSAM_EXPORT GaussianMixture
class GTSAM_EXPORT HybridGaussianConditional
: public HybridFactor,
public Conditional<HybridFactor, GaussianMixture> {
public Conditional<HybridFactor, HybridGaussianConditional> {
public:
using This = GaussianMixture;
using shared_ptr = std::shared_ptr<GaussianMixture>;
using This = HybridGaussianConditional;
using shared_ptr = std::shared_ptr<HybridGaussianConditional>;
using BaseFactor = HybridFactor;
using BaseConditional = Conditional<HybridFactor, GaussianMixture>;
using BaseConditional = Conditional<HybridFactor, HybridGaussianConditional>;
/// typedef for Decision Tree of Gaussian Conditionals
using Conditionals = DecisionTree<Key, GaussianConditional::shared_ptr>;
@ -67,7 +67,7 @@ class GTSAM_EXPORT GaussianMixture
double logConstant_; ///< log of the normalization constant.
/**
* @brief Convert a GaussianMixture of conditionals into
* @brief Convert a HybridGaussianConditional of conditionals into
* a DecisionTree of Gaussian factor graphs.
*/
GaussianFactorGraphTree asGaussianFactorGraphTree() const;
@ -88,10 +88,10 @@ class GTSAM_EXPORT GaussianMixture
/// @{
/// Default constructor, mainly for serialization.
GaussianMixture() = default;
HybridGaussianConditional() = default;
/**
* @brief Construct a new GaussianMixture object.
* @brief Construct a new HybridGaussianConditional object.
*
* @param continuousFrontals the continuous frontals.
* @param continuousParents the continuous parents.
@ -101,10 +101,10 @@ class GTSAM_EXPORT GaussianMixture
* cardinality of the DiscreteKeys in discreteParents, since the
* discreteParents will be used as the labels in the decision tree.
*/
GaussianMixture(const KeyVector &continuousFrontals,
const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const Conditionals &conditionals);
HybridGaussianConditional(const KeyVector &continuousFrontals,
const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const Conditionals &conditionals);
/**
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
@ -114,9 +114,10 @@ class GTSAM_EXPORT GaussianMixture
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
GaussianMixture(KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals);
HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals);
/**
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
@ -126,7 +127,7 @@ class GTSAM_EXPORT GaussianMixture
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
GaussianMixture(
HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals);
@ -140,7 +141,7 @@ class GTSAM_EXPORT GaussianMixture
/// Print utility
void print(
const std::string &s = "GaussianMixture\n",
const std::string &s = "HybridGaussianConditional\n",
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
/// @}
@ -165,14 +166,14 @@ class GTSAM_EXPORT GaussianMixture
* Create a likelihood factor for a Gaussian mixture, return a Mixture factor
* on the parents.
*/
std::shared_ptr<GaussianMixtureFactor> likelihood(
std::shared_ptr<HybridGaussianFactor> likelihood(
const VectorValues &given) const;
/// Getter for the underlying Conditionals DecisionTree
const Conditionals &conditionals() const;
/**
* @brief Compute logProbability of the GaussianMixture as a tree.
* @brief Compute logProbability of the HybridGaussianConditional as a tree.
*
* @param continuousValues The continuous VectorValues.
* @return AlgebraicDecisionTree<Key> A decision tree with the same keys
@ -209,7 +210,7 @@ class GTSAM_EXPORT GaussianMixture
double error(const HybridValues &values) const override;
/**
* @brief Compute error of the GaussianMixture as a tree.
* @brief Compute error of the HybridGaussianConditional as a tree.
*
* @param continuousValues The continuous VectorValues.
* @return AlgebraicDecisionTree<Key> A decision tree on the discrete keys
@ -277,6 +278,7 @@ std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys);
// traits
template <>
struct traits<GaussianMixture> : public Testable<GaussianMixture> {};
struct traits<HybridGaussianConditional>
: public Testable<HybridGaussianConditional> {};
} // namespace gtsam

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixtureFactor.cpp
* @file HybridGaussianFactor.cpp
* @brief A set of Gaussian factors indexed by a set of discrete keys.
* @author Fan Jiang
* @author Varun Agrawal
@ -21,7 +21,7 @@
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/DecisionTree.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/GaussianFactorGraph.h>
@ -29,13 +29,13 @@
namespace gtsam {
/* *******************************************************************************/
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors)
HybridGaussianFactor::HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors)
: Base(continuousKeys, discreteKeys), factors_(factors) {}
/* *******************************************************************************/
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
bool HybridGaussianFactor::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
if (e == nullptr) return false;
@ -52,10 +52,10 @@ bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
}
/* *******************************************************************************/
void GaussianMixtureFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
void HybridGaussianFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
std::cout << (s.empty() ? "" : s + "\n");
std::cout << "GaussianMixtureFactor" << std::endl;
std::cout << "HybridGaussianFactor" << std::endl;
HybridFactor::print("", formatter);
std::cout << "{\n";
if (factors_.empty()) {
@ -78,13 +78,13 @@ void GaussianMixtureFactor::print(const std::string &s,
}
/* *******************************************************************************/
GaussianMixtureFactor::sharedFactor GaussianMixtureFactor::operator()(
HybridGaussianFactor::sharedFactor HybridGaussianFactor::operator()(
const DiscreteValues &assignment) const {
return factors_(assignment);
}
/* *******************************************************************************/
GaussianFactorGraphTree GaussianMixtureFactor::add(
GaussianFactorGraphTree HybridGaussianFactor::add(
const GaussianFactorGraphTree &sum) const {
using Y = GaussianFactorGraph;
auto add = [](const Y &graph1, const Y &graph2) {
@ -97,14 +97,14 @@ GaussianFactorGraphTree GaussianMixtureFactor::add(
}
/* *******************************************************************************/
GaussianFactorGraphTree GaussianMixtureFactor::asGaussianFactorGraphTree()
GaussianFactorGraphTree HybridGaussianFactor::asGaussianFactorGraphTree()
const {
auto wrap = [](const sharedFactor &gf) { return GaussianFactorGraph{gf}; };
return {factors_, wrap};
}
/* *******************************************************************************/
AlgebraicDecisionTree<Key> GaussianMixtureFactor::errorTree(
AlgebraicDecisionTree<Key> HybridGaussianFactor::errorTree(
const VectorValues &continuousValues) const {
// functor to convert from sharedFactor to double error value.
auto errorFunc = [&continuousValues](const sharedFactor &gf) {
@ -115,7 +115,7 @@ AlgebraicDecisionTree<Key> GaussianMixtureFactor::errorTree(
}
/* *******************************************************************************/
double GaussianMixtureFactor::error(const HybridValues &values) const {
double HybridGaussianFactor::error(const HybridValues &values) const {
const sharedFactor gf = factors_(values.discrete());
return gf->error(values.continuous());
}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixtureFactor.h
* @file HybridGaussianFactor.h
* @brief A set of GaussianFactors, indexed by a set of discrete keys.
* @author Fan Jiang
* @author Varun Agrawal
@ -44,10 +44,10 @@ class VectorValues;
*
* @ingroup hybrid
*/
class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
public:
using Base = HybridFactor;
using This = GaussianMixtureFactor;
using This = HybridGaussianFactor;
using shared_ptr = std::shared_ptr<This>;
using sharedFactor = std::shared_ptr<GaussianFactor>;
@ -72,7 +72,7 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
/// @{
/// Default constructor, mainly for serialization.
GaussianMixtureFactor() = default;
HybridGaussianFactor() = default;
/**
* @brief Construct a new Gaussian mixture factor.
@ -83,23 +83,23 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* @param factors The decision tree of Gaussian factors stored
* as the mixture density.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors);
HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors);
/**
* @brief Construct a new GaussianMixtureFactor object using a vector of
* @brief Construct a new HybridGaussianFactor object using a vector of
* GaussianFactor shared pointers.
*
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors)
: GaussianMixtureFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors)
: HybridGaussianFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
/// @}
/// @name Testable
@ -128,7 +128,7 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
GaussianFactorGraphTree add(const GaussianFactorGraphTree &sum) const;
/**
* @brief Compute error of the GaussianMixtureFactor as a tree.
* @brief Compute error of the HybridGaussianFactor as a tree.
*
* @param continuousValues The continuous VectorValues.
* @return AlgebraicDecisionTree<Key> A decision tree with the same keys
@ -146,9 +146,9 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
/// Getter for GaussianFactor decision tree
const Factors &factors() const { return factors_; }
/// Add MixtureFactor to a Sum, syntactic sugar.
/// Add HybridNonlinearFactor to a Sum, syntactic sugar.
friend GaussianFactorGraphTree &operator+=(
GaussianFactorGraphTree &sum, const GaussianMixtureFactor &factor) {
GaussianFactorGraphTree &sum, const HybridGaussianFactor &factor) {
sum = factor.add(sum);
return sum;
}
@ -168,7 +168,6 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
// traits
template <>
struct traits<GaussianMixtureFactor> : public Testable<GaussianMixtureFactor> {
};
struct traits<HybridGaussianFactor> : public Testable<HybridGaussianFactor> {};
} // namespace gtsam

View File

@ -23,11 +23,11 @@
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteJunctionTree.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridJunctionTree.h>
#include <gtsam/inference/EliminateableFactorGraph-inst.h>
@ -92,7 +92,7 @@ void HybridGaussianFactorGraph::printErrors(
// Clear the stringstream
ss.str(std::string());
if (auto gmf = std::dynamic_pointer_cast<GaussianMixtureFactor>(factor)) {
if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
@ -178,9 +178,9 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
// TODO(dellaert): just use a virtual method defined in HybridFactor.
if (auto gf = dynamic_pointer_cast<GaussianFactor>(f)) {
result = addGaussian(result, gf);
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
} else if (auto gmf = dynamic_pointer_cast<HybridGaussianFactor>(f)) {
result = gmf->add(result);
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
result = gm->add(result);
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
if (auto gm = hc->asMixture()) {
@ -258,8 +258,8 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
for (auto &f : factors) {
if (auto df = dynamic_pointer_cast<DiscreteFactor>(f)) {
dfg.push_back(df);
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
// Case where we have a GaussianMixtureFactor with no continuous keys.
} else if (auto gmf = dynamic_pointer_cast<HybridGaussianFactor>(f)) {
// Case where we have a HybridGaussianFactor with no continuous keys.
// In this case, compute discrete probabilities.
auto logProbability =
[&](const GaussianFactor::shared_ptr &factor) -> double {
@ -309,7 +309,7 @@ GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
/* ************************************************************************ */
using Result = std::pair<std::shared_ptr<GaussianConditional>,
GaussianMixtureFactor::sharedFactor>;
HybridGaussianFactor::sharedFactor>;
/**
* Compute the probability p(μ;m) = exp(-error(μ;m)) * sqrt(det(2π Σ_m)
@ -341,9 +341,9 @@ static std::shared_ptr<Factor> createDiscreteFactor(
return std::make_shared<DecisionTreeFactor>(discreteSeparator, probabilities);
}
// Create GaussianMixtureFactor on the separator, taking care to correct
// Create HybridGaussianFactor on the separator, taking care to correct
// for conditional constants.
static std::shared_ptr<Factor> createGaussianMixtureFactor(
static std::shared_ptr<Factor> createHybridGaussianFactor(
const DecisionTree<Key, Result> &eliminationResults,
const KeyVector &continuousSeparator,
const DiscreteKeys &discreteSeparator) {
@ -362,8 +362,8 @@ static std::shared_ptr<Factor> createGaussianMixtureFactor(
DecisionTree<Key, GaussianFactor::shared_ptr> newFactors(eliminationResults,
correct);
return std::make_shared<GaussianMixtureFactor>(continuousSeparator,
discreteSeparator, newFactors);
return std::make_shared<HybridGaussianFactor>(continuousSeparator,
discreteSeparator, newFactors);
}
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
@ -400,18 +400,18 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
// If there are no more continuous parents we create a DiscreteFactor with the
// error for each discrete choice. Otherwise, create a GaussianMixtureFactor
// error for each discrete choice. Otherwise, create a HybridGaussianFactor
// on the separator, taking care to correct for conditional constants.
auto newFactor =
continuousSeparator.empty()
? createDiscreteFactor(eliminationResults, discreteSeparator)
: createGaussianMixtureFactor(eliminationResults, continuousSeparator,
discreteSeparator);
: createHybridGaussianFactor(eliminationResults, continuousSeparator,
discreteSeparator);
// Create the GaussianMixture from the conditionals
GaussianMixture::Conditionals conditionals(
// Create the HybridGaussianConditional from the conditionals
HybridGaussianConditional::Conditionals conditionals(
eliminationResults, [](const Result &pair) { return pair.first; });
auto gaussianMixture = std::make_shared<GaussianMixture>(
auto gaussianMixture = std::make_shared<HybridGaussianConditional>(
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
return {std::make_shared<HybridConditional>(gaussianMixture), newFactor};
@ -458,7 +458,7 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
// Because of all these reasons, we carefully consider how to
// implement the hybrid factors so that we do not get poor performance.
// The first thing is how to represent the GaussianMixture.
// The first thing is how to represent the HybridGaussianConditional.
// A very possible scenario is that the incoming factors will have different
// levels of discrete keys. For example, imagine we are going to eliminate the
// fragment: $\phi(x1,c1,c2)$, $\phi(x1,c2,c3)$, which is perfectly valid.
@ -549,7 +549,7 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::errorTree(
f = hc->inner();
}
if (auto gaussianMixture = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
if (auto gaussianMixture = dynamic_pointer_cast<HybridGaussianFactor>(f)) {
// Compute factor error and add it.
error_tree = error_tree + gaussianMixture->errorTree(continuousValues);
} else if (auto gaussian = dynamic_pointer_cast<GaussianFactor>(f)) {
@ -597,9 +597,9 @@ GaussianFactorGraph HybridGaussianFactorGraph::operator()(
gfg.push_back(gf);
} else if (auto gc = std::dynamic_pointer_cast<GaussianConditional>(f)) {
gfg.push_back(gf);
} else if (auto gmf = std::dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
} else if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
gfg.push_back((*gmf)(assignment));
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
gfg.push_back((*gm)(assignment));
} else {
continue;

View File

@ -18,9 +18,9 @@
#pragma once
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/inference/EliminateableFactorGraph.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Ordering.h>
@ -221,7 +221,6 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
/// Get the GaussianFactorGraph at a given discrete assignment.
GaussianFactorGraph operator()(const DiscreteValues& assignment) const;
};
} // namespace gtsam

View File

@ -51,11 +51,10 @@ class HybridEliminationTree;
*/
class GTSAM_EXPORT HybridJunctionTree
: public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> {
public:
typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>
Base; ///< Base class
typedef HybridJunctionTree This; ///< This class
Base; ///< Base class
typedef HybridJunctionTree This; ///< This class
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
/**

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file MixtureFactor.h
* @file HybridNonlinearFactor.h
* @brief Nonlinear Mixture factor of continuous and discrete.
* @author Kevin Doherty, kdoherty@mit.edu
* @author Varun Agrawal
@ -20,7 +20,7 @@
#pragma once
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
@ -44,11 +44,11 @@ namespace gtsam {
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
* the correct operation.
*/
class MixtureFactor : public HybridFactor {
class HybridNonlinearFactor : public HybridFactor {
public:
using Base = HybridFactor;
using This = MixtureFactor;
using shared_ptr = std::shared_ptr<MixtureFactor>;
using This = HybridNonlinearFactor;
using shared_ptr = std::shared_ptr<HybridNonlinearFactor>;
using sharedFactor = std::shared_ptr<NonlinearFactor>;
/**
@ -63,7 +63,7 @@ class MixtureFactor : public HybridFactor {
bool normalized_;
public:
MixtureFactor() = default;
HybridNonlinearFactor() = default;
/**
* @brief Construct from Decision tree.
@ -74,8 +74,8 @@ class MixtureFactor : public HybridFactor {
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const Factors& factors, bool normalized = false)
HybridNonlinearFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const Factors& factors, bool normalized = false)
: Base(keys, discreteKeys), factors_(factors), normalized_(normalized) {}
/**
@ -95,9 +95,9 @@ class MixtureFactor : public HybridFactor {
* normalized.
*/
template <typename FACTOR>
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const std::vector<std::shared_ptr<FACTOR>>& factors,
bool normalized = false)
HybridNonlinearFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const std::vector<std::shared_ptr<FACTOR>>& factors,
bool normalized = false)
: Base(keys, discreteKeys), normalized_(normalized) {
std::vector<NonlinearFactor::shared_ptr> nonlinear_factors;
KeySet continuous_keys_set(keys.begin(), keys.end());
@ -111,7 +111,7 @@ class MixtureFactor : public HybridFactor {
nonlinear_factors.push_back(nf);
} else {
throw std::runtime_error(
"Factors passed into MixtureFactor need to be nonlinear!");
"Factors passed into HybridNonlinearFactor need to be nonlinear!");
}
}
factors_ = Factors(discreteKeys, nonlinear_factors);
@ -124,7 +124,7 @@ class MixtureFactor : public HybridFactor {
}
/**
* @brief Compute error of the MixtureFactor as a tree.
* @brief Compute error of the HybridNonlinearFactor as a tree.
*
* @param continuousValues The continuous values for which to compute the
* error.
@ -188,7 +188,7 @@ class MixtureFactor : public HybridFactor {
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << (s.empty() ? "" : s + " ");
Base::print("", keyFormatter);
std::cout << "\nMixtureFactor\n";
std::cout << "\nHybridNonlinearFactor\n";
auto valueFormatter = [](const sharedFactor& v) {
if (v) {
return "Nonlinear factor on " + std::to_string(v->size()) + " keys";
@ -201,15 +201,16 @@ class MixtureFactor : public HybridFactor {
/// Check equality
bool equals(const HybridFactor& other, double tol = 1e-9) const override {
// We attempt a dynamic cast from HybridFactor to MixtureFactor. If it
// fails, return false.
if (!dynamic_cast<const MixtureFactor*>(&other)) return false;
// We attempt a dynamic cast from HybridFactor to HybridNonlinearFactor. If
// it fails, return false.
if (!dynamic_cast<const HybridNonlinearFactor*>(&other)) return false;
// If the cast is successful, we'll properly construct a MixtureFactor
// object from `other`
const MixtureFactor& f(static_cast<const MixtureFactor&>(other));
// If the cast is successful, we'll properly construct a
// HybridNonlinearFactor object from `other`
const HybridNonlinearFactor& f(
static_cast<const HybridNonlinearFactor&>(other));
// Ensure that this MixtureFactor and `f` have the same `factors_`.
// Ensure that this HybridNonlinearFactor and `f` have the same `factors_`.
auto compare = [tol](const sharedFactor& a, const sharedFactor& b) {
return traits<NonlinearFactor>::Equals(*a, *b, tol);
};
@ -233,8 +234,8 @@ class MixtureFactor : public HybridFactor {
return factor->linearize(continuousValues);
}
/// Linearize all the continuous factors to get a GaussianMixtureFactor.
std::shared_ptr<GaussianMixtureFactor> linearize(
/// Linearize all the continuous factors to get a HybridGaussianFactor.
std::shared_ptr<HybridGaussianFactor> linearize(
const Values& continuousValues) const {
// functional to linearize each factor in the decision tree
auto linearizeDT = [continuousValues](const sharedFactor& factor) {
@ -244,7 +245,7 @@ class MixtureFactor : public HybridFactor {
DecisionTree<Key, GaussianFactor::shared_ptr> linearized_factors(
factors_, linearizeDT);
return std::make_shared<GaussianMixtureFactor>(
return std::make_shared<HybridGaussianFactor>(
continuousKeys_, discreteKeys_, linearized_factors);
}

View File

@ -18,10 +18,10 @@
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
@ -59,7 +59,7 @@ void HybridNonlinearFactorGraph::printErrors(
// Clear the stringstream
ss.str(std::string());
if (auto mf = std::dynamic_pointer_cast<MixtureFactor>(factor)) {
if (auto mf = std::dynamic_pointer_cast<HybridNonlinearFactor>(factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
@ -70,7 +70,7 @@ void HybridNonlinearFactorGraph::printErrors(
std::cout << std::endl;
}
} else if (auto gmf =
std::dynamic_pointer_cast<GaussianMixtureFactor>(factor)) {
std::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
@ -80,7 +80,8 @@ void HybridNonlinearFactorGraph::printErrors(
gmf->errorTree(values.continuous()).print("", keyFormatter);
std::cout << std::endl;
}
} else if (auto gm = std::dynamic_pointer_cast<GaussianMixture>(factor)) {
} else if (auto gm = std::dynamic_pointer_cast<HybridGaussianConditional>(
factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
@ -151,8 +152,8 @@ HybridGaussianFactorGraph::shared_ptr HybridNonlinearFactorGraph::linearize(
continue;
}
// Check if it is a nonlinear mixture factor
if (auto mf = dynamic_pointer_cast<MixtureFactor>(f)) {
const GaussianMixtureFactor::shared_ptr& gmf =
if (auto mf = dynamic_pointer_cast<HybridNonlinearFactor>(f)) {
const HybridGaussianFactor::shared_ptr& gmf =
mf->linearize(continuousValues);
linearFG->push_back(gmf);
} else if (auto nlf = dynamic_pointer_cast<NonlinearFactor>(f)) {
@ -161,9 +162,9 @@ HybridGaussianFactorGraph::shared_ptr HybridNonlinearFactorGraph::linearize(
} else if (dynamic_pointer_cast<DiscreteFactor>(f)) {
// If discrete-only: doesn't need linearization.
linearFG->push_back(f);
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
} else if (auto gmf = dynamic_pointer_cast<HybridGaussianFactor>(f)) {
linearFG->push_back(gmf);
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
linearFG->push_back(gm);
} else if (dynamic_pointer_cast<GaussianFactor>(f)) {
linearFG->push_back(f);

View File

@ -19,6 +19,7 @@
#include <gtsam/hybrid/HybridGaussianISAM.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <optional>
namespace gtsam {

View File

@ -138,7 +138,7 @@ HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
}
/* ************************************************************************* */
GaussianMixture::shared_ptr HybridSmoother::gaussianMixture(
HybridGaussianConditional::shared_ptr HybridSmoother::gaussianMixture(
size_t index) const {
return hybridBayesNet_.at(index)->asMixture();
}

View File

@ -69,7 +69,7 @@ class GTSAM_EXPORT HybridSmoother {
const HybridBayesNet& hybridBayesNet, const Ordering& ordering) const;
/// Get the Gaussian Mixture from the Bayes Net posterior at `index`.
GaussianMixture::shared_ptr gaussianMixture(size_t index) const;
HybridGaussianConditional::shared_ptr gaussianMixture(size_t index) const;
/// Return the Bayes Net posterior.
const HybridBayesNet& hybridBayesNet() const;

View File

@ -10,26 +10,26 @@ class HybridValues {
gtsam::DiscreteValues discrete() const;
HybridValues();
HybridValues(const gtsam::VectorValues &cv, const gtsam::DiscreteValues &dv);
HybridValues(const gtsam::VectorValues& cv, const gtsam::DiscreteValues& dv);
void print(string s = "HybridValues",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::HybridValues& other, double tol) const;
void insert(gtsam::Key j, int value);
void insert(gtsam::Key j, const gtsam::Vector& value);
void insert_or_assign(gtsam::Key j, const gtsam::Vector& value);
void insert_or_assign(gtsam::Key j, size_t value);
void insert(const gtsam::VectorValues& values);
void insert(const gtsam::DiscreteValues& values);
void insert(const gtsam::HybridValues& values);
void update(const gtsam::VectorValues& values);
void update(const gtsam::DiscreteValues& values);
void update(const gtsam::HybridValues& values);
size_t& atDiscrete(gtsam::Key j);
gtsam::Vector& at(gtsam::Key j);
};
@ -42,7 +42,7 @@ virtual class HybridFactor : gtsam::Factor {
bool equals(const gtsam::HybridFactor& other, double tol = 1e-9) const;
// Standard interface:
double error(const gtsam::HybridValues &values) const;
double error(const gtsam::HybridValues& values) const;
bool isDiscrete() const;
bool isContinuous() const;
bool isHybrid() const;
@ -65,39 +65,40 @@ virtual class HybridConditional {
double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const;
double operator()(const gtsam::HybridValues& values) const;
gtsam::GaussianMixture* asMixture() const;
gtsam::HybridGaussianConditional* asMixture() const;
gtsam::GaussianConditional* asGaussian() const;
gtsam::DiscreteConditional* asDiscrete() const;
gtsam::Factor* inner();
double error(const gtsam::HybridValues& values) const;
};
#include <gtsam/hybrid/GaussianMixtureFactor.h>
class GaussianMixtureFactor : gtsam::HybridFactor {
GaussianMixtureFactor(
#include <gtsam/hybrid/HybridGaussianFactor.h>
class HybridGaussianFactor : gtsam::HybridFactor {
HybridGaussianFactor(
const gtsam::KeyVector& continuousKeys,
const gtsam::DiscreteKeys& discreteKeys,
const std::vector<gtsam::GaussianFactor::shared_ptr>& factorsList);
void print(string s = "GaussianMixtureFactor\n",
void print(string s = "HybridGaussianFactor\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
#include <gtsam/hybrid/GaussianMixture.h>
class GaussianMixture : gtsam::HybridFactor {
GaussianMixture(const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
conditionalsList);
#include <gtsam/hybrid/HybridGaussianConditional.h>
class HybridGaussianConditional : gtsam::HybridFactor {
HybridGaussianConditional(
const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
conditionalsList);
gtsam::GaussianMixtureFactor* likelihood(
gtsam::HybridGaussianFactor* likelihood(
const gtsam::VectorValues& frontals) const;
double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const;
void print(string s = "GaussianMixture\n",
void print(string s = "HybridGaussianConditional\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
@ -131,7 +132,7 @@ class HybridBayesTree {
#include <gtsam/hybrid/HybridBayesNet.h>
class HybridBayesNet {
HybridBayesNet();
void push_back(const gtsam::GaussianMixture* s);
void push_back(const gtsam::HybridGaussianConditional* s);
void push_back(const gtsam::GaussianConditional* s);
void push_back(const gtsam::DiscreteConditional* s);
@ -139,7 +140,7 @@ class HybridBayesNet {
size_t size() const;
gtsam::KeySet keys() const;
const gtsam::HybridConditional* at(size_t i) const;
// Standard interface:
double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const;
@ -149,7 +150,7 @@ class HybridBayesNet {
const gtsam::VectorValues& measurements) const;
gtsam::HybridValues optimize() const;
gtsam::HybridValues sample(const gtsam::HybridValues &given) const;
gtsam::HybridValues sample(const gtsam::HybridValues& given) const;
gtsam::HybridValues sample() const;
void print(string s = "HybridBayesNet\n",
@ -177,7 +178,7 @@ class HybridGaussianFactorGraph {
void push_back(const gtsam::HybridGaussianFactorGraph& graph);
void push_back(const gtsam::HybridBayesNet& bayesNet);
void push_back(const gtsam::HybridBayesTree& bayesTree);
void push_back(const gtsam::GaussianMixtureFactor* gmm);
void push_back(const gtsam::HybridGaussianFactor* gmm);
void push_back(gtsam::DecisionTreeFactor* factor);
void push_back(gtsam::TableFactor* factor);
void push_back(gtsam::JacobianFactor* factor);
@ -189,7 +190,8 @@ class HybridGaussianFactorGraph {
const gtsam::HybridFactor* at(size_t i) const;
void print(string s = "") const;
bool equals(const gtsam::HybridGaussianFactorGraph& fg, double tol = 1e-9) const;
bool equals(const gtsam::HybridGaussianFactorGraph& fg,
double tol = 1e-9) const;
// evaluation
double error(const gtsam::HybridValues& values) const;
@ -222,7 +224,8 @@ class HybridNonlinearFactorGraph {
void push_back(gtsam::HybridFactor* factor);
void push_back(gtsam::NonlinearFactor* factor);
void push_back(gtsam::DiscreteFactor* factor);
gtsam::HybridGaussianFactorGraph linearize(const gtsam::Values& continuousValues) const;
gtsam::HybridGaussianFactorGraph linearize(
const gtsam::Values& continuousValues) const;
bool empty() const;
void remove(size_t i);
@ -231,32 +234,32 @@ class HybridNonlinearFactorGraph {
const gtsam::HybridFactor* at(size_t i) const;
void print(string s = "HybridNonlinearFactorGraph\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
#include <gtsam/hybrid/MixtureFactor.h>
class MixtureFactor : gtsam::HybridFactor {
MixtureFactor(
#include <gtsam/hybrid/HybridNonlinearFactor.h>
class HybridNonlinearFactor : gtsam::HybridFactor {
HybridNonlinearFactor(
const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
const gtsam::DecisionTree<gtsam::Key, gtsam::NonlinearFactor*>& factors,
bool normalized = false);
template <FACTOR = {gtsam::NonlinearFactor}>
MixtureFactor(const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
const std::vector<FACTOR*>& factors,
bool normalized = false);
HybridNonlinearFactor(const gtsam::KeyVector& keys,
const gtsam::DiscreteKeys& discreteKeys,
const std::vector<FACTOR*>& factors,
bool normalized = false);
double error(const gtsam::Values& continuousValues,
const gtsam::DiscreteValues& discreteValues) const;
double nonlinearFactorLogNormalizingConstant(const gtsam::NonlinearFactor* factor,
const gtsam::Values& values) const;
double nonlinearFactorLogNormalizingConstant(
const gtsam::NonlinearFactor* factor, const gtsam::Values& values) const;
GaussianMixtureFactor* linearize(
const gtsam::Values& continuousValues) const;
HybridGaussianFactor* linearize(const gtsam::Values& continuousValues) const;
void print(string s = "MixtureFactor\n",
void print(string s = "HybridNonlinearFactor\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};

View File

@ -19,10 +19,10 @@
#include <gtsam/base/Matrix.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h>
@ -57,12 +57,12 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
// keyFunc(1) to keyFunc(n+1)
for (size_t t = 1; t < n; t++) {
hfg.add(GaussianMixtureFactor(
hfg.add(HybridGaussianFactor(
{keyFunc(t), keyFunc(t + 1)}, {{dKeyFunc(t), 2}},
{std::make_shared<JacobianFactor>(keyFunc(t), I_3x3, keyFunc(t + 1),
I_3x3, Z_3x1),
I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(keyFunc(t), I_3x3, keyFunc(t + 1),
I_3x3, Vector3::Ones())}));
I_3x3, Vector3::Ones())}));
if (t > 1) {
hfg.add(DecisionTreeFactor({{dKeyFunc(t - 1), 2}, {dKeyFunc(t), 2}},
@ -163,7 +163,7 @@ struct Switching {
for (auto &&f : motion_models) {
components.push_back(std::dynamic_pointer_cast<NonlinearFactor>(f));
}
nonlinearFactorGraph.emplace_shared<MixtureFactor>(
nonlinearFactorGraph.emplace_shared<HybridNonlinearFactor>(
keys, DiscreteKeys{modes[k]}, components);
}

View File

@ -43,7 +43,7 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
// Create Gaussian mixture z_i = x0 + noise for each measurement.
for (size_t i = 0; i < num_measurements; i++) {
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
bayesNet.emplace_shared<GaussianMixture>(
bayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(i)}, KeyVector{X(0)}, DiscreteKeys{mode_i},
std::vector{GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0),
Z_1x1, 0.5),

View File

@ -107,7 +107,7 @@ TEST(HybridBayesNet, evaluateHybrid) {
// Create hybrid Bayes net.
HybridBayesNet bayesNet;
bayesNet.push_back(continuousConditional);
bayesNet.emplace_shared<GaussianMixture>(
bayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
std::vector{conditional0, conditional1});
bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
@ -168,7 +168,7 @@ TEST(HybridBayesNet, Error) {
conditional1 = std::make_shared<GaussianConditional>(
X(1), Vector1::Constant(2), I_1x1, model1);
auto gm = std::make_shared<GaussianMixture>(
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
std::vector{conditional0, conditional1});
// Create hybrid Bayes net.
@ -389,7 +389,7 @@ TEST(HybridBayesNet, Sampling) {
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
std::vector<NonlinearFactor::shared_ptr> factors = {zero_motion, one_motion};
nfg.emplace_shared<PriorFactor<double>>(X(0), 0.0, noise_model);
nfg.emplace_shared<MixtureFactor>(
nfg.emplace_shared<HybridNonlinearFactor>(
KeyVector{X(0), X(1)}, DiscreteKeys{DiscreteKey(M(0), 2)}, factors);
DiscreteKey mode(M(0), 2);

View File

@ -43,9 +43,9 @@ TEST(HybridConditional, Invariants) {
auto hc0 = bn.at(0);
CHECK(hc0->isHybrid());
// Check invariants as a GaussianMixture.
// Check invariants as a HybridGaussianConditional.
const auto mixture = hc0->asMixture();
EXPECT(GaussianMixture::CheckInvariants(*mixture, values));
EXPECT(HybridGaussianConditional::CheckInvariants(*mixture, values));
// Check invariants as a HybridConditional.
EXPECT(HybridConditional::CheckInvariants(*hc0, values));

View File

@ -19,10 +19,10 @@
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearISAM.h>
#include <gtsam/hybrid/HybridSmoother.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianBayesTree.h>
@ -435,7 +435,7 @@ static HybridNonlinearFactorGraph createHybridNonlinearFactorGraph() {
std::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
const auto one_motion =
std::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
nfg.emplace_shared<MixtureFactor>(
nfg.emplace_shared<HybridNonlinearFactor>(
KeyVector{X(0), X(1)}, DiscreteKeys{m},
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
@ -531,10 +531,10 @@ TEST(HybridEstimation, CorrectnessViaSampling) {
* Helper function to add the constant term corresponding to
* the difference in noise models.
*/
std::shared_ptr<GaussianMixtureFactor> mixedVarianceFactor(
const MixtureFactor& mf, const Values& initial, const Key& mode,
std::shared_ptr<HybridGaussianFactor> mixedVarianceFactor(
const HybridNonlinearFactor& mf, const Values& initial, const Key& mode,
double noise_tight, double noise_loose, size_t d, size_t tight_index) {
GaussianMixtureFactor::shared_ptr gmf = mf.linearize(initial);
HybridGaussianFactor::shared_ptr gmf = mf.linearize(initial);
constexpr double log2pi = 1.8378770664093454835606594728112;
// logConstant will be of the tighter model
@ -560,7 +560,7 @@ std::shared_ptr<GaussianMixtureFactor> mixedVarianceFactor(
}
};
auto updated_components = gmf->factors().apply(func);
auto updated_gmf = std::make_shared<GaussianMixtureFactor>(
auto updated_gmf = std::make_shared<HybridGaussianFactor>(
gmf->continuousKeys(), gmf->discreteKeys(), updated_components);
return updated_gmf;
@ -592,7 +592,7 @@ TEST(HybridEstimation, ModeSelection) {
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
KeyVector keys = {X(0), X(1)};
MixtureFactor mf(keys, modes, components);
HybridNonlinearFactor mf(keys, modes, components);
initial.insert(X(0), 0.0);
initial.insert(X(1), 0.0);
@ -616,7 +616,7 @@ TEST(HybridEstimation, ModeSelection) {
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(0), Z_1x1, 0.1));
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(1), Z_1x1, 0.1));
bn.emplace_shared<GaussianMixture>(
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
std::vector{GaussianConditional::sharedMeanAndStddev(
Z(0), I_1x1, X(0), -I_1x1, X(1), Z_1x1, noise_loose),
@ -647,7 +647,7 @@ TEST(HybridEstimation, ModeSelection2) {
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(0), Z_3x1, 0.1));
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(1), Z_3x1, 0.1));
bn.emplace_shared<GaussianMixture>(
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
std::vector{GaussianConditional::sharedMeanAndStddev(
Z(0), I_3x3, X(0), -I_3x3, X(1), Z_3x1, noise_loose),
@ -683,7 +683,7 @@ TEST(HybridEstimation, ModeSelection2) {
std::vector<NonlinearFactor::shared_ptr> components = {model0, model1};
KeyVector keys = {X(0), X(1)};
MixtureFactor mf(keys, modes, components);
HybridNonlinearFactor mf(keys, modes, components);
initial.insert<Vector3>(X(0), Z_3x1);
initial.insert<Vector3>(X(1), Z_3x1);

View File

@ -55,7 +55,7 @@ TEST(HybridFactorGraph, Keys) {
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
hfg.add(HybridGaussianFactor({X(1)}, {m1}, dt));
KeySet expected_continuous{X(0), X(1)};
EXPECT(

View File

@ -10,8 +10,8 @@
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixture.cpp
* @brief Unit tests for GaussianMixture class
* @file testHybridGaussianConditional.cpp
* @brief Unit tests for HybridGaussianConditional class
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
@ -19,8 +19,8 @@
*/
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
@ -45,19 +45,19 @@ static const HybridValues hv1{vv, assignment1};
/* ************************************************************************* */
namespace equal_constants {
// Create a simple GaussianMixture
// Create a simple HybridGaussianConditional
const double commonSigma = 2.0;
const std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma)};
const GaussianMixture mixture({Z(0)}, {X(0)}, {mode}, conditionals);
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
} // namespace equal_constants
/* ************************************************************************* */
/// Check that invariants hold
TEST(GaussianMixture, Invariants) {
TEST(HybridGaussianConditional, Invariants) {
using namespace equal_constants;
// Check that the mixture normalization constant is the max of all constants
@ -66,13 +66,13 @@ TEST(GaussianMixture, Invariants) {
EXPECT_DOUBLES_EQUAL(K, conditionals[0]->logNormalizationConstant(), 1e-8);
EXPECT_DOUBLES_EQUAL(K, conditionals[1]->logNormalizationConstant(), 1e-8);
EXPECT(GaussianMixture::CheckInvariants(mixture, hv0));
EXPECT(GaussianMixture::CheckInvariants(mixture, hv1));
EXPECT(HybridGaussianConditional::CheckInvariants(mixture, hv0));
EXPECT(HybridGaussianConditional::CheckInvariants(mixture, hv1));
}
/* ************************************************************************* */
/// Check LogProbability.
TEST(GaussianMixture, LogProbability) {
TEST(HybridGaussianConditional, LogProbability) {
using namespace equal_constants;
auto actual = mixture.logProbability(vv);
@ -94,7 +94,7 @@ TEST(GaussianMixture, LogProbability) {
/* ************************************************************************* */
/// Check error.
TEST(GaussianMixture, Error) {
TEST(HybridGaussianConditional, Error) {
using namespace equal_constants;
auto actual = mixture.errorTree(vv);
@ -117,7 +117,7 @@ TEST(GaussianMixture, Error) {
/* ************************************************************************* */
/// Check that the likelihood is proportional to the conditional density given
/// the measurements.
TEST(GaussianMixture, Likelihood) {
TEST(HybridGaussianConditional, Likelihood) {
using namespace equal_constants;
// Compute likelihood
@ -146,19 +146,19 @@ TEST(GaussianMixture, Likelihood) {
/* ************************************************************************* */
namespace mode_dependent_constants {
// Create a GaussianMixture with mode-dependent noise models.
// Create a HybridGaussianConditional with mode-dependent noise models.
// 0 is low-noise, 1 is high-noise.
const std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
0.5),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
3.0)};
const GaussianMixture mixture({Z(0)}, {X(0)}, {mode}, conditionals);
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
} // namespace mode_dependent_constants
/* ************************************************************************* */
// Create a test for continuousParents.
TEST(GaussianMixture, ContinuousParents) {
TEST(HybridGaussianConditional, ContinuousParents) {
using namespace mode_dependent_constants;
const KeyVector continuousParentKeys = mixture.continuousParents();
// Check that the continuous parent keys are correct:
@ -169,7 +169,7 @@ TEST(GaussianMixture, ContinuousParents) {
/* ************************************************************************* */
/// Check that the likelihood is proportional to the conditional density given
/// the measurements.
TEST(GaussianMixture, Likelihood2) {
TEST(HybridGaussianConditional, Likelihood2) {
using namespace mode_dependent_constants;
// Compute likelihood

View File

@ -10,8 +10,8 @@
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixtureFactor.cpp
* @brief Unit tests for GaussianMixtureFactor
* @file testHybridGaussianFactor.cpp
* @brief Unit tests for HybridGaussianFactor
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
@ -22,9 +22,9 @@
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
@ -46,17 +46,17 @@ using symbol_shorthand::Z;
/* ************************************************************************* */
// Check iterators of empty mixture.
TEST(GaussianMixtureFactor, Constructor) {
GaussianMixtureFactor factor;
GaussianMixtureFactor::const_iterator const_it = factor.begin();
TEST(HybridGaussianFactor, Constructor) {
HybridGaussianFactor factor;
HybridGaussianFactor::const_iterator const_it = factor.begin();
CHECK(const_it == factor.end());
GaussianMixtureFactor::iterator it = factor.begin();
HybridGaussianFactor::iterator it = factor.begin();
CHECK(it == factor.end());
}
/* ************************************************************************* */
// "Add" two mixture factors together.
TEST(GaussianMixtureFactor, Sum) {
TEST(HybridGaussianFactor, Sum) {
DiscreteKey m1(1, 2), m2(2, 3);
auto A1 = Matrix::Zero(2, 1);
@ -77,8 +77,8 @@ TEST(GaussianMixtureFactor, Sum) {
// TODO(Frank): why specify keys at all? And: keys in factor should be *all*
// keys, deviating from Kevin's scheme. Should we index DT on DiscreteKey?
// Design review!
GaussianMixtureFactor mixtureFactorA({X(1), X(2)}, {m1}, factorsA);
GaussianMixtureFactor mixtureFactorB({X(1), X(3)}, {m2}, factorsB);
HybridGaussianFactor mixtureFactorA({X(1), X(2)}, {m1}, factorsA);
HybridGaussianFactor mixtureFactorB({X(1), X(3)}, {m2}, factorsB);
// Check that number of keys is 3
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
@ -102,7 +102,7 @@ TEST(GaussianMixtureFactor, Sum) {
}
/* ************************************************************************* */
TEST(GaussianMixtureFactor, Printing) {
TEST(HybridGaussianFactor, Printing) {
DiscreteKey m1(1, 2);
auto A1 = Matrix::Zero(2, 1);
auto A2 = Matrix::Zero(2, 2);
@ -111,10 +111,10 @@ TEST(GaussianMixtureFactor, Printing) {
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
std::vector<GaussianFactor::shared_ptr> factors{f10, f11};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
HybridGaussianFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
std::string expected =
R"(GaussianMixtureFactor
R"(HybridGaussianFactor
Hybrid [x1 x2; 1]{
Choice(1)
0 Leaf :
@ -147,7 +147,7 @@ Hybrid [x1 x2; 1]{
}
/* ************************************************************************* */
TEST(GaussianMixtureFactor, GaussianMixture) {
TEST(HybridGaussianFactor, HybridGaussianConditional) {
KeyVector keys;
keys.push_back(X(0));
keys.push_back(X(1));
@ -157,15 +157,15 @@ TEST(GaussianMixtureFactor, GaussianMixture) {
dKeys.emplace_back(M(1), 2);
auto gaussians = std::make_shared<GaussianConditional>();
GaussianMixture::Conditionals conditionals(gaussians);
GaussianMixture gm({}, keys, dKeys, conditionals);
HybridGaussianConditional::Conditionals conditionals(gaussians);
HybridGaussianConditional gm({}, keys, dKeys, conditionals);
EXPECT_LONGS_EQUAL(2, gm.discreteKeys().size());
}
/* ************************************************************************* */
// Test the error of the GaussianMixtureFactor
TEST(GaussianMixtureFactor, Error) {
// Test the error of the HybridGaussianFactor
TEST(HybridGaussianFactor, Error) {
DiscreteKey m1(1, 2);
auto A01 = Matrix2::Identity();
@ -180,7 +180,7 @@ TEST(GaussianMixtureFactor, Error) {
auto f1 = std::make_shared<JacobianFactor>(X(1), A11, X(2), A12, b);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
HybridGaussianFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
VectorValues continuousValues;
continuousValues.insert(X(1), Vector2(0, 0));
@ -232,8 +232,8 @@ static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1,
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
HybridBayesNet hbn;
hbn.emplace_shared<GaussianMixture>(KeyVector{z}, KeyVector{},
DiscreteKeys{m}, std::vector{c0, c1});
hbn.emplace_shared<HybridGaussianConditional>(
KeyVector{z}, KeyVector{}, DiscreteKeys{m}, std::vector{c0, c1});
auto mixing = make_shared<DiscreteConditional>(m, "50/50");
hbn.push_back(mixing);
@ -253,7 +253,7 @@ static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1,
* The resulting factor graph should eliminate to a Bayes net
* which represents a sigmoid function.
*/
TEST(GaussianMixtureFactor, GaussianMixtureModel) {
TEST(HybridGaussianFactor, GaussianMixtureModel) {
using namespace test_gmm;
double mu0 = 1.0, mu1 = 3.0;
@ -325,7 +325,7 @@ TEST(GaussianMixtureFactor, GaussianMixtureModel) {
* which represents a Gaussian-like function
* where m1>m0 close to 3.1333.
*/
TEST(GaussianMixtureFactor, GaussianMixtureModel2) {
TEST(HybridGaussianFactor, GaussianMixtureModel2) {
using namespace test_gmm;
double mu0 = 1.0, mu1 = 3.0;
@ -399,23 +399,21 @@ void addMeasurement(HybridBayesNet& hbn, Key z_key, Key x_key, double sigma) {
}
/// Create hybrid motion model p(x1 | x0, m1)
static GaussianMixture::shared_ptr CreateHybridMotionModel(double mu0,
double mu1,
double sigma0,
double sigma1) {
static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
double mu0, double mu1, double sigma0, double sigma1) {
auto model0 = noiseModel::Isotropic::Sigma(1, sigma0);
auto model1 = noiseModel::Isotropic::Sigma(1, sigma1);
auto c0 = make_shared<GaussianConditional>(X(1), Vector1(mu0), I_1x1, X(0),
-I_1x1, model0),
c1 = make_shared<GaussianConditional>(X(1), Vector1(mu1), I_1x1, X(0),
-I_1x1, model1);
return std::make_shared<GaussianMixture>(
return std::make_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{X(0)}, DiscreteKeys{m1}, std::vector{c0, c1});
}
/// Create two state Bayes network with 1 or two measurement models
HybridBayesNet CreateBayesNet(
const GaussianMixture::shared_ptr& hybridMotionModel,
const HybridGaussianConditional::shared_ptr& hybridMotionModel,
bool add_second_measurement = false) {
HybridBayesNet hbn;
@ -439,7 +437,7 @@ HybridBayesNet CreateBayesNet(
/// Approximate the discrete marginal P(m1) using importance sampling
std::pair<double, double> approximateDiscreteMarginal(
const HybridBayesNet& hbn,
const GaussianMixture::shared_ptr& hybridMotionModel,
const HybridGaussianConditional::shared_ptr& hybridMotionModel,
const VectorValues& given, size_t N = 100000) {
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
/// using q(x0) = N(z0, sigmaQ) to sample x0.
@ -478,7 +476,7 @@ std::pair<double, double> approximateDiscreteMarginal(
* the posterior probability of m1 should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(GaussianMixtureFactor, TwoStateModel) {
TEST(HybridGaussianFactor, TwoStateModel) {
using namespace test_two_state_estimation;
double mu0 = 1.0, mu1 = 3.0;
@ -534,7 +532,7 @@ TEST(GaussianMixtureFactor, TwoStateModel) {
* the P(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(GaussianMixtureFactor, TwoStateModel2) {
TEST(HybridGaussianFactor, TwoStateModel2) {
using namespace test_two_state_estimation;
double mu0 = 1.0, mu1 = 3.0;
@ -621,7 +619,7 @@ TEST(GaussianMixtureFactor, TwoStateModel2) {
* measurements and vastly different motion model: either stand still or move
* far. This yields a very informative posterior.
*/
TEST(GaussianMixtureFactor, TwoStateModel3) {
TEST(HybridGaussianFactor, TwoStateModel3) {
using namespace test_two_state_estimation;
double mu0 = 0.0, mu1 = 10.0;

View File

@ -21,12 +21,12 @@
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianISAM.h>
#include <gtsam/hybrid/HybridValues.h>
@ -71,13 +71,14 @@ TEST(HybridGaussianFactorGraph, Creation) {
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
// graph
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
GaussianMixture::Conditionals(
M(0),
std::make_shared<GaussianConditional>(
X(0), Z_3x1, I_3x3, X(1), I_3x3),
std::make_shared<GaussianConditional>(
X(0), Vector3::Ones(), I_3x3, X(1), I_3x3)));
HybridGaussianConditional gm(
{X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
HybridGaussianConditional::Conditionals(
M(0),
std::make_shared<GaussianConditional>(X(0), Z_3x1, I_3x3, X(1),
I_3x3),
std::make_shared<GaussianConditional>(X(0), Vector3::Ones(), I_3x3,
X(1), I_3x3)));
hfg.add(gm);
EXPECT_LONGS_EQUAL(2, hfg.size());
@ -129,7 +130,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
hfg.add(HybridGaussianFactor({X(1)}, {m1}, dt));
auto result = hfg.eliminateSequential();
@ -155,7 +156,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
std::vector<GaussianFactor::shared_ptr> factors = {
std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())};
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, factors));
hfg.add(HybridGaussianFactor({X(1)}, {m1}, factors));
// Discrete probability table for c1
hfg.add(DecisionTreeFactor(m1, {2, 8}));
@ -177,7 +178,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
hfg.add(GaussianMixtureFactor(
hfg.add(HybridGaussianFactor(
{X(1)}, {{M(1), 2}},
{std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
@ -212,7 +213,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
// Hybrid factor P(x1|c1)
hfg.add(GaussianMixtureFactor({X(1)}, {m}, dt));
hfg.add(HybridGaussianFactor({X(1)}, {m}, dt));
// Prior factor on c1
hfg.add(DecisionTreeFactor(m, {2, 8}));
@ -237,7 +238,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
{
hfg.add(GaussianMixtureFactor(
hfg.add(HybridGaussianFactor(
{X(0)}, {{M(0), 2}},
{std::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
@ -246,7 +247,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
M(1), std::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(2)}, {{M(1), 2}}, dt1));
hfg.add(HybridGaussianFactor({X(2)}, {{M(1), 2}}, dt1));
}
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
@ -259,13 +260,13 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
M(3), std::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(3)}, {{M(3), 2}}, dt));
hfg.add(HybridGaussianFactor({X(3)}, {{M(3), 2}}, dt));
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
M(2), std::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(5)}, {{M(2), 2}}, dt1));
hfg.add(HybridGaussianFactor({X(5)}, {{M(2), 2}}, dt1));
}
auto ordering_full =
@ -555,7 +556,7 @@ TEST(HybridGaussianFactorGraph, optimize) {
C(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
hfg.add(HybridGaussianFactor({X(1)}, {c1}, dt));
auto result = hfg.eliminateSequential();
@ -681,8 +682,8 @@ TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
x0, -I_1x1, model0),
c1 = make_shared<GaussianConditional>(f01, Vector1(mu), I_1x1, x1, I_1x1,
x0, -I_1x1, model1);
hbn.emplace_shared<GaussianMixture>(KeyVector{f01}, KeyVector{x0, x1},
DiscreteKeys{m1}, std::vector{c0, c1});
hbn.emplace_shared<HybridGaussianConditional>(
KeyVector{f01}, KeyVector{x0, x1}, DiscreteKeys{m1}, std::vector{c0, c1});
// Discrete uniform prior.
hbn.emplace_shared<DiscreteConditional>(m1, "0.5/0.5");
@ -717,7 +718,7 @@ TEST(HybridGaussianFactorGraph, assembleGraphTree) {
// Create expected decision tree with two factor graphs:
// Get mixture factor:
auto mixture = fg.at<GaussianMixtureFactor>(0);
auto mixture = fg.at<HybridGaussianFactor>(0);
CHECK(mixture);
// Get prior factor:
@ -805,7 +806,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
X(0), Vector1(14.1421), I_1x1 * 2.82843),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.1379), I_1x1 * 2.02759);
expectedBayesNet.emplace_shared<GaussianMixture>(
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
@ -830,7 +831,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
HybridBayesNet bn;
// Create Gaussian mixture z_0 = x0 + noise for each measurement.
auto gm = std::make_shared<GaussianMixture>(
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0)}, DiscreteKeys{mode},
std::vector{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
@ -862,7 +863,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
X(0), Vector1(10.1379), I_1x1 * 2.02759),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(14.1421), I_1x1 * 2.82843);
expectedBayesNet.emplace_shared<GaussianMixture>(
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
@ -899,7 +900,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
X(0), Vector1(17.3205), I_1x1 * 3.4641),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.274), I_1x1 * 2.0548);
expectedBayesNet.emplace_shared<GaussianMixture>(
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
@ -946,7 +947,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {0, 1, 2}) {
// Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t):
const auto noise_mode_t = DiscreteKey{N(t), 2};
bn.emplace_shared<GaussianMixture>(
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(t)}, KeyVector{X(t)}, DiscreteKeys{noise_mode_t},
std::vector{GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t),
Z_1x1, 0.5),
@ -961,7 +962,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {2, 1}) {
// Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1):
const auto motion_model_t = DiscreteKey{M(t), 2};
auto gm = std::make_shared<GaussianMixture>(
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{X(t)}, KeyVector{X(t - 1)}, DiscreteKeys{motion_model_t},
std::vector{GaussianConditional::sharedMeanAndStddev(
X(t), I_1x1, X(t - 1), Z_1x1, 0.2),

View File

@ -126,31 +126,34 @@ TEST(HybridGaussianElimination, IncrementalInference) {
/********************************************************/
// Run batch elimination so we can compare results.
const Ordering ordering {X(0), X(1), X(2)};
const Ordering ordering{X(0), X(1), X(2)};
// Now we calculate the expected factors using full elimination
const auto [expectedHybridBayesTree, expectedRemainingGraph] =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
// The densities on X(0) should be the same
auto x0_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(0)]->conditional()->inner());
auto expected_x0_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(0)]->conditional()->inner());
auto x0_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
isam[X(0)]->conditional()->inner());
auto expected_x0_conditional =
dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(0)]->conditional()->inner());
EXPECT(assert_equal(*x0_conditional, *expected_x0_conditional));
// The densities on X(1) should be the same
auto x1_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(1)]->conditional()->inner());
auto expected_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
auto x1_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
isam[X(1)]->conditional()->inner());
auto expected_x1_conditional =
dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
EXPECT(assert_equal(*x1_conditional, *expected_x1_conditional));
// The densities on X(2) should be the same
auto x2_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
auto expected_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
auto x2_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
isam[X(2)]->conditional()->inner());
auto expected_x2_conditional =
dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
EXPECT(assert_equal(*x2_conditional, *expected_x2_conditional));
// We only perform manual continuous elimination for 0,0.
@ -279,9 +282,9 @@ TEST(HybridGaussianElimination, Approx_inference) {
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &unprunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unprunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
incrementalHybrid[X(3)]->conditional()->inner());
std::vector<std::pair<DiscreteValues, double>> assignments =
@ -381,11 +384,11 @@ TEST(HybridGaussianISAM, NonTrivial) {
// Add connecting poses similar to PoseFactors in GTD
fg.emplace_shared<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
poseNoise);
poseNoise);
// Create initial estimate
Values initial;
@ -414,24 +417,24 @@ TEST(HybridGaussianISAM, NonTrivial) {
KeyVector contKeys = {W(0), W(1)};
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
auto still = std::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0, 0, 0),
noise_model),
noise_model),
moving = std::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
noise_model);
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
auto mixtureFactor = std::make_shared<MixtureFactor>(
auto mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_shared<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0, 0),
poseNoise);
poseNoise);
// PoseFactors-like at k=1
fg.emplace_shared<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
poseNoise);
poseNoise);
initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
@ -454,24 +457,24 @@ TEST(HybridGaussianISAM, NonTrivial) {
// Add odometry factor with discrete modes.
contKeys = {W(1), W(2)};
still = std::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
noise_model);
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
mixtureFactor = std::make_shared<MixtureFactor>(
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_shared<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0, 0),
poseNoise);
poseNoise);
// PoseFactors-like at k=1
fg.emplace_shared<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
poseNoise);
poseNoise);
initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
@ -497,24 +500,24 @@ TEST(HybridGaussianISAM, NonTrivial) {
// Add odometry factor with discrete modes.
contKeys = {W(2), W(3)};
still = std::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
noise_model);
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
mixtureFactor = std::make_shared<MixtureFactor>(
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_shared<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0, 0),
poseNoise);
poseNoise);
// PoseFactors-like at k=3
fg.emplace_shared<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
poseNoise);
poseNoise);
initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));

View File

@ -10,8 +10,8 @@
* -------------------------------------------------------------------------- */
/**
* @file testMixtureFactor.cpp
* @brief Unit tests for MixtureFactor
* @file testHybridNonlinearFactor.cpp
* @brief Unit tests for HybridNonlinearFactor
* @author Varun Agrawal
* @date October 2022
*/
@ -20,8 +20,8 @@
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/BetweenFactor.h>
@ -36,17 +36,17 @@ using symbol_shorthand::X;
/* ************************************************************************* */
// Check iterators of empty mixture.
TEST(MixtureFactor, Constructor) {
MixtureFactor factor;
MixtureFactor::const_iterator const_it = factor.begin();
TEST(HybridNonlinearFactor, Constructor) {
HybridNonlinearFactor factor;
HybridNonlinearFactor::const_iterator const_it = factor.begin();
CHECK(const_it == factor.end());
MixtureFactor::iterator it = factor.begin();
HybridNonlinearFactor::iterator it = factor.begin();
CHECK(it == factor.end());
}
/* ************************************************************************* */
// Test .print() output.
TEST(MixtureFactor, Printing) {
TEST(HybridNonlinearFactor, Printing) {
DiscreteKey m1(1, 2);
double between0 = 0.0;
double between1 = 1.0;
@ -60,11 +60,11 @@ TEST(MixtureFactor, Printing) {
std::make_shared<BetweenFactor<double>>(X(1), X(2), between1, model);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
MixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
HybridNonlinearFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
std::string expected =
R"(Hybrid [x1 x2; 1]
MixtureFactor
HybridNonlinearFactor
Choice(1)
0 Leaf Nonlinear factor on 2 keys
1 Leaf Nonlinear factor on 2 keys
@ -73,7 +73,7 @@ MixtureFactor
}
/* ************************************************************************* */
static MixtureFactor getMixtureFactor() {
static HybridNonlinearFactor getHybridNonlinearFactor() {
DiscreteKey m1(1, 2);
double between0 = 0.0;
@ -88,13 +88,13 @@ static MixtureFactor getMixtureFactor() {
std::make_shared<BetweenFactor<double>>(X(1), X(2), between1, model);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
return MixtureFactor({X(1), X(2)}, {m1}, factors);
return HybridNonlinearFactor({X(1), X(2)}, {m1}, factors);
}
/* ************************************************************************* */
// Test the error of the MixtureFactor
TEST(MixtureFactor, Error) {
auto mixtureFactor = getMixtureFactor();
// Test the error of the HybridNonlinearFactor
TEST(HybridNonlinearFactor, Error) {
auto mixtureFactor = getHybridNonlinearFactor();
Values continuousValues;
continuousValues.insert<double>(X(1), 0);
@ -112,9 +112,9 @@ TEST(MixtureFactor, Error) {
}
/* ************************************************************************* */
// Test dim of the MixtureFactor
TEST(MixtureFactor, Dim) {
auto mixtureFactor = getMixtureFactor();
// Test dim of the HybridNonlinearFactor
TEST(HybridNonlinearFactor, Dim) {
auto mixtureFactor = getHybridNonlinearFactor();
EXPECT_LONGS_EQUAL(1, mixtureFactor.dim());
}

View File

@ -23,8 +23,8 @@
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
@ -105,7 +105,7 @@ TEST(HybridNonlinearFactorGraph, Resize) {
auto discreteFactor = std::make_shared<DecisionTreeFactor>();
fg.push_back(discreteFactor);
auto dcFactor = std::make_shared<MixtureFactor>();
auto dcFactor = std::make_shared<HybridNonlinearFactor>();
fg.push_back(dcFactor);
EXPECT_LONGS_EQUAL(fg.size(), 3);
@ -132,7 +132,7 @@ TEST(HybridGaussianFactorGraph, Resize) {
moving = std::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
std::vector<MotionModel::shared_ptr> components = {still, moving};
auto dcFactor = std::make_shared<MixtureFactor>(
auto dcFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
nhfg.push_back(dcFactor);
@ -150,10 +150,10 @@ TEST(HybridGaussianFactorGraph, Resize) {
}
/***************************************************************************
* Test that the MixtureFactor reports correctly if the number of continuous
* keys provided do not match the keys in the factors.
* Test that the HybridNonlinearFactor reports correctly if the number of
* continuous keys provided do not match the keys in the factors.
*/
TEST(HybridGaussianFactorGraph, MixtureFactor) {
TEST(HybridGaussianFactorGraph, HybridNonlinearFactor) {
auto nonlinearFactor = std::make_shared<BetweenFactor<double>>(
X(0), X(1), 0.0, Isotropic::Sigma(1, 0.1));
auto discreteFactor = std::make_shared<DecisionTreeFactor>();
@ -166,12 +166,12 @@ TEST(HybridGaussianFactorGraph, MixtureFactor) {
// Check for exception when number of continuous keys are under-specified.
KeyVector contKeys = {X(0)};
THROWS_EXCEPTION(std::make_shared<MixtureFactor>(
THROWS_EXCEPTION(std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components));
// Check for exception when number of continuous keys are too many.
contKeys = {X(0), X(1), X(2)};
THROWS_EXCEPTION(std::make_shared<MixtureFactor>(
THROWS_EXCEPTION(std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components));
}
@ -195,7 +195,7 @@ TEST(HybridFactorGraph, PushBack) {
fg = HybridNonlinearFactorGraph();
auto dcFactor = std::make_shared<MixtureFactor>();
auto dcFactor = std::make_shared<HybridNonlinearFactor>();
fg.push_back(dcFactor);
EXPECT_LONGS_EQUAL(fg.size(), 1);
@ -350,7 +350,8 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
EliminateHybrid(factors, ordering);
auto gaussianConditionalMixture =
dynamic_pointer_cast<GaussianMixture>(hybridConditionalMixture->inner());
dynamic_pointer_cast<HybridGaussianConditional>(
hybridConditionalMixture->inner());
CHECK(gaussianConditionalMixture);
// Frontals = [x0, x1]
@ -413,7 +414,8 @@ TEST(HybridFactorGraph, PrintErrors) {
// fg.print();
// std::cout << "\n\n\n" << std::endl;
// fg.printErrors(
// HybridValues(hv.continuous(), DiscreteValues(), self.linearizationPoint));
// HybridValues(hv.continuous(), DiscreteValues(),
// self.linearizationPoint));
}
/****************************************************************************
@ -510,7 +512,7 @@ factor 0:
b = [ -10 ]
No noise model
factor 1:
GaussianMixtureFactor
HybridGaussianFactor
Hybrid [x0 x1; m0]{
Choice(m0)
0 Leaf :
@ -535,7 +537,7 @@ Hybrid [x0 x1; m0]{
}
factor 2:
GaussianMixtureFactor
HybridGaussianFactor
Hybrid [x1 x2; m1]{
Choice(m1)
0 Leaf :
@ -800,7 +802,7 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
moving = std::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
fg.emplace_shared<MixtureFactor>(
fg.emplace_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models);
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.

View File

@ -143,7 +143,7 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
/********************************************************/
// Run batch elimination so we can compare results.
const Ordering ordering {X(0), X(1), X(2)};
const Ordering ordering{X(0), X(1), X(2)};
// Now we calculate the actual factors using full elimination
const auto [expectedHybridBayesTree, expectedRemainingGraph] =
@ -151,24 +151,27 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
// The densities on X(1) should be the same
auto x0_conditional = dynamic_pointer_cast<GaussianMixture>(
auto x0_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(0)]->conditional()->inner());
auto expected_x0_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(0)]->conditional()->inner());
auto expected_x0_conditional =
dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(0)]->conditional()->inner());
EXPECT(assert_equal(*x0_conditional, *expected_x0_conditional));
// The densities on X(1) should be the same
auto x1_conditional = dynamic_pointer_cast<GaussianMixture>(
auto x1_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(1)]->conditional()->inner());
auto expected_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
auto expected_x1_conditional =
dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
EXPECT(assert_equal(*x1_conditional, *expected_x1_conditional));
// The densities on X(2) should be the same
auto x2_conditional = dynamic_pointer_cast<GaussianMixture>(
auto x2_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(2)]->conditional()->inner());
auto expected_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
auto expected_x2_conditional =
dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
EXPECT(assert_equal(*x2_conditional, *expected_x2_conditional));
// We only perform manual continuous elimination for 0,0.
@ -300,9 +303,9 @@ TEST(HybridNonlinearISAM, Approx_inference) {
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &unprunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unprunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(3)]->conditional()->inner());
std::vector<std::pair<DiscreteValues, double>> assignments =
@ -410,11 +413,11 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// Add connecting poses similar to PoseFactors in GTD
fg.emplace_shared<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
poseNoise);
poseNoise);
// Create initial estimate
Values initial;
@ -433,24 +436,24 @@ TEST(HybridNonlinearISAM, NonTrivial) {
KeyVector contKeys = {W(0), W(1)};
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
auto still = std::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0, 0, 0),
noise_model),
noise_model),
moving = std::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
noise_model);
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
auto mixtureFactor = std::make_shared<MixtureFactor>(
auto mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_shared<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0, 0),
poseNoise);
poseNoise);
// PoseFactors-like at k=1
fg.emplace_shared<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
poseNoise);
poseNoise);
initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
@ -473,24 +476,24 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// Add odometry factor with discrete modes.
contKeys = {W(1), W(2)};
still = std::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
noise_model);
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
mixtureFactor = std::make_shared<MixtureFactor>(
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_shared<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0, 0),
poseNoise);
poseNoise);
// PoseFactors-like at k=1
fg.emplace_shared<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
poseNoise);
poseNoise);
initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
@ -516,24 +519,24 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// Add odometry factor with discrete modes.
contKeys = {W(2), W(3)};
still = std::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
noise_model);
noise_model);
moving =
std::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
mixtureFactor = std::make_shared<MixtureFactor>(
mixtureFactor = std::make_shared<HybridNonlinearFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_shared<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0, 0),
poseNoise);
poseNoise);
// PoseFactors-like at k=3
fg.emplace_shared<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
poseNoise);
poseNoise);
fg.emplace_shared<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
poseNoise);
poseNoise);
initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));

View File

@ -18,11 +18,11 @@
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
@ -51,29 +51,30 @@ BOOST_CLASS_EXPORT_GUID(ADT, "gtsam_AlgebraicDecisionTree");
BOOST_CLASS_EXPORT_GUID(ADT::Leaf, "gtsam_AlgebraicDecisionTree_Leaf");
BOOST_CLASS_EXPORT_GUID(ADT::Choice, "gtsam_AlgebraicDecisionTree_Choice")
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor, "gtsam_GaussianMixtureFactor");
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor::Factors,
"gtsam_GaussianMixtureFactor_Factors");
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor::Factors::Leaf,
"gtsam_GaussianMixtureFactor_Factors_Leaf");
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor::Factors::Choice,
"gtsam_GaussianMixtureFactor_Factors_Choice");
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor, "gtsam_HybridGaussianFactor");
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::Factors,
"gtsam_HybridGaussianFactor_Factors");
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::Factors::Leaf,
"gtsam_HybridGaussianFactor_Factors_Leaf");
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::Factors::Choice,
"gtsam_HybridGaussianFactor_Factors_Choice");
BOOST_CLASS_EXPORT_GUID(GaussianMixture, "gtsam_GaussianMixture");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals,
"gtsam_GaussianMixture_Conditionals");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals::Leaf,
"gtsam_GaussianMixture_Conditionals_Leaf");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals::Choice,
"gtsam_GaussianMixture_Conditionals_Choice");
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional,
"gtsam_HybridGaussianConditional");
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals,
"gtsam_HybridGaussianConditional_Conditionals");
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Leaf,
"gtsam_HybridGaussianConditional_Conditionals_Leaf");
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Choice,
"gtsam_HybridGaussianConditional_Conditionals_Choice");
// Needed since GaussianConditional::FromMeanAndStddev uses it
BOOST_CLASS_EXPORT_GUID(noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(HybridBayesNet, "gtsam_HybridBayesNet");
/* ****************************************************************************/
// Test GaussianMixtureFactor serialization.
TEST(HybridSerialization, GaussianMixtureFactor) {
// Test HybridGaussianFactor serialization.
TEST(HybridSerialization, HybridGaussianFactor) {
KeyVector continuousKeys{X(0)};
DiscreteKeys discreteKeys{{M(0), 2}};
@ -84,11 +85,11 @@ TEST(HybridSerialization, GaussianMixtureFactor) {
auto f1 = std::make_shared<JacobianFactor>(X(0), A, b1);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
const GaussianMixtureFactor factor(continuousKeys, discreteKeys, factors);
const HybridGaussianFactor factor(continuousKeys, discreteKeys, factors);
EXPECT(equalsObj<GaussianMixtureFactor>(factor));
EXPECT(equalsXML<GaussianMixtureFactor>(factor));
EXPECT(equalsBinary<GaussianMixtureFactor>(factor));
EXPECT(equalsObj<HybridGaussianFactor>(factor));
EXPECT(equalsXML<HybridGaussianFactor>(factor));
EXPECT(equalsBinary<HybridGaussianFactor>(factor));
}
/* ****************************************************************************/
@ -106,20 +107,20 @@ TEST(HybridSerialization, HybridConditional) {
}
/* ****************************************************************************/
// Test GaussianMixture serialization.
TEST(HybridSerialization, GaussianMixture) {
// Test HybridGaussianConditional serialization.
TEST(HybridSerialization, HybridGaussianConditional) {
const DiscreteKey mode(M(0), 2);
Matrix1 I = Matrix1::Identity();
const auto conditional0 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
const auto conditional1 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
const GaussianMixture gm({Z(0)}, {X(0)}, {mode},
{conditional0, conditional1});
const HybridGaussianConditional gm({Z(0)}, {X(0)}, {mode},
{conditional0, conditional1});
EXPECT(equalsObj<GaussianMixture>(gm));
EXPECT(equalsXML<GaussianMixture>(gm));
EXPECT(equalsBinary<GaussianMixture>(gm));
EXPECT(equalsObj<HybridGaussianConditional>(gm));
EXPECT(equalsXML<HybridGaussianConditional>(gm));
EXPECT(equalsBinary<HybridGaussianConditional>(gm));
}
/* ****************************************************************************/

View File

@ -46,7 +46,7 @@ namespace gtsam {
* Gaussian density over a set of continuous variables.
* - \b Discrete conditionals, implemented in \class DiscreteConditional, which
* represent a discrete conditional distribution over discrete variables.
* - \b Hybrid conditional densities, such as \class GaussianMixture, which is
* - \b Hybrid conditional densities, such as \class HybridGaussianConditional, which is
* a density over continuous variables given discrete/continuous parents.
* - \b Symbolic factors, used to represent a graph structure, implemented in
* \class SymbolicConditional. Only used for symbolic elimination etc.

View File

@ -18,8 +18,9 @@ from gtsam.symbol_shorthand import A, X
from gtsam.utils.test_case import GtsamTestCase
from gtsam import (DiscreteConditional, DiscreteKeys, DiscreteValues,
GaussianConditional, GaussianMixture, HybridBayesNet,
HybridValues, VectorValues, noiseModel)
GaussianConditional, HybridBayesNet,
HybridGaussianConditional, HybridValues, VectorValues,
noiseModel)
class TestHybridBayesNet(GtsamTestCase):
@ -49,8 +50,8 @@ class TestHybridBayesNet(GtsamTestCase):
bayesNet = HybridBayesNet()
bayesNet.push_back(conditional)
bayesNet.push_back(
GaussianMixture([X(1)], [], discrete_keys,
[conditional0, conditional1]))
HybridGaussianConditional([X(1)], [], discrete_keys,
[conditional0, conditional1]))
bayesNet.push_back(DiscreteConditional(Asia, "99/1"))
# Create values at which to evaluate.

View File

@ -18,15 +18,16 @@ from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (DiscreteConditional, DiscreteKeys, GaussianConditional,
GaussianMixture, GaussianMixtureFactor, HybridBayesNet,
HybridGaussianFactorGraph, HybridValues, JacobianFactor,
Ordering, noiseModel)
HybridBayesNet, HybridGaussianConditional,
HybridGaussianFactor, HybridGaussianFactorGraph,
HybridValues, JacobianFactor, Ordering, noiseModel)
DEBUG_MARGINALS = False
class TestHybridGaussianFactorGraph(GtsamTestCase):
"""Unit tests for HybridGaussianFactorGraph."""
def test_create(self):
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
@ -36,7 +37,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = GaussianMixtureFactor([X(0)], dk, [jf1, jf2])
gmf = HybridGaussianFactor([X(0)], dk, [jf1, jf2])
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
@ -48,7 +49,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
self.assertEqual(hbn.size(), 2)
mixture = hbn.at(0).inner()
self.assertIsInstance(mixture, GaussianMixture)
self.assertIsInstance(mixture, HybridGaussianConditional)
self.assertEqual(len(mixture.keys()), 2)
discrete_conditional = hbn.at(hbn.size() - 1).inner()
@ -63,7 +64,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = GaussianMixtureFactor([X(0)], dk, [jf1, jf2])
gmf = HybridGaussianFactor([X(0)], dk, [jf1, jf2])
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
@ -106,8 +107,9 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
I_1x1,
X(0), [0],
sigma=3)
bayesNet.push_back(GaussianMixture([Z(i)], [X(0)], keys,
[conditional0, conditional1]))
bayesNet.push_back(
HybridGaussianConditional([Z(i)], [X(0)], keys,
[conditional0, conditional1]))
# Create prior on X(0).
prior_on_x0 = GaussianConditional.FromMeanAndStddev(
@ -219,9 +221,9 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
# Check ratio between unnormalized posterior and factor graph is the same for all modes:
for mode in [1, 0]:
values.insert_or_assign(M(0), mode)
self.assertAlmostEqual(bayesNet.evaluate(values) /
np.exp(-fg.error(values)),
0.6366197723675815)
self.assertAlmostEqual(
bayesNet.evaluate(values) / np.exp(-fg.error(values)),
0.6366197723675815)
self.assertAlmostEqual(bayesNet.error(values), fg.error(values))
# Test elimination.

View File

@ -17,24 +17,26 @@ import unittest
import numpy as np
from gtsam.symbol_shorthand import C, X
from gtsam.utils.test_case import GtsamTestCase
from gtsam import BetweenFactorPoint3, noiseModel, PriorFactorPoint3, Point3
import gtsam
from gtsam import BetweenFactorPoint3, Point3, PriorFactorPoint3, noiseModel
class TestHybridGaussianFactorGraph(GtsamTestCase):
"""Unit tests for HybridGaussianFactorGraph."""
def test_nonlinear_hybrid(self):
nlfg = gtsam.HybridNonlinearFactorGraph()
dk = gtsam.DiscreteKeys()
dk.push_back((10, 2))
nlfg.push_back(BetweenFactorPoint3(1, 2, Point3(
1, 2, 3), noiseModel.Diagonal.Variances([1, 1, 1])))
nlfg.push_back(
BetweenFactorPoint3(1, 2, Point3(1, 2, 3),
noiseModel.Diagonal.Variances([1, 1, 1])))
nlfg.push_back(
PriorFactorPoint3(2, Point3(1, 2, 3),
noiseModel.Diagonal.Variances([0.5, 0.5, 0.5])))
nlfg.push_back(
gtsam.MixtureFactor([1], dk, [
gtsam.HybridNonlinearFactor([1], dk, [
PriorFactorPoint3(1, Point3(0, 0, 0),
noiseModel.Unit.Create(3)),
PriorFactorPoint3(1, Point3(1, 2, 1),

View File

@ -14,11 +14,12 @@ from __future__ import print_function
import unittest
import gtsam
import numpy as np
from gtsam.symbol_shorthand import C, X
from gtsam.utils.test_case import GtsamTestCase
import gtsam
class TestHybridValues(GtsamTestCase):
"""Unit tests for HybridValues."""