Merge pull request #1893 from borglab/fix-pruning

release/4.3a0
Varun Agrawal 2024-11-04 14:59:06 -05:00 committed by GitHub
commit 52558ab772
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 85 additions and 13 deletions

View File

@ -197,6 +197,30 @@ AlgebraicDecisionTree<Key> HybridBayesNet::errorTree(
return result;
}
/* ************************************************************************* */
double HybridBayesNet::negLogConstant(
const std::optional<DiscreteValues> &discrete) const {
double negLogNormConst = 0.0;
// Iterate over each conditional.
for (auto &&conditional : *this) {
if (discrete.has_value()) {
if (auto gm = conditional->asHybrid()) {
negLogNormConst += gm->choose(*discrete)->negLogConstant();
} else if (auto gc = conditional->asGaussian()) {
negLogNormConst += gc->negLogConstant();
} else if (auto dc = conditional->asDiscrete()) {
negLogNormConst += dc->choose(*discrete)->negLogConstant();
} else {
throw std::runtime_error(
"Unknown conditional type when computing negLogConstant");
}
} else {
negLogNormConst += conditional->negLogConstant();
}
}
return negLogNormConst;
}
/* ************************************************************************* */
AlgebraicDecisionTree<Key> HybridBayesNet::discretePosterior(
const VectorValues &continuousValues) const {

View File

@ -237,6 +237,16 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
using BayesNet::logProbability; // expose HybridValues version
/**
* @brief Get the negative log of the normalization constant
* corresponding to the joint density represented by this Bayes net.
* Optionally index by `discrete`.
*
* @param discrete Optional DiscreteValues
* @return double
*/
double negLogConstant(const std::optional<DiscreteValues> &discrete) const;
/**
* @brief Compute normalized posterior P(M|X=x) and return as a tree.
*

View File

@ -322,8 +322,11 @@ HybridGaussianConditional::shared_ptr HybridGaussianConditional::prune(
const GaussianFactorValuePair &pair) -> GaussianFactorValuePair {
if (max->evaluate(choices) == 0.0)
return {nullptr, std::numeric_limits<double>::infinity()};
else
return pair;
else {
// Add negLogConstant_ back so that the minimum negLogConstant in the
// HybridGaussianConditional is set correctly.
return {pair.first, pair.second + negLogConstant_};
}
};
FactorValuePairs prunedConditionals = factors().apply(pruner);

View File

@ -59,10 +59,11 @@ using OrphanWrapper = BayesTreeOrphanWrapper<HybridBayesTree::Clique>;
/// Result from elimination.
struct Result {
// Gaussian conditional resulting from elimination.
GaussianConditional::shared_ptr conditional;
double negLogK;
GaussianFactor::shared_ptr factor;
double scalar;
double negLogK; // Negative log of the normalization constant K.
GaussianFactor::shared_ptr factor; // Leftover factor 𝜏.
double scalar; // Scalar value associated with factor 𝜏.
bool operator==(const Result &other) const {
return conditional == other.conditional && negLogK == other.negLogK &&

View File

@ -363,10 +363,6 @@ TEST(HybridBayesNet, Pruning) {
AlgebraicDecisionTree<Key> expected(s.modes, leaves);
EXPECT(assert_equal(expected, discretePosterior, 1e-6));
// Prune and get probabilities
auto prunedBayesNet = posterior->prune(2);
auto prunedTree = prunedBayesNet.discretePosterior(delta.continuous());
// Verify logProbability computation and check specific logProbability value
const DiscreteValues discrete_values{{M(0), 1}, {M(1), 1}};
const HybridValues hybridValues{delta.continuous(), discrete_values};
@ -381,10 +377,21 @@ TEST(HybridBayesNet, Pruning) {
EXPECT_DOUBLES_EQUAL(logProbability, posterior->logProbability(hybridValues),
1e-9);
double negLogConstant = posterior->negLogConstant(discrete_values);
// The sum of all the mode densities
double normalizer =
AlgebraicDecisionTree<Key>(posterior->errorTree(delta.continuous()),
[](double error) { return exp(-error); })
.sum();
// Check agreement with discrete posterior
// double density = exp(logProbability);
// FAILS: EXPECT_DOUBLES_EQUAL(density, discretePosterior(discrete_values),
// 1e-6);
double density = exp(logProbability + negLogConstant) / normalizer;
EXPECT_DOUBLES_EQUAL(density, discretePosterior(discrete_values), 1e-6);
// Prune and get probabilities
auto prunedBayesNet = posterior->prune(2);
auto prunedTree = prunedBayesNet.discretePosterior(delta.continuous());
// Regression test on pruned logProbability tree
std::vector<double> pruned_leaves = {0.0, 0.50758422, 0.0, 0.49241578};
@ -392,7 +399,26 @@ TEST(HybridBayesNet, Pruning) {
EXPECT(assert_equal(expected_pruned, prunedTree, 1e-6));
// Regression
// FAILS: EXPECT_DOUBLES_EQUAL(density, prunedTree(discrete_values), 1e-9);
double pruned_logProbability = 0;
pruned_logProbability +=
prunedBayesNet.at(0)->asDiscrete()->logProbability(hybridValues);
pruned_logProbability +=
prunedBayesNet.at(1)->asHybrid()->logProbability(hybridValues);
pruned_logProbability +=
prunedBayesNet.at(2)->asHybrid()->logProbability(hybridValues);
pruned_logProbability +=
prunedBayesNet.at(3)->asHybrid()->logProbability(hybridValues);
double pruned_negLogConstant = prunedBayesNet.negLogConstant(discrete_values);
// The sum of all the mode densities
double pruned_normalizer =
AlgebraicDecisionTree<Key>(prunedBayesNet.errorTree(delta.continuous()),
[](double error) { return exp(-error); })
.sum();
double pruned_density =
exp(pruned_logProbability + pruned_negLogConstant) / pruned_normalizer;
EXPECT_DOUBLES_EQUAL(pruned_density, prunedTree(discrete_values), 1e-9);
}
/* ****************************************************************************/

View File

@ -275,6 +275,11 @@ TEST(HybridGaussianConditional, Prune) {
// Check that the pruned HybridGaussianConditional has 2 conditionals
EXPECT_LONGS_EQUAL(2, pruned->nrComponents());
// Check that the minimum negLogConstant is set correctly
EXPECT_DOUBLES_EQUAL(
hgc.conditionals()({{M(1), 0}, {M(2), 1}})->negLogConstant(),
pruned->negLogConstant(), 1e-9);
}
{
const std::vector<double> potentials{0.2, 0, 0.3, 0, //
@ -285,6 +290,9 @@ TEST(HybridGaussianConditional, Prune) {
// Check that the pruned HybridGaussianConditional has 3 conditionals
EXPECT_LONGS_EQUAL(3, pruned->nrComponents());
// Check that the minimum negLogConstant is correct
EXPECT_DOUBLES_EQUAL(hgc.negLogConstant(), pruned->negLogConstant(), 1e-9);
}
}