all tests are ready. 2 minor refinements to go:

- remove default error
- leverage full range of spherical camera in triangulation
release/4.3a0
lcarlone 2021-08-27 23:58:46 -04:00
parent 02a0e70254
commit 51b4b871df
1 changed files with 128 additions and 122 deletions

View File

@ -48,8 +48,6 @@ static Symbol x3('X', 3);
static Point2 measurement1(323.0, 240.0); static Point2 measurement1(323.0, 240.0);
LevenbergMarquardtParams lmParams; LevenbergMarquardtParams lmParams;
// Make more verbose like so (in tests):
// params.verbosityLM = LevenbergMarquardtParams::SUMMARY;
/* ************************************************************************* */ /* ************************************************************************* */
TEST( SmartProjectionFactorP, Constructor) { TEST( SmartProjectionFactorP, Constructor) {
@ -1089,129 +1087,137 @@ TEST( SmartProjectionFactorP, timing ) {
/* *************************************************************************/ /* *************************************************************************/
TEST( SmartProjectionFactorP, optimization_3poses_sphericalCamera ) { TEST( SmartProjectionFactorP, optimization_3poses_sphericalCamera ) {
// using namespace sphericalCamera; using namespace sphericalCamera;
// Camera::MeasurementVector measurements_lmk1, measurements_lmk2, measurements_lmk3; Camera::MeasurementVector measurements_lmk1, measurements_lmk2, measurements_lmk3;
//
// // Project three landmarks into three cameras
// projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark1, measurements_lmk1);
// projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark2, measurements_lmk2);
// projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark3, measurements_lmk3);
//
// // create inputs
// std::vector<Key> keys;
// keys.push_back(x1);
// keys.push_back(x2);
// keys.push_back(x3);
//
// std::vector<EmptyCal::shared_ptr> emptyKs;
// emptyKs.push_back(emptyK);
// emptyKs.push_back(emptyK);
// emptyKs.push_back(emptyK);
//
// SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
// smartFactor1->add(measurements_lmk1, keys, emptyKs);
// SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model)); // Project three landmarks into three cameras
// smartFactor2->add(measurements_lmk2, keys, sharedKs); projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark1, measurements_lmk1);
// projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark2, measurements_lmk2);
// SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model)); projectToMultipleCameras<Camera>(cam1, cam2, cam3, landmark3, measurements_lmk3);
// smartFactor3->add(measurements_lmk3, keys, sharedKs);
// // create inputs
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); std::vector<Key> keys;
// keys.push_back(x1);
// NonlinearFactorGraph graph; keys.push_back(x2);
// graph.push_back(smartFactor1); keys.push_back(x3);
// graph.push_back(smartFactor2);
// graph.push_back(smartFactor3); std::vector<EmptyCal::shared_ptr> emptyKs;
// graph.addPrior(x1, level_pose, noisePrior); emptyKs.push_back(emptyK);
// graph.addPrior(x2, pose_right, noisePrior); emptyKs.push_back(emptyK);
// emptyKs.push_back(emptyK);
// Values groundTruth;
// groundTruth.insert(x1, level_pose); SmartProjectionParams params;
// groundTruth.insert(x2, pose_right); params.setRankTolerance(0.01);
// groundTruth.insert(x3, pose_above);
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9); SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model,params));
// smartFactor1->add(measurements_lmk1, keys, emptyKs);
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model,params));
// Point3(0.1, 0.1, 0.1)); // smaller noise smartFactor2->add(measurements_lmk2, keys, emptyKs);
// Values values;
// values.insert(x1, level_pose); SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model,params));
// values.insert(x2, pose_right); smartFactor3->add(measurements_lmk3, keys, emptyKs);
// // initialize third pose with some noise, we expect it to move back to original pose_above
// values.insert(x3, pose_above * noise_pose); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// EXPECT( // check that the pose is actually noisy
// assert_equal( NonlinearFactorGraph graph;
// Pose3( graph.push_back(smartFactor1);
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598, graph.push_back(smartFactor2);
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598), graph.push_back(smartFactor3);
// Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3))); graph.addPrior(x1, level_pose, noisePrior);
// graph.addPrior(x2, pose_right, noisePrior);
// Values result;
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams); Values groundTruth;
// result = optimizer.optimize(); groundTruth.insert(x1, level_pose);
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5)); groundTruth.insert(x2, pose_right);
groundTruth.insert(x3, pose_above);
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, pose_above * noise_pose);
EXPECT( // check that the pose is actually noisy
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
graph.print("graph\n");
DOUBLES_EQUAL(0.1584588987292, graph.error(values), 1e-9);
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
} }
//#ifndef DISABLE_TIMING #ifndef DISABLE_TIMING
//#include <gtsam/base/timing.h> #include <gtsam/base/timing.h>
//// this factor is actually slightly faster (but comparable) to original SmartProjectionPoseFactor // using spherical camera is slightly slower (but comparable) to PinholePose<Cal3_S2>
////-Total: 0 CPU (0 times, 0 wall, 0.01 children, min: 0 max: 0) //| -SmartFactorP spherical LINEARIZE: 0.01 CPU (1000 times, 0.00752 wall, 0.01 children, min: 0 max: 0)
////| -SmartFactorP LINEARIZE: 0 CPU (1000 times, 0.005481 wall, 0 children, min: 0 max: 0) //| -SmartFactorP pinhole LINEARIZE: 0 CPU (1000 times, 0.00523 wall, 0 children, min: 0 max: 0)
////| -SmartPoseFactor LINEARIZE: 0.01 CPU (1000 times, 0.007318 wall, 0.01 children, min: 0 max: 0) /* *************************************************************************/
///* *************************************************************************/ TEST( SmartProjectionFactorP, timing_sphericalCamera ) {
//TEST( SmartProjectionFactorP, timing ) {
// // create common data
// using namespace vanillaPose; Rot3 R = Rot3::identity();
// Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
// // Default cameras for simple derivatives Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
// static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0)); Pose3 body_P_sensorId = Pose3::identity();
// Point3 landmark1(0, 0, 10);
// Rot3 R = Rot3::identity();
// Pose3 pose1 = Pose3(R, Point3(0, 0, 0)); // create spherical data
// Pose3 pose2 = Pose3(R, Point3(1, 0, 0)); EmptyCal::shared_ptr emptyK;
// Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple); SphericalCamera cam1_sphere(pose1, emptyK), cam2_sphere(pose2, emptyK);
// Pose3 body_P_sensorId = Pose3::identity(); // Project 2 landmarks into 2 cameras
// std::vector<Unit3> measurements_lmk1_sphere;
// // one landmarks 1m in front of camera measurements_lmk1_sphere.push_back(cam1_sphere.project(landmark1));
// Point3 landmark1(0, 0, 10); measurements_lmk1_sphere.push_back(cam2_sphere.project(landmark1));
//
// Point2Vector measurements_lmk1; // create Cal3_S2 data
// static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
// // Project 2 landmarks into 2 cameras PinholePose<Cal3_S2> cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
// measurements_lmk1.push_back(cam1.project(landmark1)); // Project 2 landmarks into 2 cameras
// measurements_lmk1.push_back(cam2.project(landmark1)); std::vector<Point2> measurements_lmk1;
// measurements_lmk1.push_back(cam1.project(landmark1));
// size_t nrTests = 1000; measurements_lmk1.push_back(cam2.project(landmark1));
//
// for(size_t i = 0; i<nrTests; i++){ size_t nrTests = 1000;
// SmartFactorP::shared_ptr smartFactorP(new SmartFactorP(model));
// smartFactorP->add(measurements_lmk1[0], x1, sharedKSimple, body_P_sensorId); for(size_t i = 0; i<nrTests; i++){
// smartFactorP->add(measurements_lmk1[1], x1, sharedKSimple, body_P_sensorId); SmartProjectionFactorP<SphericalCamera>::shared_ptr smartFactorP(new SmartProjectionFactorP<SphericalCamera>(model));
// smartFactorP->add(measurements_lmk1_sphere[0], x1, emptyK, body_P_sensorId);
// Values values; smartFactorP->add(measurements_lmk1_sphere[1], x1, emptyK, body_P_sensorId);
// values.insert(x1, pose1);
// values.insert(x2, pose2); Values values;
// gttic_(SmartFactorP_LINEARIZE); values.insert(x1, pose1);
// smartFactorP->linearize(values); values.insert(x2, pose2);
// gttoc_(SmartFactorP_LINEARIZE); gttic_(SmartFactorP_spherical_LINEARIZE);
// } smartFactorP->linearize(values);
// gttoc_(SmartFactorP_spherical_LINEARIZE);
// for(size_t i = 0; i<nrTests; i++){ }
// SmartFactor::shared_ptr smartFactor(new SmartFactor(model, sharedKSimple));
// smartFactor->add(measurements_lmk1[0], x1); for(size_t i = 0; i<nrTests; i++){
// smartFactor->add(measurements_lmk1[1], x2); SmartProjectionFactorP< PinholePose<Cal3_S2> >::shared_ptr smartFactorP2(new SmartProjectionFactorP< PinholePose<Cal3_S2> >(model));
// smartFactorP2->add(measurements_lmk1[0], x1, sharedKSimple, body_P_sensorId);
// Values values; smartFactorP2->add(measurements_lmk1[1], x1, sharedKSimple, body_P_sensorId);
// values.insert(x1, pose1);
// values.insert(x2, pose2); Values values;
// gttic_(SmartPoseFactor_LINEARIZE); values.insert(x1, pose1);
// smartFactor->linearize(values); values.insert(x2, pose2);
// gttoc_(SmartPoseFactor_LINEARIZE); gttic_(SmartFactorP_pinhole_LINEARIZE);
// } smartFactorP2->linearize(values);
// tictoc_print_(); gttoc_(SmartFactorP_pinhole_LINEARIZE);
//} }
//#endif tictoc_print_();
}
#endif
/* ************************************************************************* */ /* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained"); BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");